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Abstract. In this article, we deduce the expression and the main properties of the Green’s func-
tion related to a general nabla fractional difference equation with constant coefficients coupled to
Dirichlet conditions. In particular, we prove that such function has constant sign on their set of
definition, and also satisfies some additional properties that are fundamental to define a suitable
Banach space, where to ensure the existence and uniqueness of solutions of nonlinear problems.

1. Introduction

Nabla fractional calculus is a branch of mathematics that deals with arbitrary order
differences and sums in the backward sense. The theory of nabla fractional calculus is
still in its early stages, with the most important contributions coming in the last decade.
Gray & Zhang [18] and Miller & Ross [29] introduced the concept of nabla fractional
difference and sum. Atici & Eloe [6] developed the nabla fractional Riemann–Liouville
difference operator, began the study of the nabla fractional initial value problem, and
established the exponential law, product rule, and nabla Laplace transform in this line.
Several mathematicians [3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 19, 20, 21, 22, 23, 31] have
contributed to the theory of discrete fractional calculus, and as a result of their works,
today it has turned into a fruitful field of research in science and engineering. We refer
to a recent monograph by Goodrich & Peterson [16] and the references therein, which
is a great resource for all matters pertaining to this field of work.

The study of boundary value problems (BVPs) has a long past and can be followed
back to the work of Euler and Taylor on vibrating strings. On the discrete fractional
side, there is a sudden growth in interest for the development of nabla fractional BVPs.
Many authors have studied nabla fractional BVPs recently. To name a few, Ahrendt [2],
Goar [17], and Ikram [24] worked with self-adjoint Caputo nabla BVPs. Gholami et al.
[15] obtained the Green’s function for a non-homogeneous Riemann–Liouville nabla
BVP with Dirichlet boundary conditions. Jonnalagadda [25, 26, 27, 28] analyzed some
qualitative properties of two-point non-linear Riemann–Liouville nabla BVPs associ-
ated with a variety of boundary conditions. Inspired by these works, in this article, we
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aim to deduce some positive properties of the Green’s function for the following nabla
fractional boundary value problem⎧⎨

⎩
−(

∇ν
ρ(a)u

)
(t)+ λu(t) = f (t,u(t)), t ∈ N

b
a+2,

u(a) = u(b) = 0,
(1.1)

where 1 < ν < 2, a ∈ R , |λ | < 1, ∇ν
ρ(a)u denotes the ν th Riemann–Liouville nabla

difference of u based at ρ(a) , and f : N
b
a+2×R → R .

The present paper is organized as follows: Section 2 contains preliminaries on
nabla fractional calculus. In Section 3, we establish some properties of the Green’s
function associated with the nabla fractional boundary value problem (1.1). In Section
4, we establish sufficient conditions on existence and uniqueness of solutions of (1.1)
using Brouwer and Banach fixed point theorems. Finally, we conclude this article with
an example to demonstrate the applicability of our results.

2. Preliminaries

Denote by Nk = {k,k + 1,k + 2, . . .} and N
l
k = {k,k + 1,k + 2, . . . , l} for any k ,

l ∈ R such that l− k ∈ N1 .

DEFINITION 1. (See [9, 16]) The backward jump operator ρ : Nk+1 → Nk is de-
fined by ρ(t) = t−1, for t ∈ Nk+1 .

DEFINITION 2. (See [16, p. 152]) For t ∈ R \ {. . . ,−2,−1,0} and α ∈ R such
that (t + α) ∈ R\ {. . . ,−2,−1,0} , the generalized rising function is defined by

tα =
Γ(t + α)

Γ(t)
.

Also, if t ∈ {. . . ,−2,−1,0} and α ∈ R such that (t + α) ∈ R\ {. . . ,−2,−1,0} , then
we use the convention that tα = 0. Here Γ(.) denotes the Euler Gamma function.

DEFINITION 3. (See [16, p. 179]) For t , k ∈ R and α ∈ R \ {. . . ,−2,−1} , the
αth order nabla fractional Taylor monomial is defined by

Hα(t,k) =
(t − k)α

Γ(α +1)
,

provided the right-hand side exists.

The following properties of nabla fractional Taylor monomials can be found in the
literature.

