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MEASURE OF NONCOMPACTNESS AND FRACTIONAL HYBRID
DIFFERENTIAL EQUATIONS WITH HYBRID CONDITIONS

CHOUKRI DERBAZI, HADDA HAMMOUCHE, ABDELKRIM SALIM *
AND MOUFFAK BENCHOHRA

(Communicated by J. Neugebauer)

Abstract. This paper deals with the existence of solutions for hybrid fractional differential equa-
tions involving Caputo fractional derivative of order 2 < { < 3. We base our arguments on a
generalization of Darbo’s fixed point theorem combined with the approaches related with mea-
sures of noncompactness in Banach algebras. To demonstrate the argument, an illustration is
provided.

1. Introduction

Fractional calculus is an extension of conventional differentiation and integration
to noninteger order. The fractional differential equations have significance in many
branches of science and engineering (see [24, 28, 34] for different examples). We
suggest the papers [1, 2, 3, 6, 18, 19, 29, 30, 31, 32, 40] for current contributions and
advancements in fractional differential and integral equations.

Hybrid fractional differential equations have attracted the attention of many re-
searchers in recent years. We can refer to [4, 5, 7, 20, 21, 25, 35, 36, 37, 39, 33] and
the sources therein, for some significant advances on the existence results of hybrid
fractional differential equations.

Many authors have lately employed the approach of an appropriate measure of
noncompactness in Banach algebra to prove the existence of solutions to nonlinear in-
tegral equations. Numerous applications of the measure of noncompactness is indicated
in the papers [12, 17, 22, 23] and the book [10].
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Motivated by the above papers, in this paper, we consider the following problem:

p(d)
w1 (9,p(9),p(5(9)))

D, = v (9.p(9),p(x(9))), ¥ €©=1[0,1],

l p(3) _o. ot p(0) —0
yi(0.p(0)pGA9)) |, [wn(@p@)pG(0) [,
2 (0)=0,

ey

where 2 < £ < 3,0 < & <1 are real numbers, “DgHCD(‘i are the Caputo fractional
derivatives, y; € C(©@ x RxR,R\ {0}),y» € C(©@ x Rx R,R) where y(9,0,0) # 0
for all ¥ € ©, s and ) are functions defined on ©.

The following is how this paper is structured. In Section 2, we present some
preliminary results. Section 3 is devoted to the main existence result. Lastly, we provide
an example to demonstrate the achieved results.

2. Preliminaries

We begin by introducing some necessary definitions and basic results required for
further developments in this paper.

DEFINITION 1. ([24]) The Riemann-Liouville fractional integral of order { > 0
for a continuous function y : [0,e0) — R is given by

v
w0 = 175 [ (0=p) w(p)ap. >0

DEFINITION 2. ([24]) Let { > 0,8 =[¢]+ 1. If w € ACP([0,5]), then the Ca-
puto fractional derivative of order { is given by

ent 1 /19 _ \B—C—1(B)
D, y(9) TB=0 (¥—p) v (p)dp.
LEMMA 1. ([24]) Let £,n >0, B =[]+ 1, then the following relations hold
cné an — F(n + 1) n—¢ _

and
DL/ =0, (j=0,....5-1).

LEMMA 2. ([24]) Let § > & >0, and w € L'([0,b]). Then for almost all © €
[0,b] we have:
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o G Asw(d) =I5 y(),

o D5 y(D) = (D),

o D15 w(9) =I5 (D),

LEMMA 3. ([24]) Let £ > 0, then the equation
(CD0+ W) (9)=0

has a solution ;
—1
() =Y ¢l ¢;eR,j=0...0-1,
j=0
where B—1<{ <

LEMMA 4. ([24]) Let { > 0; then
¢ (ept S
15 (D5 w(®) = w()+ ¥, ¢,
j=0
forsome c;eR,j=0,1,2,...,8—1, where B =[{]+1.

