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NONTRIVIAL SOLUTIONS FOR A NONLINEAR ν TH ORDER

ATICI–ELOE FRACTIONAL DIFFERENCE EQUATION

SATISFYING DIRICHLET BOUNDARY CONDITIONS

JOHNNY HENDERSON

Abstract. For 1 < ν � 2 a real number and T � 2 a natural number, by an application of
a Krasnosel’skii-Zabreiko fixed point theorem, nontrivial solutions are established for a non-
linear ν th order Atıcı-Eloe fractional difference equation, Δνu(t) + f (u(t + ν − 1)) = 0 , t ∈
{1,2, . . . ,T + 1} , satisfying the Dirichlet boundary conditions u(ν − 2) = u(ν + T + 1) = 0,

where f : R → R is continuous and lim|r|→∞
f (r)
r exists.
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