DEFINITION 4. (See [16, p. 186]) Let f : Nk → R and ν > 0. The ν th order
nabla sum of f is given by

(
∇−ν

k f
)
(t) = ∑t

s=k+1 Hν−1(t,ρ(s)) f (s) , t ∈ Nk, where by
convention

(
∇−ν

k f
)
(k) = 0.
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DEFINITION 5. (See [16, p. 188]) Let f : Nk → R , ν > 0, and choose n ∈ N1

such that n−1 < ν � n . The ν th Riemann–Liouville nabla difference of f is given by(
∇ν

k f
)
(t) =

(
∇n

(
∇−(n−ν)

k f
))

(t) , t ∈ Nk+n.

We observe the following generalized power rules of nabla fractional sum and
differences:

LEMMA 1. (See [16, Theorem3.93]) Assume the successive fractional nabla Tay-
lor monomials are well defined.

1. Let ν > 0 and α ∈ R . Then, ∇−ν
k Hα(t,k) = Hα+ν(t,k) , for t ∈ Nk .

2. Let ν , α ∈ R and n ∈ N1 such that n− 1 < ν � n. Then, ∇ν
k Hα(t,k) =

Hα−ν(t,k) , for t ∈ Nk+n .

Finally, we present the definition of the nabla Mittag–Leffler function and state its
important properties.

DEFINITION 6. (See [16, p. 212]) Let α , β , λ ∈R such that α > 0 and |λ |< 1.
The nabla Mittag–Leffler function is defined by Eλ ,α ,β (t,k) = ∑∞

n=0 λ nHαn+β (t,k) , for
t ∈ Nk .

THEOREM 1. (See [16, Theorem 3.101]) Let −1 < λ < 1 , ν > 0 , and choose n∈
N1 such that n−1< ν � n. Then, Eλ ,ν,ν−i(t,ρ(a)) , i∈N

n
1, are n linearly independent

solutions of the homogeneous nabla fractional difference equation

− (
∇ν

ρ(a)u
)
(t)+ λu(t) = 0, t ∈ Na+n, (2.1)

on Na . In particular, a general solution of (2.1) is given by

u(t) =
n

∑
i=1

CiEλ ,ν,ν−i(t,ρ(a)), t ∈ Na, (2.2)

where Ci , i ∈ N
n
1 , are arbitrary constants.

THEOREM 2. Assume the successive nabla Mittag–Leffler functions are well de-
fined. Let −1 < λ < 1 , α > 0 , β ∈ R , ν > 0 , and choose n ∈ N1 such that n−1 <
ν � n. Then,

1. Eλ ,α ,β (t,ρ(t)) =
1

1−λ
, for t ∈ Na ;

2. Eλ ,α ,β (t,ρ(t−1)) =
αλ

(1−λ )2 +
(β +1)
1−λ

, for t ∈ Na ;

3. ∇ν
ρ(a)Eλ ,α ,β (t,ρ(a)) = Eλ ,α ,β−ν(t,ρ(a)) , for t ∈ Na+n ;

4. ∇ν
ρ(a)Eλ ,ν,ν−i(t,ρ(a)) = λEλ ,ν,ν−i(t,ρ(a)) , for t ∈ Na+n and i ∈ N

n
1 .
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Proof. Consider

Eλ ,α ,β (t,ρ(t)) =
∞

∑
n=0

λ nHαn+β (t,ρ(t)) =
∞

∑
n=0

λ n 1αn+β

Γ(αn+ β +1)
=

1
1−λ

.

The proof of Part 1 is complete. Consider

Eλ ,α ,β (t,ρ(t−1)) =
∞

∑
n=0

λ nHαn+β (t,ρ(t−1)) =
∞

∑
n=0

(αn+ β +1)λ n

=
αλ

(1−λ )2 +
(β +1)
1−λ

.

The proof of Part 2 is complete. To prove Part 3, we refer to Theorem 3.100 of [16].
The proof of Part 4 follows from Theorem 1 and Part 3. The proof is completed. �

THEOREM 3. Assume 1 < ν < 2 , −1 < λ < 1 and h : Na+2 → R . A general
solution of the nonhomogeneous nabla fractional difference equation

− (
∇ν

ρ(a)u
)
(t)+ λu(t) = h(t), t ∈ Na+2, (2.3)

is given by

u(t) = C1Eλ ,ν,ν−1(t,ρ(a))+C2Eλ ,ν,ν−2(t,ρ(a))−
t

∑
s=a+2

Eλ ,ν,ν−1(t,ρ(s))h(s), (2.4)

for t ∈ Na . Here C1 and C2 are arbitrary constants.