LEMMA 5. ([14]) Let w: Ry — Ry be the function defined by y(p) = ps.
(i) If £ > 1 and 01,0, € © with 0y > Oy, then 05 — 0F < L(Dh— ).
(ii) If 0 < & < 1 and 1,0, € © with 0y > Oy, then 05 — 0 < (0 — )*

LEMMA 6. ([23]) Let the function »: R, — Ry given by (%) = (0+1)*—1
where ¥ € [0,00) and o € (0,1). Thus

e ¢ is nondecreasing;
o |52(®) — 3(0")] < (B~ O'|) for any D,0' € [0,00).

By C(©), we denote the Banach space of all real-valued and continuous functions
with the standard norm

Ip[l = sup{[p(D)]: & € ©}.

Obviously, the space C(0) has also the structure of Banach algebra.

Next we present some facts concerning the measures of noncompactness. Assume
that = is a real Banach space with norm || - || and the zero element 0. By Qg we denote
the closed ball in Z centered at 0 with the radius 6. If ¥ is non-empty subset of =,
then ¥ and Comv¥ denote the closure and the closed convex closure of ¥, respec-
tively. When W is a bounded subset, diam'¥ denotes the diameter of ¥ and ||\P|| the
quantity given by ||¥|| = sup{||p| : p € ¥}. And, .#z is the family of the nonempty
and bounded subsets of Z and by .45 its subfamily consisting of the relatively compact
subsets.

We define the following notion of measure of noncompactness [8].
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DEFINITION 3. A mapping U : .#z — R, = [0,c0) will be called a measure of
noncompactness in = if it verifies the following requirements:

(1) Kerp ={Y¥ € .#=;u(¥)=0} is non-empty and Kerpl € Az
(2) YCA=u(¥) <u(A),

(3) u(¥) = p(Com¥) = u(¥).

@) p(xk¥Y+(1—x)A) < ku(¥)+ (1 —x)u(A) for x € ©.

(5) If (‘Wp) is a sequence of closed subsets of .#z where Wg | CWg; f=1,2,...,
and limg_.. 1 (¥p) =0 then Yoo = ﬂ;;:l‘Pﬁ 0

Observe that W., isin Keru . Thatis, since u(We) C u(¥g) forany f=1,2,..., then
p(¥e) < limg_o i (Wp) =0

In what follows, we suppose that = has the structure of Banach algebra. Then, pq
denote the product of elements p,q € Z. Also, WA denote the product of subsets ‘¥, A
of Zie., YA={pg:pe¥,qeA}.

DEFINITION 4. ([9]) A measure of non-compactness  in Z verifies condition
(m) if it verifies:
H(YA) <[Pl (A) + [[Allu(F),
forany W,A € /=

Fix aset W € #(g) and A > 0. For p € ¥, by o(p,A) we denote the modulus
of continuity of p, i.e,
o(p,A) = sup{|p(d) —p(p)|: ¥,p € ©,|0 —p| <A}
Further, put
o(¥,A) =sup{o(p,A):p ¥}

and

o0('¥) = lim 6 (¥, 2).

In [8], it is demonstrated that oy is a measure of non-compactness in C(©).

PROPOSITION 1. The measure of noncompactness oy on C(©) satisfies condi-
tion (m).

Proof. Fix W,A € @)~ >0 and ¥,p € © with [ —p| < A Then, for p € ¥
and q € A, we have
Ip()a(d) —p(plalp)| < [p(H)a(d) —p(D)alp)|+ [p(H)alp) —p(p)alp)|
=[p(®)[a(®) —alp)|+la(p)lIp() —p(p)|
<llpllo(a,A)+lallo(p,2).
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Thus
o(pg,A) <|lpllo(a,2)+llallo(p,2),
and consequently,
o(YAA) < [[¥]o(AA) +[[Alo(Y,4).
Taking A — 0, we get
00(PA) < [[¥[oo(A) + [|A] oo (F).
This completes the proof. [

THEOREM 2. ([8, 13]) Let ® be a nonempty, convex, bounded and closed subset
of a Banach space E, & : ® — @ is a continuous mapping. If there exists o, € [0,1)
where

u(8Y) < au(),

for any non-empty subset Y of ®©, where U is a measure of non-compactness in Z.
Then S has a fixed point in ©.

