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EXTREMAL SOLUTIONS AT INFINITY FOR SYMPLECTIC

SYSTEMS ON TIME SCALES I –– GENERA OF CONJOINED BASES

IVA DŘÍMALOVÁ

Abstract. In this paper we present a theory of genera of conjoined bases for symplectic dynamic
systems on time scales and its connections with principal solutions at infinity and antiprincipal
solutions at infinity for these systems. Among other properties we prove the existence of these
extremal solutions in every genus. Our results generalize and complete the results by several
authors on this subject, in particular by Došlý (2000), Šepitka and Šimon Hilscher (2016), and the
author and Šimon Hilscher (2020). Some of our result are new even within the theory of genera
of conjoined bases for linear Hamiltonian differential systems and symplectic difference systems,
or they complete the arguments presented therein. Throughout the paper we do not assume any
normality (controllability) condition on the system. This approach requires using the Moore–
Penrose pseudoinverse matrices in the situations, where the inverse matrices occurred in the
traditional literature. In this context we also prove a new explicit formula for the delta derivative
of the Moore–Penrose pseudoinverse. This paper is a first part of the results connected with the
theory of genera. The second part would naturally continue by providing a characterization of
all principal solutions of (??) at infinity in the given genus in terms of the initial conditions and
a fixed principal solution at infinity from this genus and focusing on limit properties of above
mentioned special solutions and by establishing their limit comparison at infinity.

Mathematics subject classification (2020): 34N05, 34C10, 39A12, 39A21.
Keywords and phrases: Symplectic system on time scale, genus of conjoined bases, antiprincipal solu-

tion at infinity, principal solution at infinity, nonoscillation, Riccati matrix dynamic equation, Moore–Penrose
pseudoinverse.

RE F ER EN C ES

[1] C. D. AHLBRANDT, M. BOHNER, J. RIDENHOUR, Hamiltonian systems on time scales, J. Math.
Anal. Appl. 250 (2000), no. 2, 561–578.

[2] D. R. ANDERSON, Titchmarsh–Sims–Weyl theory for complex Hamiltonian systems on Sturmian time
scales, J. Math. Anal. Appl. 373 (2011), no. 2, 709–725.

[3] A. BEN-ISRAEL, T. N. E. GREVILLE, Generalized inverses: theory and applications, Second Edi-
tion, Springer-Verlag, New York, NY, 2003.

[4] D. S. BERNSTEIN,Matrix mathematics. Theory, facts, and formulas with application to linear systems
theory, Princeton University Press, Princeton, 2005.
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[6] M. BOHNER, O. DOŠLÝ, R. HILSCHER, Linear Hamiltonian dynamic systems on time scales: Stur-
mian property of the principal solution, Nonlinear Anal. 47 (2001), no. 2, 849–860.

[7] M. BOHNER, A. PETERSON, Dynamic equation on time scales. An introduction with applications,
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[12] O. DOŠLÝ, J. V. ELYSEEVA, R. ŠIMON HILSCHER, Symplectic difference systems: oscillation and
spectral theory, Pathways in Mathematics, Birkhäuser/Springer, Cham, 2019.
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