Proof. Clearly, from Theorem 1, a general solution of the corresponding homoge-
neous nabla fractional difference equation

−(
∇ν

ρ(a)u
)
(t)+ λu(t) = 0, t ∈ Na+2,

is given by

u(t) = C1Eλ ,ν,ν−1(t,ρ(a))+C2Eλ ,ν,ν−2(t,ρ(a)), t ∈ Na, (2.5)

where C1 and C2 are arbitrary constants. Denote by

v(t) = −
t

∑
s=a+2

Eλ ,ν,ν−1(t,ρ(s))h(s), t ∈ Na+2.

It is enough to show that v satisfies the nonhomogeneous nabla fractional difference
equation (2.3). That is,

− (
∇ν

ρ(a)v
)
(t)+ λv(t) = h(t), t ∈ Na+2. (2.6)

To see this, consider

−(
∇−(2−ν)

ρ(a) v
)
(t) = −

t

∑
s=a

H1−ν(t,ρ(s))v(s)

=
t

∑
s=a

H1−ν(t,ρ(s))

[
s

∑
r=a+2

Eλ ,ν,ν−1(s,ρ(r))h(r)

]
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=
t

∑
r=a+2

[ t

∑
s=r

H1−ν(t,ρ(s))Eλ ,ν,ν−1(s,ρ(r))
]
h(r)

=
t

∑
r=a+2

[
∇−(2−ν)

ρ(r) Eλ ,ν,ν−1(t,ρ(r))
]
h(r)

=
t

∑
r=a+2

Eλ ,ν,1(t,ρ(r))h(r) (By Theorem 2 Part 3).

Then,

−(
∇ν

ρ(a)v
)
(t) = −

(
∇2(∇−(2−ν)

ρ(a) v
))

(t) = ∇2

[
t

∑
r=a+2

Eλ ,ν,1(t,ρ(r))h(r)

]

=
t

∑
r=a+2

Eλ ,ν,1(t,ρ(r))h(r)−2
t−1

∑
r=a+2

Eλ ,ν,1(t−1,ρ(r))h(r)

+
t−2

∑
r=a+2

Eλ ,ν,1(t−2,ρ(r))h(r)

=
t−2

∑
r=a+2

[
Eλ ,ν,1(t,ρ(r))−2Eλ ,ν,1(t−1,ρ(r))+Eλ ,ν,1(t−2,ρ(r))

]
h(r)

+
[
Eλ ,ν,1(t,ρ(t−1))−2Eλ ,ν,1(t−1,ρ(t−1))

]
h(t−1)

+Eλ ,ν,1(t,ρ(t))h(t)

=
t−2

∑
r=a+2

∇2Eλ ,ν,1(t,ρ(r))h(r)+
[

νλ
(1−λ )2 +

2
1−λ

− 2
1−λ

]
h(t−1)

+
[

1
1−λ

]
h(t) (By Theorem 2 Parts 1 and 2)

=
t−2

∑
r=a+2

Eλ ,ν,−1(t,ρ(r))h(r)+
[

νλ
(1−λ )2

]
h(t−1)

+
[

1
1−λ

]
h(t) (By Theorem 2 Part 3)

= λ
t−2

∑
r=a+2

Eλ ,ν,ν−1(t,ρ(r))h(r)+
[

νλ
(1−λ )2

]
h(t−1)

+
[

1
1−λ

]
h(t) (By Theorem 2 Part 4)

= λ
t

∑
r=a+2

Eλ ,ν,ν−1(t,ρ(r))h(r)+h(t) = −λv(t)+h(t).

Thus, we have (2.6). The proof is completed. �

THEOREM 4. (See [24, Proposition 4.4]) Let f and g be nonnegative real valued
functions on a set S . Moreover, assume f and g attain their maximum in S . Then, for
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each fixed k ∈ S ,

| f (k)−g(k)| � max{ f (k),g(k)} � max

{
max
k∈S

f (k),max
k∈S

g(k)
}

.

3. Green’s function and its properties

In this section, we construct the Green’s function for the boundary value problem
(1.1) and deduce some of its properties.