In [22], the authors proved the following generalization of Darbo’s fixed point the-
orem which plays a pivotal role in the development of the results in this paper. We must
first present the class ¢ of functions 3¢ : (0,e0) — (1,e0) verifying:

lim 5(9) = 1 <= lim 05 =0,

B—oo B—eo

for (dg) C (0,0).

THEOREM 3. Let © be a nonempty, convex, bounded and closed subset of a Ba-
nach space =, & : ® — ® is a continuous mapping. If there exist »x € 4 and o € [0,1)
where for any nonempty subset ¥ of ® with u(6¥) >0,

#(U(BY)) < (s(u(¥)))”,
for any non-empty subset ¥ of ®, where U is a measure of non-compactness in E.
Then S has a fixed point in ©.

3. Main results

Before starting and demonstrating our main result we present the auxiliary lemma.

LEMMA 7. Let 2 < { < 3 and assume that y; € C(© x R x R,R\ {0}) and
v € C(®) where y(¥) #£0 for all © € ©. Then the solution of the fractional hybrid
BVP:
+
O v (9,9(9),p(>(0)))

=y(9), 0<v<L, 2)
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|: p(¥) :| =0
v (000 pG0) [ 5y

pt p(9) _ 3)
D =0,

o [wl (9.p(9)p((9))) ] -
p(0)=0,

where s : © — O is a continuous function and satisfies the following integral equation

p(9) = v (0.(9).p<(0) {EE. 7(0) 5, 90 + =0 | )

where

Proof. Firstly, we apply Riemann-Liouville fractional integral of order { to both
sides of (2) and by Lemma (4), we get

p(v)
w1 (0,p(0),p(5(0))
By using the initial condition p®(0) = 0, we get ¢, = 0, and so,
p(v)
1 (9,p(9),p(3(0)))
Thus, the solution of (2) is
p(¥) = llfl(19,13(19)’13(%(19)))(15+‘/7(19) +co+c18), Veo,c1 €R. )
Then, by using Lemmas 1 and 2, we have
et p(%)
+
Ly (9,p(8),p(5(9)))

l p(®)
vi(9,0(9),p(5<(D)))

which, together with the boundary condition

) =Ig+l[?(19)+60+0119+02192, Y co,c1,00 € R.

=I5 W(D) +co+erd, Veg,cr €R.

T 1-¢
L_n Iy w(n)+qr(2_§)n :

] =I5, (1) +co+ei,
¥=n

@@ ], T [w(@R@)eG) |,
implies that
cr =~k )
co= 155~ 15w,
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Substituting the value of cg,c; in (5) we get (4). [

We study our problem (1) under the following assumptions:

(H1) y; € C(OxRxR,R\{0}) and y, € C(O x R x R,R) where y»(1,0,0) #0
forall ¥ € ©.

(H2) The functions s,y : [0,1] — [0, 1] are continuous.

(H3) The function y; verifies
lwi(9,p1,91) — wi (9,02, 92) | < (max(Jp1 —pal, g1 —g2)) +1)" — 1,
for any ¥ € © and p1,p2,q1,q2 € R, where a € (0,1).

(H4) There exist continuous nondecreasing functions @j : [0,e0) — (0,°) and func-
tions y € C([0,1],R™), j = 1,2 such that

w2 (9,p,9)] < y(3) (@1 (Ip]) + @2(a])),

foreach (¥,p,q) € ®@ xR xR.
Observe that (H1) implies the existence nonnegative constant K| , where

K = sup{|y1(9,0,0)| : © € ©}.

