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Abstract. For 1 < ν � 2 a real number and T � 2 a natural number, by an application of
a Krasnosel’skii-Zabreiko fixed point theorem, nontrivial solutions are established for a non-
linear ν th order Atıcı-Eloe fractional difference equation, Δνu(t) + f (u(t + ν − 1)) = 0 , t ∈
{1,2, . . . ,T + 1} , satisfying the Dirichlet boundary conditions u(ν − 2) = u(ν + T + 1) = 0,

where f : R → R is continuous and lim|r|→∞
f (r)
r exists.

1. Introduction

In this paper, for 1 < ν � 2 a real number and T � 2 a natural number, we are
concerned with the existence of nontrivial solutions of the nonlinear ν th order Atıcı-
Eloe fractional difference equation,

Δνu(t)+ f (u(t + ν −1)) = 0, t ∈ {1,2, . . . ,T +1}, (1.1)

satisfying the Dirichlet boundary conditions

u(ν −2) = u(ν +T +1) = 0, (1.2)

where Δν is the Atıcı-Eloe fractional difference and f : R → R is continuous.
There is much current interest in fractional difference equations devoted to both

their theoretical development and their applications. Much of this interest is spawned
by the definitions, in the context of discrete domains, of fractional sums and fractional
differences in the pioneering papers by Atıcı and Eloe [1, 2]. Those papers were further
developed and extended in the seminal papers by Goodrich [8, 9, 10]. In their afore-
mentioned papers, Atıcı and Eloe dealt first with a theory for initial value problems for
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fractional difference equations, followed in their second paper by applications of their
definitions in obtaining positive solutions for Dirichlet boundary value problems for
fractional difference equations. Their second work centered on a Guo-Krasnosel’skii
fixed point argument which required the construction of a Green’s function for their
fractional problem. Other subsequent research by Goodrich that focused on questions
expanding the Atıcı and Eloe work can be found in [11, 12, 13, 14, 15]. A couple of
recent papers by Henderson [17] and Henderson and Neugebauer [20] were devoted to
the existence of local solutions for boundary value problems for Atıcı-Eloe fractional
difference equations, and other recent works devoted to Atıcı-Eloe difference equations
can be found in, to cite a few, [6, 19, 29].

Discrete fractional calculus and fractional difference equations frequently appear
in modeling natural processes such as found in the paper by Atıcı and S. Şengül [3] and
in the papers by Magin [23] and Metzler et al. [24]. Especially prominent is the current
use of boundary value problems for discrete fractional difference equations in their
applications to discrete control processes; see, for example, the monographs devoted to
discrete fractional control [4, 5, 25, 26, 27].

In this paper, we apply a Krasnosel’skii and Zabreiko fixed point theorem [22] in
establishing the existence of nontrivial solutions of (1.1), (1.2). Effective use has been
made of that fixed point theorem in showing existence of solutions of boundary value
problems (for ordinary differential equations, for difference equations and for dynamic
equations) in the context of when the nonlinearity is almost linear at infinity; we cite
[7, 16, 18, 21, 28].

2. Some preliminaries and the Green’s function

We begin this section with the Atıcı-Eloe definitions of fractional sum and frac-
tional difference in the context of a discrete domain.

DEFINITION 1. Let n ∈ N and n− 1 < κ � n be a real number, and let a ∈ R.
For t ∈ {a+ κ ,a+ κ + 1, . . .}, the κ th order Atıcı-Eloe fractional sum, Δ−κu, of the
function u is defined by

Δ−κu(t) :=
1

Γ(κ)

t−κ

∑
s=a

(t − s−1)(κ−1)u(s),

where t(κ) := Γ(t+1)
Γ(t+1−κ) is the falling function.

The κ th order Atıcı-Eloe fractional difference, Δκu, of the function u is defined
by

Δκu(t) := Δn−(n−κ)u(t) := Δn(Δ−(n−κ)u(t)),

where Δ is the forward difference defined by Δu(t) = u(t + 1)− u(t), and Δiu(t) =
Δ(Δi−1u(t)) , i = 2,3, . . . .