THEOREM 5. Assume 1 < ν < 2 , −1 < λ < 1 and h : Na+2 → R . The unique
solution of the nabla fractional boundary value problem⎧⎨

⎩
−(

∇ν
ρ(a)u

)
(t)+ λu(t) = h(t), t ∈ N

b
a+2,

u(a) = u(b) = 0,
(3.1)

is given by

u(t) =
b

∑
s=a+2

G(t,s)h(s), t ∈ N
b
a, (3.2)

where

G(t,s) =

⎧⎪⎨
⎪⎩

Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)Eλ ,ν,ν−1(b,ρ(s))−Eλ ,ν,ν−1(t,ρ(s)), s ∈ N

t
a+2,

Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)Eλ ,ν,ν−1(b,ρ(s)), s ∈ N

b
t+1.

(3.3)

Proof. From Theorem 3, a general solution of the nonhomogeneous nabla frac-
tional difference equation (2.3) is given by (2.4). Using u(a) = 0 and u(b) = 0 in
(2.4), we have

0 = C1 +C2, (3.4)

0 = C1Eλ ,ν,ν−1(b,ρ(a))+C2Eλ ,ν,ν−2(b,ρ(a))−
b

∑
s=a+2

Eλ ,ν,ν−1(b,ρ(s))h(s), (3.5)

respectively. Note that

Eλ ,ν,ν−1(b,ρ(a))−Eλ ,ν,ν−2(b,ρ(a))

=
∞

∑
n=0

λ n [Hνn+ν−1(b,ρ(a))−Hνn+ν−2(b,ρ(a))]

=
∞

∑
n=0

λ nHνn+ν−1(b,a) = Eλ ,ν,ν−1(b,a). (3.6)

Similarly, we have

Eλ ,ν,ν−1(t,ρ(a))−Eλ ,ν,ν−2(t,ρ(a)) = Eλ ,ν,ν−1(t,a). (3.7)



Differ. Equ. Appl. 14, No. 2 (2022), 163–178. 169

Solving (3.4) and (3.5) for C1 and C2 and using (3.6), we obtain

C1 =
1

Eλ ,ν,ν−1(b,a)

b

∑
s=a+2

Eλ ,ν,ν−1(b,ρ(s))h(s), (3.8)

C2 = − 1
Eλ ,ν,ν−1(b,a)

b

∑
s=a+2

Eλ ,ν,ν−1(b,ρ(s))h(s). (3.9)

Substituting the expressions of C1 and C2 from (3.8) and (3.9), respectively, in (2.4)
and rearranging the terms using (3.7), we obtain (3.2). The proof is completed. �

Now, we derive some positive properties of the Green’s function (3.3). For this
purpose, we need the following results.

LEMMA 2. Assume 1 < ν < 2 and t ∈ Na+2 . For each 0 � λ < 1 , denote by

g(λ ) = Hν−3(t,ρ(a))+
∞

∑
n=1

λ nHνn+ν−3(t,ρ(a)) (3.10)

=
Γ(t−a+ ν −2)

Γ(t−a+1)Γ(ν −2)
+

∞

∑
n=1

λ n Γ(t −a+ νn+ ν−2)
Γ(t −a+1)Γ(νn+ ν−2)

. (3.11)

Then there exists a unique λ = λ (t) ∈ (0,1) such that

g(λ ) = 0. (3.12)

Proof. We have

g(0) =
Γ(t −a+ ν −2)

Γ(t −a+1)Γ(ν −2)
= (ν −2)

Γ(t −a+ ν −2)
Γ(t−a+1)Γ(ν −1)

.

For each t ∈ Na+2 and 1 < ν < 2, we have

Γ(t −a+ ν −2)
Γ(t −a+1)Γ(ν −1)

> 0,

implying that g(0) < 0. Also, for each t ∈ Na+2 and 1 < ν < 2, limλ→1− g(λ ) > 0.
Consider

g′(λ ) =
∞

∑
n=1

nλ n−1 Γ(t−a+ νn+ ν−2)
Γ(t−a+1)Γ(νn+ ν−2)

.