(H5) There exists 6y > 0 such that

2 né-¢ }

00> (B )%~ 14K 711 (80) + 0200 1y + e T )

and

¢
(1@ @)+ (60 ) { s + e <

THEOREM 4. [fthe conditions (H1)-(HS) hold, then problem (1) has at least one
solution in C(9).

Proof. In view of Lemma, 7 we consider the operator . defined on C(©) by

Sp(0) = wl(z?,p(m,p(%(ﬂ))){ﬁ /00(19 =p)* " 'wi(p.p(p).p(x(p)) dp

) %/ol(l —p)* M ya(p.p(p).p(x(p))) dp

U —1 n
- —p)e&t d Y €0.
vor(C—é)/o (n=p)* 5 'y (p.w(p).p(x(p)) dp }.
Notice that the fixed point problem .’p = p is solution to problem (1). Next we intro-
duce two operators .¥],.% defined on C(®) by

Z1p(0) = w1 (0,p(9),p(5(9))),
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and

730(0) = s [ 0= P) i (0.plp)p(x(p)) 0P
1

1
_F(C)/o (1=p)* "va(p.p(p).p(x(p))) dp

v
vol'(§—&) Jo

)/n(n—p)g‘é‘lw(p,p(p%p(x(p)))dp,

forany p € C(0) and ¢ € ©. Observe that .”’p = (1p) - (S2p) for any p € C(O).

We split the proof into several steps.

Step 1: . maps C(O) into itself.

In order to show that .p € C(©), it is sufficient to show that .%p, . %p € C(O)
for any p € C(©). Obviously the conditions of Theorem 4 guarantee that if p € C(O)

then .1p € C(©). Next, we will prove that if p € C(©) then ./2p € C(O).

To do

this, let ¥ € © be fixed and {3} be a sequence in © such that ¥g — ¥ as B — oo.

Without loss of generality, we may assume g > ¥. Then, we get

72p(0p) — F2p(D)]
5
< )%/0 " (95— ) v (p.p(p).p (1 (p))) dp

s
_ﬁ/o (9—p)*va(p.p(p),p(x(p))) dp
_ %9
VOF(C g

‘/ “lya(p.p(p).p(x(p))) dp
/ (9-p) ‘VZ(P’P(P),P(X(P)))dp’
! ﬁ‘fo%w =p)*va(p.p(p).p(x(p)) dp

—/019(19—p>¢‘1Wz(p,p(p)7p(x(p)))dp\
95—

)vor(g 3) /n(n —p)* =y (p.p(p) P (2 (p))
1

< @/Oﬂﬁ (B —p)* " = (0= )" [ Iy2(p.p(p),p(x(p))|dp

ﬁ /:ﬁ 19 —pl* w2 (p,p(p).p(x(p)))|dp

o=l
()

+

) / n(n—p)H*‘ufz(p,p(m,p(x(p)))dp|

) /n(n —p)* = wa(p.p(p).p(x(p)))|dp.
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In view of (H4), we obtain
|-72p(0p) — S2p(9)]
o + @ 0 _ _
< L@ P+ @) (%5, gy 5 pyé-t]ap

= (9
Iyl (@i (p]) + @>([p]l)) s .
+ ) Alﬂ—p\ dp
05— Ol @ el + @Ulpl) e
WolT(C— &) | n-p) = ap,

Taking into account that 2 < { < 3 and Y > ¥, we infer that
|-72p(Vp) — 2p(9)]

1@l + @2(lpl) /2 . )
<y [ 1os =) = (0 p)ap

) V)
+ [0 —p) =0 —p)*ap [ 10 —pI ap]
19— oIl @ el + @alliel) 1
/O(n P) dp

T =5
GRS : ;
= o ) (@050 =0 —p) Y ap

Up N Up N Up _

+ [P @p=p)tdp+ [T (p-0)Tap+ [ T(p—9)" " ap]

195 — 0[|yll(@i([pl]) + @2([p]])) /7 ce1

volT(C— &) fy n=p e
< HYII(@(HPH)+652(IIP||))<
Bp—0) ¢

L Ty Y )
e )
where we have used the fact that 19,? -9 < ¢ (19;; — ). Now, we conclude that

(#2p)(0g) — (F2p)(¥) when B — co. Therefore, #2p € C[0, 1]. This proves that if
p € C(O), then .¥p € C[0,1].