REMARK 1. We note that, for u defined on {a,a+1, . . .} , then Δ−κu is defined
on {a+ κ ,a+ κ +1, . . .}.
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In [2], for 1 < ν � 2, Atıcı and Eloe, by direct computation, constructed the
Green’s function, G(t,s) , for

−Δνy(t) = 0, t ∈ {1,2, . . . ,T +1}, (2.1)

satisfying the Dirichlet boundary conditions (1.2). G(t,s) is given by

G(t,s) =
1

Γ(ν)

⎧⎪⎨
⎪⎩

t(ν−1)(ν+T−s)(ν−1)

(ν+T+1)(ν−1) , t −ν +1 � s � T +1,

t(ν−1)(ν+T−s)(ν−1)

(ν+T+1)(ν−1) − (t− s−1)(ν−1) , s < t−ν +1 � T +1.
(2.2)

They also obtained the following properties of G(t,s) which will be of importance
to us:

(a) For each s ∈ {1, . . . ,T +1} ,

G(ν −2,s) = 0 and G(ν +T +1,s) = 0.

(b) G(t,s) > 0, for (t,s) ∈ {ν −1, . . . ,ν +T}×{1, . . . ,T +1} .

(c) maxt∈{ν−2,...,ν+T+1}G(t,s) = G(s+ ν −1,s) , for s ∈ {1, . . . ,T +1} .

As stated in the Introduction, we will apply a Krasnosel’skii-Zabreiko fixed point
theorem [22] in establishing the existence of nontrivial solutions of (1.1), (1.2). We
now state that fixed point theorem.

THEOREM 1. Let X be a Banach space and F : X → X be a completely continu-
ous operator. If there exists a bounded linear operator A : X → X such that 1 is not an
eigenvalue and

lim
||u||→∞

||F(u)−A(u)||
||u|| = 0,

then F has a fixed point in X .

We will apply Theorem 1 to a nonlinear summation operator whose kernel is the
Green’s function, G(t,s).

For our setting, let a Banach space (X , || · ||) be defined by

X := {h : {ν −2, . . . ,T + ν +1}→ R | h(ν −2) = h(T + ν +1) = 0}, (2.3)

with norm
||h|| := max

x∈{ν−2,...,T+ν+1}
|h(x)|. (2.4)

It is standard that u ∈ X is a fixed point of the completely continuous operator F : X →
X defined by

(Fu)(t) :=
T+1

∑
s=1

G(t,s) f (u(s+ ν −1)), t ∈ {ν −2, . . . ,T + ν +1}, (2.5)

if and only if u is a solution of (1.1), (1.2) (for detailed proofs, see the papers [2] and
[17]).
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3. Existence results

In this section, we apply Theorem 1 to the operator F defined in (2.5) and to an
associated linear operator to obtain solutions of (1.1), (1.2).

THEOREM 2. Assume f : R → R and lim|r|→∞
f (r)
r = m. If

|m| < b :=
1

∑T+1
s=1 G(s+ ν −1,s)

,

then the boundary value problem (1.1), (1.2) has a solution u, and moreover, u �= 0 ,
when f (0) �= 0.

Proof. Let the Banach space (X , || · ||) and the completely continuous operator
F : X → X be as defined in Section 2 in (2.3), (2.4) and (2.5), respectively.

Associated with (1.1), (1.2), we consider a linear ν th order equation,

Δνu(t)+mu(t + ν −1) = 0, t ∈ {1, . . . ,T +1}, (3.1)

satisfying the boundary conditions (1.2), and we define a completely continuous linear
operator A : X → X by

(Au)(t) := m
T+1

∑
s=1

G(t,s)u(s+ ν −1), t ∈ {ν −2, . . . ,T + ν +1}. (3.2)

Of course, solutions of (3.1), (1.2) are fixed points of A , and conversely.
Our first claim is that 1 is not an eigenvalue of A . There are two cases to consider

for this claim: (a) m = 0, and (b) m �= 0.
For (a), if m = 0, since the boundary value problem (2.1), (1.2) has only the trivial

solution, it is immediate that 1 is not an eigenvalue of A .
For (b), if m �= 0 and (3.1), (1.2) has a nontrivial solution, u , then ||u|| > 0. And

so, we have

||u|| = ||Au||

= max
t∈{ν−2,...,T+ν+1}

∣∣∣∣∣m
T+1

∑
s=1

G(t,s)u(s+ ν −1)

∣∣∣∣∣
= |m| max

t∈{ν−2,...,T+ν+1}

∣∣∣∣∣
T+1

∑
s=1

G(t,s)u(s+ ν −1)

∣∣∣∣∣
� |m|||u||

T+1

∑
s=1

G(s+ ν −1,s)

< b||u||1
b

= ||u||,
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which is a contradiction. So, again, 1 is not an eigenvalue of A .