For each t ∈ Na+2 , 1 < ν < 2, 0 � λ < 1 and n ∈ N1 , we have nλ n−1 � 0,

Γ(t−a+ νn+ ν−2)
Γ(t−a+1)Γ(νn+ ν−2)

> 0,

implying that g′(λ ) � 0, 0 � λ < 1. Therefore, there exists a unique λ = λ (t) ∈ (0,1)
such that g(λ ) = 0. The proof is completed. �

Take λ ∗ = min
t∈N

b
a+2

λ (t) . Then, 0 < λ ∗ < 1.
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LEMMA 3. Assume 1 < ν < 2 and 0 � λ < 1 . Then,

1. 0 < Hν−1(t,ρ(a)) � Eλ ,ν,ν−1(t,ρ(a)) for t ∈ Na ;

2. Eλ ,ν,ν−1(t,ρ(a)) is an increasing function with respect to t for t ∈ Na ;

3. 0 < Hν−2(t,ρ(a)) � ∇Eλ ,ν,ν−1(t,ρ(a)) for t ∈ Na+1 ;

4. ∇Eλ ,ν,ν−1(t,ρ(a)) is a decreasing function with respect to t for t ∈ Na+1 and
λ ∈ (0,λ ∗];

5. Eλ ,ν,ν−1(t,ρ(s)) � Eλ ,ν,ν−1(t,a) for t ∈ Ns and s ∈ Na+1 ;

6. ∇Eλ ,ν,ν−1(t,ρ(s)) � ∇Eλ ,ν,ν−1(t,a) for t ∈ Ns , s ∈ Na+1 and λ ∈ (0,λ ∗] .

Proof. For each t ∈ Na , consider

Eλ ,ν,ν−1(t,ρ(a)) =
∞

∑
n=0

λ nHνn+ν−1(t,ρ(a))

= Hν−1(t,ρ(a))+
∞

∑
n=1

λ nHνn+ν−1(t,ρ(a)).

Clearly, νn + ν − 1 > 0 for n ∈ N1 . Then, it follows from Proposition 4.3 in [24]
that Hν−1(t,ρ(a)) > 0 and Hνn+ν−1(t,ρ(a)) > 0, implying that 0 < Hν−1(t,ρ(a)) �
Eλ ,ν,ν−1(t,ρ(a)) . The proof of Part 1 is complete. For each t ∈ Na+1 , consider

∇Eλ ,ν,ν−1(t,ρ(a)) = ∇

[
∞

∑
n=0

λ nHνn+ν−1(t,ρ(a))

]

=
∞

∑
n=0

λ n∇Hνn+ν−1(t,ρ(a))

=
∞

∑
n=0

λ nHνn+ν−2(t,ρ(a)) (By Theorem 3.47 in [16])

= Hν−2(t,ρ(a))+
∞

∑
n=1

λ nHνn+ν−2(t,ρ(a)).

Clearly, νn+ ν −2 > 0 for n ∈ N1 . Then, it follows from Proposition 4.3 in [24] that
Hν−2(t,ρ(a)) > 0 and Hνn+ν−2(t,ρ(a)) > 0, implying that

0 < Hν−2(t,ρ(a)) � ∇Eλ ,ν,ν−1(t,ρ(a)).

Thus, Eλ ,ν,ν−1(t,ρ(a)) is an increasing function of t for t ∈ Na . The proofs of Part 2
and Part 3 are complete. For each t ∈ Na+2 , consider

∇2Eλ ,ν,ν−1(t,ρ(a)) = ∇2

[
∞

∑
n=0

λ nHνn+ν−1(t,ρ(a))

]

=
∞

∑
n=0

λ n∇2Hνn+ν−1(t,ρ(a))
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=
∞

∑
n=0

λ nHνn+ν−3(t,ρ(a))

= Hν−3(t,ρ(a))+
∞

∑
n=1

λ nHνn+ν−3(t,ρ(a))

= g(λ ) � g(λ ∗) = 0,

implying that ∇Eλ ,ν,ν−1(t,ρ(a)) is a decreasing function of t for t ∈ Na+1 . The proof
of Part 4 is complete. Clearly, νn + ν − 1 > 0 for n ∈ N0 . Then, it follows from
Proposition 4.3 in [24] that Hνn+ν−1(t,ρ(s)) � Hνn+ν−1(t,a) for each t ∈ Ns and s ∈
Na+1 , implying that

Eλ ,ν,ν−1(t,ρ(s)) =
∞

∑
n=0

λ nHνn+ν−1(t,ρ(s))

�
∞

∑
n=0

λ nHνn+ν−1(t,a)

= Eλ ,ν,ν−1(t,a).