(Vg —0)
IN(9

2
r(§+1)(19[3—‘l9)€+

Step 2: An estimate of ||.’p|| for p € C(©).
Fix p € C(0), and ¥ € C(O). Then, we have

() (D) =(Z19) (9)[[(L2p) (D)
[
= le(&p(ﬁ)m(%(ﬁ)))\‘%/o (0 =p)> 2 (p.p(p).p(x(p))) dp

_ %/01(1 —p)* 'ya(p.p(p)p(x(p))) dp
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- s [ (o (p) (01 0

< (|W1(19’p(19)7p(%(19)))|—‘//1(19,0,0)|—|—|l[/1(19,0,0)|>
1
X{@/o (=P |va(p.5(p).p(x(p)) | dp
+%/ol(1—P>H\sz(P’p(p%p(x(p))\dp
+m/on(n—p)”*l\Wz(p,p(m,p(x(p))\dpdp}
< [(max(p (@) I G=(o))) + 1)~ 1+ K1
1
A | @10 [@ e o)) + (e x(p)] 0P

N %/01(1 —p) (o) [@i (1p(p))) + D2(p(x(p)))] dp

g [ =P e @ (o)) + ap(x(p)))]) ap

< [(max(loll, bl + 1) = 1+ K] Iyl (@1 (o )

v
o)z [ 0o+ i [(1-p) M

I S A PR
+\V0|F(C—(§)/o(n Pt}

¢-¢
< [(el+ 0% = 1+ ] 11@1 i)+ @2l D) s + o= T
Therefore,
176l < [l + 1% =1+ K1) |7l @ (lpl]) + @>(]1p]}) )
2 nc—é
Arern R ©

By assumption (HS5), we infer that the operator .¥” maps Qg into itself. Moreover,
from the last estimates, it follows that

|- 7190, || < (60 +1)* — 1+ K

and

1172926, | < 11l @ (60) + @2(60)){ =

2 rlg*g
Crn " |vO|r<c—é+1>}'

Step 3: . and .7 are continuous on Qg .
We demonstrated that .} is continuous on Qg,. We fix A > 0 and we take
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p,q € Qq, with [[p —q|| < A. Then, for ¥ € ©, we have

(A19)(0) — (F19)(D)] = w1 (8, p(9),p3<(D))) — w1 (B, 0(9),a(3<(0)))]
< (max(|p(9) — a(0)], [p(5(0)) — q(s(¥))]) + 1)~ 1
< (max([lp—qll,llp —all) +1)* —1

(lp—al +D*~1< A +1)%~1.

Since (A +1)*—1— 0 when A — 0, then .#] is continuous in Qg .
Now, we demonstrate that .% is continuous in £2g,. In order to do this, we fix
A >0 and we take p,q € Qq, with ||[p—q|| < A. Then, for ¥ € ©, we get

|(2p) (D) — (#29)(9)]

_ ;C/ (0 =p)* " (y2(p,p(p): (X () — valp,0(P),P(X(P)))) dp

- /0 (1) (valp.p(p)-p(x(p))) ~ W (p.a(p).ax(p)) dp

U —

S wl((-&)

< %/019(19 = p)57" |ya(p.p(P),p (x(P))) — Ya(p.a(p),p(x(p))) | dp

/n(n —p)EE (walpop(p).# (2 (P)) — W2 (psa(P).a(x(p))) d|

177 (1) [y lo. (0. P2 (9) ~ w2(p-a(0)- 2l (p)))| 0P
1
T IrC=8)