Next, we exhibit that

lim
||u||→∞

||F(u)−A(u)||
||u|| = 0.

To that end, let ε > 0 be given. Since lim|r|→∞
f (r)
r = m, there exists an M1 > 0 such

that, for |r| > M1 ,
| f (r)−mr| < ε|r|. (3.3)

Set
M = sup

|r|�M1

| f (r)|,

and let L > M1 be such that
M + |m|M1

L
< ε.

If we choose u ∈ X with ||u|| > L , then for s ∈ {1, . . . ,T +1} ,

(i) if |u(s+ ν −1)| � M1, we have

| f (u(s+ ν −1))−mu(s+ ν−1)| � | f (u(s+ ν −1))|+ |m||u(s+ ν−1)|
� M + |m|M1

< εL

< ε||u||,

and

(ii) if |u(s+ ν −1)| > M1, we have from (3.3) that

| f (u(s+ ν −1))−mu(s+ ν−1)|< ε|u(s+ ν −1)|� ε||u||.

Thus, from (i) and (ii), for all s ∈ {1 . . . ,T +1} ,

| f (u(s+ ν −1))−mu(s+ ν−1)| � ε||u||. (3.4)

It follows from (3.4) that, for u ∈ X with ||u|| > L,

||F(u)−A(u)|| = max
t∈{ν−2,...,T+ν+1}

∣∣∣∣∣
T+1

∑
s=1

G(t,s)[ f (u(s+ ν −1))−mu(s+ ν−1)]

∣∣∣∣∣
� max

t∈{ν−2,...,T+ν+1}

T+1

∑
s=1

G(t,s) | f (u(s+ ν −1))−mu(s+ ν−1)|

� ε||u||
T+1

∑
s=1

G(s+ ν −1,s)

=
ε
b
||u||.
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As a consequence,

lim
||u||→∞

||F(u)−A(u)||
||u|| = 0.

By Theorem 1, F has a fixed point u ∈ X , and in turn, u is a desired solution of
(1.1), (1.2). Moreover, if in addition, f (0) �= 0, it is immediate that u �= 0. The proof
is complete. �

As a corollary, we will show that when f � 0, then (1.1), (1.2) has positive solu-
tions.

COROLLARY 1. Assume f : [0,∞) → [0,∞) is continuous and limr→∞
f (r)
r = 0 .

Then the boundary value problem (1.1), (1.2) has a nonnegative solution u, and more-
over, u is a positive solution, when f (0) �= 0.

Proof. Let f : R → R be defined by

f (r) :=

{
f (r), r � 0,

f (−r), r < 0.

Then, f is continuous on R and lim|r|→∞
f (r)
r = 0. It follows from Theorem 2 that the

fractional equation

Δνu(t)+ f (u(t + ν −1)) = 0, t ∈ {1, . . . ,T +1}, (3.5)

satisfying the boundary conditions (1.2) has a solution u . In particular, u satisifes

u(t) =
T+1

∑
s=1

G(t,s) f (u(s+ ν −1)), t ∈ {ν −2, . . . ,T + ν +1},

and hence u(t) � 0, t ∈ {ν − 2, . . . ,T + ν + 1} . In view of that, f (u(s + ν − 1)) =
f (u(s + ν − 1)) , s ∈ {1, . . . ,T + 1} , and so u satisfies (1.1), (1.2). That is, u is a
nonnegative solution of (1.1), (1.2). And as before, if f (0) �= 0, then u �= 0. �
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[3] F. M. ATICI AND S. ŞENGÜL, Modeling with fractional difference equations, J. Math. Anal. Appl.,
369, (2010), 1–9.

[4] S. DAS, Functional Fractional Calculus for System Identification and Controls, Springer-Verlag,
Berlin-Heidelberg, 2009.