The proof of Part 5 is complete. For the proof of Part 6, assume t ∈ Ns and s ∈ Na+1 .
Consider

∇Eλ ,ν,ν−1(t,ρ(s)) =
∞

∑
n=0

λ nHνn+ν−2(t,ρ(s))

=
∞

∑
n=0

λ n (t− s+1)νn+ν−2

Γ(νn+ ν −1)

=
∞

∑
n=0

λ nHνn+ν−2(t − s,ρ(0))

= ∇Eλ ,ν,ν−1(t − s,ρ(0)).

Since ∇Eλ ,ν,ν−1(t,ρ(a)) is a decreasing function of t for t ∈ Na+1 , we have

∇Eλ ,ν,ν−1(t,ρ(s)) = ∇Eλ ,ν,ν−1(t − s,ρ(0))
� ∇Eλ ,ν,ν−1(t −a−1,ρ(0))

= ∇

[
∞

∑
n=0

λ nHνn+ν−1(t −a−1,ρ(0))

]

= ∇

[
∞

∑
n=0

λ n (t−a)νn+ν−1

Γ(νn+ ν)

]

= ∇

[
∞

∑
n=0

λ nHνn+ν−1(t,a)

]

= ∇Eλ ,ν,ν−1(t,a).

The proof is completed. �
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THEOREM 6. Assume 1 < ν < 2 and 0 � λ < 1 such that λ ∈ (0,λ ∗] . The
Green’s function G(t,s) defined in (3.3) satisfies G(t,s) � 0 for each (t,s) ∈ N

b
a ×

N
b
a+2 . In particular, G(a,s) = G(b,s) = 0 and G(t,s) > 0 for each (t,s) ∈ N

b−1
a+1 ×

N
b
a+2 .

Proof. Clearly, G(a,s) = G(b,s) = 0. Assume t ∈ N
b
a and s ∈ N

b
t+1 . It follows

from Lemma 3 Part 1 that

G(t,s) =
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s)) > 0,

and the first order nabla difference of G(t,s) with respect to t is given by

∇G(t,s) = ∇
[

Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s))
]

=
∇Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s)) > 0,

implying that G(t,s) is an increasing function of t from t = a to t = s− 1. Assume
t ∈ N

b
a and s ∈ N

t
a+2 . It follows from Lemma 3 Parts 5 and 6 that the first order nabla

difference of G(t,s) with respect to t is given by

∇G(t,s) = ∇
[

Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s))−Eλ ,ν,ν−1(t,ρ(s))
]

=
∇Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s))−∇Eλ ,ν,ν−1(t,ρ(s))

=
Eλ ,ν,ν−1(b,ρ(s))
Eλ ,ν,ν−1(b,a)

∇Eλ ,ν,ν−1(t,a)−∇Eλ ,ν,ν−1(t,ρ(s))

� ∇Eλ ,ν,ν−1(t,a)−∇Eλ ,ν,ν−1(t,ρ(s)) (By Lemma 3 Part 5)
� 0, (By Lemma 3 Part 6)

implying that G(t,s) is a decreasing function of t from t = s to t = b . Since G(b,s) = 0
it follows that G(t,s) > 0 for t ∈ N

b
a and s ∈ N

t
a+2 . The proof is completed. �

THEOREM 7. Assume 1 < ν < 2 and 0 � λ < 1 such that λ ∈ (0,λ ∗] . Then, we
have

b

∑
s=a+2

G(t,s) � Eλ ,ν,ν(b,a+1), t ∈ N
b
a. (3.13)

Proof. For t ∈ N
b
a , consider

b

∑
s=a+2

G(t,s) =
t

∑
s=a+2

[
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s))−Eλ ,ν,ν−1(t,ρ(s))
]

+
b

∑
s=t+1

[
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s))
]
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=
b

∑
s=a+2

[
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,ρ(s))
]
−

t

∑
s=a+2

Eλ ,ν,ν−1(t,ρ(s))

=
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

b

∑
s=a+2

[
∞

∑
n=0

λ nHνn+ν−1(b,ρ(s))

]

−
t

∑
s=a+2

[
∞

∑
n=0

λ nHνn+ν−1(t,ρ(s))

]

=
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

∞

∑
n=0

λ n

[
b

∑
s=a+2

Hνn+ν−1(b,ρ(s))

]

−
∞

∑
n=0

λ n

[
t

∑
s=a+2

Hνn+ν−1(t,ρ(s))

]

=
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

∞

∑
n=0

λ nHνn+ν(b,a+1)

−
∞

∑
n=0

λ nHνn+ν(t,a+1) (By Theorem 3.47 in [16])

=
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν(b,a+1)−Eλ ,ν,ν(t,a+1).