< 0y(O, z>(r(lc

I S Ry
e (1) ap)

L= b0 b (1(p1) — Wi (- a(p)- Ak (0 dp

s _ 1 _
)/ (9 —p)* 1d;)Jr@/o (1—p)*tdp

<@+ £ rT)
<a® (e + e Tm)

where 0,(0,4) = sup{|y2(¥,p1,p2) — ¥2(0,q1,92)| : © € ©,p;,q; € [—60,60],1 <
i < 2,|pi—qi| < A}. Since v, is uniformly continuous on © x [—6p, 6] X [—6y, 6],
we have 0,(0,1) — 0 as A — 0 and, therefore, the last inequality proves that operator
%5 is continuous on Qg, . Consequently, since .“p = (/1p) - (“p) forany p € C(0©),
then . is continuous on Qg .

Step 4: Estimates of oy(1¥) and op(-#2'¥) for 0 # ¥ C Qg, . Firstly, we esti-
mate oyp(.1'¥). For any given A > 0, since s : © — O is uniformly continuous, we
have 0 > 0 where for | — %h| < §, we have [»(0) — »#(h)| < 1.
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Now, we take p € ¥ and 9,1, € © with |9 — %| < § < A. Then

[(Z1p) (V1) — (L1p) (D)

= [y1 (1, p(h),p(3¢(1))) — w1 (D2, p
<Y1 (B1,p(Dh), p(5¢(D1))) — i (B, p(
+y1(D1,p(02),p(54(02))) — w1 (D2, p(D2),p

< | (max(fp(1) —p(2)1. ] (=(91)) — a(oe(02)
<[(e®. )+ 1"~ 1]+0(w,2),

where o(y,A) denotes the quantity
G(l[/l,l) :SUP{“I/I(IS‘hP;CI)_‘Vl(ﬂZapaq” : 191’192 € ®a ‘191 _192‘ g A‘apaq S [_OOaOO}}'
Therefore,

S(AY,A) < (0¥, 4)+ 1)~ 1] + o (v, 2).

Since i (¥,p,q) is uniformly continuous on the compact © x [—6, 6y] X [—60, 6],
then o(y1,A) — 0 when A — 0. Thus,

00(AY) < (0p(WP) + l)a —1.

Next, we estimate op(-#¥). Fix A > 0, and we take p € ¥ and ¢, € © with
|9 — %] < A. Without loss of generality, we can suppose that ¥ < ;. Then, we
have

[ 72p(02) — S2p(V1))|
1 g -1
:)@ /O (% —p) v lp,p(p)p(x(p))) dp

: )/ﬁl(ﬁl—p)g1Wz(p7p(p),p(x(p)))dp

T Jo
vo?gﬁlg)/n(” P)E Sy (p,p(p). b (x(p))) dp|
/ (05— p)5 " = (31— ) |[wa (p.b(0),p(x () dp

+—/ 92 =PI 1y (pp(p). P (x())) 1 dp

02— 9] )/n(n—p)H”’Wz(p,p(p%p(x(p)))’dp

BT
1 U1
:@/o [(82=p)* " = (91— p)* ] [w2(p,p(p).p(x(P))ldp
)
w57 2= v (o (p). (P 0p
-]

T3] /n(n —p)‘f‘é‘l)Wz(Pm(p),p(x(p»))dp.
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By (H4) we can find

|-72p(02) — S2p(B)]
IIYH(wl 90 +G72 [
_|_

(2 —p)s = (9 —p)* '] dp

[0 — l91|||7\\(wl(90)+@2(90))/ (n—p)--E-ldp

At p>§ 1dp}

9 vo[T'(§ — &)
[7(@1(60) + @2(60)) , ¢ ¢ (O — 1)V (@1(6) + B2(60)) ¢
D (o) R e R O gy R
1 T]C 3
<||YH(G71(90)+m2(90))(1~(§) volD(E = §+1>ﬁz o)
¢-¢
< e @)+ (00 g+ g g )

where we have made use of the fact that 192§ — ﬂf < § (% — ). Therefore,

| né=¢
o(#.2) < 71(@: (8) + 32(00) (55 + ot =)

this implies that o (.#2¥) = 0.