[5] S. DAS AND I. PAN, Fractional Order Signal Processing: Introductory Concepts and Applications,
Springer Briefs in Applied Sciences and Technology, Springer, Heidelberg, 2012.

[6] P. W. ELOE, C. M. KUBLIK, AND J. T. NEUGEBAUER, Comparison of Green’s functions for a family
of fractional boundary value problems for fractional difference equations, J. Difference Equ. Appl.,
25, 6 (2019), 776–787.



Differ. Equ. Appl. 14, No. 2 (2022), 137–143. 143

[7] F. GENG, D. ZHU AND Q. LU, A new existence result for impulsive dynamic equations on time scales,
Appl. Math. Lett., 20, 2 (2007), 206–212.

[8] C. S. GOODRICH, Continuity of solutions to discrete fractional problems, Comput. Math. Appl., 59,
(2010), 3489–3499.

[9] C. S. GOODRICH, Existence of a positive solution to a class of fractional differential equation, Appl.
Math. Lett., 23, (2010), 1050–1055.

[10] C. S. GOODRICH, A comparison result for the fractional differential operator, Int. J. Difference Equ.,
1, 6 (2011), 17–37.

[11] C. S. GOODRICH, Existence and uniqueness of solutions to a fractional difference equation with
nonlocal conditions, Comput. Math. Appl., 61, (2011), 191–202.

[12] C. S. GOODRICH, Existence of a positive solution to a system of discrete fractional boundary value
problems, Appl. Math. Comput., 217, (2011), 4740–4753.

[13] C. S. GOODRICH, Coercivity of linear functionals on finite dimensional spaces and its application to
discrete BVPs, J. Difference Equ. Appl., 22, 5 (2016), 623–636.

[14] C. S. GOODRICH, Summation equations with sign changing kernels and applications to discrete frac-
tional boundary value problems, Comment. Math. Univ. Carolin., 57, 2 (2016), 201–229.

[15] C. S. GOODRICH, Coercive nonlocal elements in fractional differential equations, Positivity, 21, 1
(2017), 377–394.

[16] J. HENDERSON, Nontrivial solutions to a nonlinear boundary value problem on a time scale, Comm.
Appl. Nonlinear Anal., 11, 1 (2004), 65–71.

[17] J. HENDERSON, Existence of local solutions for fractional difference equations with Dirichlet bound-
ary conditions, J. Difference Equ. Appl., 25, 6 (2019), 751–756.

[18] J. HENDERSON AND B. A. LAWRENCE, Existence of solutions for even ordered boundary value
problems on a time scale, Difference Equations, Special Functions and Orthogonal Polynomials, 369–
377, World Sci. Publ., Hackensack, NJ, 2007.

[19] J. HENDERSON AND J. T. NEUGEBAUER, Smallest eigenvalues for a fractional difference equation
with right focal boundary conditions, J. Difference Equ. Appl., 23, 8 (2017), 1317–1323.

[20] J. HENDERSON AND J. T. NEUGEBAUER, Existence of local solutions for fractional difference equa-
tions with left focal boundary conditions, Frac. Calc. Appl. Anal., 24, 1 (2021), 324–331.

[21] B. KARNA AND B. A. LAWRENCE, An existence result for a multipoint boundary value problem on
a time scale, Adv. Difference Equ., 2006, Art. ID 63208, 8 pp.

[22] M. A. KRASNOSEL’SKII AND P. P. ZABREIKO, Geometrical Methods of Nonlinear Analysis,
Springer-Verlag, New York, 1984.

[23] R. L. MAGIN, Fractional Calculus in Bioengineering, Begell House, Inc., Redding, CT, 2006.
[24] F. METZLER, W. SCHICK, H. G. KILIAN AND T. F. NONNENMACHER, Relaxation in filled poly-

mers: a fractional calculus approach, J. Chem. Phys., 103 (1995), 7180–7186.
[25] P. OSTALCVZYK,Discrete Fractional Calculus: Applications in Control and Image Processing, World

Scientific Publishing Co. Pte. Ltd., Singapore, Hackensack, NJ, 2016.
[26] A. OUSTALOUP, Diversity and Non-integer Differentiation for System Dynamics (Control, Systems

and Industrial Engineering), Wiley and Sons, Inc., Hoboken, NJ, 2014.
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