Denote by S = N
b
a ,

f (t) =
Eλ ,ν,ν−1(t,a)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν(b,a+1)

and
g(t) = Eλ ,ν,ν(t,a+1), t ∈ S.

It follows from Lemma 3 Part 2 that f and g attain their maximum in S . In particular,

max
t∈S

f (t) =
Eλ ,ν,ν(b,a+1)
Eλ ,ν,ν−1(b,a)

[
max
t∈S

Eλ ,ν,ν−1(t,a)
]

=
Eλ ,ν,ν(b,a+1)
Eλ ,ν,ν−1(b,a)

Eλ ,ν,ν−1(b,a)

= Eλ ,ν,ν(b,a+1),

and
max
t∈S

g(t) = max
t∈S

Eλ ,ν,ν(t,a+1) = Eλ ,ν,ν(b,a+1).

Then, from Theorem 6 and Theorem 4, we obtain that

b

∑
s=a+2

G(t,s) � max
{
Eλ ,ν,ν(b,a+1),Eλ ,ν,ν(b,a+1)

}
= Eλ ,ν,ν(b,a+1).

The proof is completed. �
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By Theorem 5, we observe that u is a solution of (1.1) if and only if u is a solution
of the summation equation

u(t) =
b

∑
s=a+2

G(t,s) f (s,u(s)), t ∈ N
b
a. (3.14)

Note that any solution u : N
b
a → R of (1.1) can be viewed as a real (b− a+ 1)-tuple

vector. Consequently, u ∈ R
b−a+1 . Define the operator T : R

b−a+1 → R
b−a+1 by

(
Tu

)
(t) =

b

∑
s=a+2

G(t,s) f (s,u(s)), t ∈ N
b
a. (3.15)

Clearly, u is a fixed point of T if and only if u is a solution of (1.1). We use the fact that
R

b−a+1 is a Banach space equipped with the maximum norm ‖u‖= maxt∈Nb
a
|u(t)|, for

any u ∈ R
b−a+1 . Denote by

Br = {u ∈ R
b−a+1 : ‖u‖ � r},

where r ∈ R
+ .

4. Existence and uniqueness of solutions

In this section, we establish sufficient conditions on existence and uniqueness of
solutions of (1.1) using Brouwer and Banach fixed point theorems. First, we recall the
statements of these theorems.

THEOREM 8. (See [1, 30]) (Banach fixed point theorem) Let S be a closed subset
of a Banach space X . Assume T : S → S is a contraction mapping. That is, there exists
a constant γ , 0 < γ < 1 , such that ‖Tx−Ty‖ � γ‖x− y‖, for all x , y in S . Then, T
has a unique fixed point z in S .

THEOREM 9. (See [1, 30]) (Brouwer fixed point theorem) Let C be a non-empty
compact convex subset of R

n and T : C → C be a continuous mapping. Then, T has
a fixed point in C .

Throughout this section, we assume that 1 < ν < 2 and 0 � λ < 1 such that
λ ∈ (0,λ ∗] .

THEOREM 10. Assume f satisfies a Lipschitz condition with respect to the second
variable on N

b
a ×R with Lipschitz constant K . That is, there exists a non-negative

constant K such that | f (t,x)− f (t,y)| � K|x− y|, for all t ∈ N
b
a and all x , y in R .

If KEλ ,ν,ν(b,a + 1) < 1, then the boundary value problem (1.1) has a unique
solution in R

b−a+1 .
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Proof. We first prove that T is a contraction mapping on R
b−a+1 . For u , v ∈

R
b−a+1 , t ∈ N

b
a , and consider

|(Tu
)
(t)− (

Tv
)
(t)| =

∣∣∣∣∣
b

∑
s=a+2

G(t,s) f (s,u(s))−
b

∑
s=a+2

G(t,s) f (s,v(s))

∣∣∣∣∣
�

b

∑
s=a+2

G(t,s) | f (s,u(s))− f (s,v(s))|

� K
b

∑
s=a+2

G(t,s) |u(s)− v(s)|

� K‖u− v‖
[

b

∑
s=a+2

G(t,s)