Step 5: An estimate of op(-”¥) for 0 # ¥ C Qg,. Taking into account that
oo(WA) < ||¥||oo(A) + ||Alloo(¥) and by steps 2 to 4, we obtain

00(LY) = 0o (AY.AY) < || LY oo(AY) + || LYoo (1Y)
< [171Q¢,ll00(-72Y) + [|-72Q0 | 00(#1Y)

< [(oo(¥) + 1) = 1] (I17(@1(60) + B2(60))

Arer t e é+1>}

By assumption (HS), we get

(SR €+1)}

and from the last estimate, we infer that

(Il(@1(60) + 2(680) ) {

)

oo(SY) < (op(P)+1)*—1,
or equivalently,
oo(LW)+1< (op(P)+ 1)

Thus, the condition of Theorem 1 is verified with (%) = ¥ + 1, where » € 4. The-
orem 3 implies that % has at least one fixed point in Qg , which is a solution of the
problem (1). O
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4. An example

In this section we give an example to illustrate Theorem 4. Let us consider the
following boundary value problem:

s o(0) - e—2r<251np(19)+%p(\/5)+1>
D =  9€0,
3 (/T e 2 56v/570)
p(9) —0,
%(5 1+ sinp () [+ \/1+1‘f‘;( )‘)‘) .
CDé+ p(®) =0,
%(5/1+|51np ‘+\/1+1‘f‘p ) o
=7
p@(0)=0.
)
In this case, we take
3 1 1
C - E’ é - 57 n - Za
1 -
Wl(ﬂ,P,CI)ZB(S 1+ [sinp|+ ¢ 1+1J|:l| ‘>
672[
v = (2si Zaq+1
va(9,p,9) 6 TH})( Smp+2q+ )

x(9) =07 x(0)=V9,
Ki = sup{|y1(8,0,0)] : 9 € ©} — %

It is easy to check that

e—2t
lya(0,p,9)| = )m (2sinp+ %cH— 1)‘
<) (@i (lp]) + @2(|al)),

with Y(9) = =2, @ (Ipl) = 3 + 1, @ (1a]) = % + 1
On the other hand, for any ¥ € © and p,q,p;,q; € R we have

‘W1(197p7q) - Vll(1-97plaql)‘

1
‘_(sl—l—\sm T AP al )——(51+|sinp1\+51+ 1] ),
Itlal/ o 1+ a1
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sl ol s/l ‘
1+]q| 1+ a1

< 5| (VT Tsinpl =1) = (/T Tsimr] 1))

sal(f ) - (e ol

Applying Lemma 6, we get

+|sinp|—€/1+|sinp1\‘+

|Wl(19apaq) - Wl(ﬂaphql”

%<\/1+Hs1np\—\smp1|}—l> ;(\/—i—hf'q lfﬂm}_l)
< (YTl 1)+ o (YTl - 1)

2
< avmaX(\p—ml,\q—qll)H— L.

Thus, (H3) is verified when @ > 2 with o = 5
In this case, the inequality involved in (6) has the form:

6+ 1 1 2 2 nC g
— <
o LG+ l+w]{1"(§+1) o lT(C = g+1)}\9°’
where e
6 +1 2 ne-
<1
66 {F(C+l)+\VOIF(C—€+1)}
For w =2, we have
¢ /E
s —+ Y2 )<

which is satisfied by 8y = 4. Thus, all the requirements of Theorem 4 are verified, and
then problem (1) has at least one solution p(¥%) € C(0).
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