]

� KEλ ,ν,ν(b,a+1)‖u− v‖,

implying that ‖Tu−Tv‖ � KEλ ,ν,ν(b,a+1)‖u− v‖. Since KEλ ,ν,ν(b,a+1) < 1, T
is a contraction mapping on R

b−a+1 . Hence, by Theorem 8, T has a unique fixed point
in R

b−a+1 . The proof is completed. �

THEOREM 11. Assume f satisfies a Lipschitz condition with respect to the second
variable on N

b
a ×Br with Lipschitz constant L. That is, there exists a non-negative

constant L such that
| f (t,x)− f (t,y)| � L|x− y|,

for all t ∈ N
b
a and all x , y in Br .

Set m = max{| f (t,0)| : t ∈ N
b
a}. If LEλ ,ν,ν(b,a+1) < 1, and

mEλ ,ν,ν(b,a+1) � r
[
1−LEλ ,ν,ν(b,a+1)

]
, (4.1)

then the boundary value problem (1.1) has a unique solution in Br .

Proof. We first prove that T : Br → Br . To see this, let u ∈ Br , t ∈ N
b
a , and

consider

|(Tu
)
(t)| =

∣∣∣∣∣
b

∑
s=a+2

G(t,s) f (s,u(s))

∣∣∣∣∣
=

∣∣∣∣∣
b

∑
s=a+2

G(t,s)[ f (s,u(s))− f (s,0)+ f (s,0)]

∣∣∣∣∣
�

b

∑
s=a+2

G(t,s) | f (s,u(s))− f (s,0)|+
b

∑
s=a+2

G(t,s) | f (s,0)|

� L
b

∑
s=a+2

G(t,s) |u(s)|+m
b

∑
s=a+2

G(t,s)
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� Lr
b

∑
s=a+2

G(t,s)+mEλ ,ν,ν(b,a+1)

� LrEλ ,ν,ν(b,a+1)+ r
[
1−LEλ ,ν,ν(b,a+1)

]
= r,

implying that ‖Tu‖ � r. Thus, T : Br → Br . It follows from the proof of Theorem 10
that T is a contraction mapping with contraction constant LEλ ,ν,ν(b,a+1) . Hence, by
Theorem 8, T has a unique fixed point in Br . The proof is completed. �

THEOREM 12. Set

M = max{| f (t,x)| : t ∈ N
b
a, x ∈ Br}. (4.2)

If MEλ ,ν,ν(b,a+1) � r, then the boundary value problem (1.1) has a solution in Br .

Proof. We first prove that T : Br → Br . To see this, let u ∈ Br , t ∈ N
b
a , and

consider

|(Tu
)
(t)| �

b

∑
s=a+2

G(t,s) | f (s,u(s))|

� M

[
b

∑
s=a+2

G(t,s)

]

� MEλ ,ν,ν(b,a+1) � r,

implying that ‖Tu‖ � r. Thus, T : Br → Br . Clearly, T is continuous. Hence, by
Theorem 9, T has a unique fixed point in Br . The proof is completed. �

THEOREM 13. If f is continuous and bounded on N
b
a ×R , then the boundary

value problem (1.1) has a solution in R
b−a+1 .

5. Example

In this section, we construct an example to illustrate the applicability of the estab-
lished results.

EXAMPLE 1. Consider the discrete fractional boundary value problem

{
−(∇1.5

ρ(0)u)(t)+ λu(t) = cos(u)
35+t , t ∈ N

10
0 ,

u(0) = u(10) = 0.
(5.1)

Here ν = 1.5, a = 0,b = 10 and f (t,u) = cos(u)/(35+ t) . Clearly, f (t,u) is Lipschitz
with respect to u with Lipschitz constant L = 1/35.
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In this case, computation by Mathematica yields λ ∗ = 0.00753. If we choose
λ = 0.007, using Mathematica, we obtain Eλ ,ν,ν(b,a+1) = 22.3394 . Thus, we have

LEλ ,ν,ν(b,a+1) < 1,

mEλ ,ν,ν(b,a+1)
1−LEλ ,ν,ν(b,a+1)

=
0.0285×22.3394

1−0.0285×22.3394
= 1.764.

Hence, by Theorem 11, the boundary value problem (5.1) has a unique solution in Br

with r � 1.764.
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