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Abstract. An integrating factor is used to convert a conjugate boundary value problem to a fixed
point problem. We conclude with an application illustrating the ease of use in finding an upper
solution to a family of boundary value problems that one can apply iteration to in order to solve
when the nonlinear term is monotonic.

1. Introduction

Converting a nonlinear boundary value problem to a fixed point problem is usually
the first step one takes to find a solution or to verify that a solution exists, since the
solutions of the boundary value problem in the underlying cone are fixed points of the
associated operator. Thus, converting a nonlinear boundary value problem to a fixed
point problem is a worthwhile endeavor. A standard method of converting a boundary
value problem to a fixed point problem is to use Green’s functions, see Duffy [16] for
a thorough treatment of Green’s functions. Avery and Peterson [6, 7] and Burton and
Zhang [10, 11] brought the operator inside of the nonlinear term to convert the boundary
value problem to a fixed point problem; Burton calls the resulting operator a Direct
Fixed Point Mapping. When the nonlinear term involves a product or a sum of terms,
there have been conversions creating sums as well as products of operators, see [4, 12,
15] for some examples and background reading. There have also been modifications of
the Green’s function approach applying or generalizing a Mann iteration scheme, see
[1, 13, 14, 17, 18, 19] for some examples including iterative examples. In this paper
we will convert a conjugate boundary value problem to a fixed point problem utilizing
an integrating factor. A similar integrating factor technique was used by Avery [2] for
a right focal difference equation and Avery, Anderson and Henderson [3] for a right
focal boundary value problem. Similar to the p -Laplacian three point boundary value
problem conversion (see [5] for an example) to a fixed point problem, we will integrate
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one step at a time, utilizing symmetry. To utilize symmetry, we define an appropriate
cone and verify that our resulting operator maps the cone back into itself.

The power of our approach is that it decreases the size of our nonlinear term while
remaining non-negative if we know that it is always greater than a multiple of the in-
put; that is, if there is a λ such that f (x) � λx for all nonnegative x . When one has
two different operators whose fixed points are the solutions of the same boundary value
problem, the advantage of one over the other is not that their fixed points are different
solutions. The advantage of one over the other is in the ease with which one finds the
fixed points, as the operators will have the same fixed points. When the correspond-
ing operators are increasing, the ease corresponds to the difficulty in finding an upper
solution (element of the cone in which Ax � x so we know that the sequence {Anx}
converges to a fixed point of the operator A). A common family of functions used to
search for an upper solution are constant functions, due to the ease in calculating the
output. In our provided example, we will show that the Green’s function approach has
no constant function that is an upper estimate, however a constant function is an upper
estimate for a solution utilizing the integrating factor conversion method. We conclude
with an example of our technique utilizing monotonicity; for a review of monotonic
techniques, see [23, 24].

2. Using an integrating factor to create a fixed point problem

The second order conjugate boundary value problem is given by

x′′(t)+ f (x(t)) = 0, t ∈ (0,1), (1)

x(0) = x(1) = 0, (2)

where (the possibly non-linear) f is continuous. The standard method to convert the
boundary value problem (1), (2) to a fixed point problem is to define the operator T by

Tx(t) :=
∫ 1

0
G(t,s) f (x(s))ds, (3)

where

G(t,s) =

{
t(1− s), 0 � t � s � 1,

s(1− t), 0 � s � t � 1
(4)

is the corresponding Green’s function (see [16] for a thorough treatment of Green’s
functions and their applications). Then, x is a solution of the boundary value problem
(1), (2) if and only if x is a fixed point of the operator T .

Let

P =
{

x ∈C[0,1] : x(t) � 0 and x(t) = x(1− t) for all t ∈
[
0,

1
2

]}

which is a cone in C[0,1] . Applying a Henderson symmetry argument, it was shown in
[8] that T : P → P . For a function λ : [0,1]→ [0,∞) and for y ∈ P , let

Ay(t) :=
∫ t

0
e
∫ t
s λ (r) dr

(∫ 1
2

s
f (y(r)) dr−λ (s)y(s)

)
ds (5)
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for t ∈ [0, 1
2

]
; for t ∈ [ 1

2 ,1
]
, let Ay(t) = Ay(1− t) . Below we verify that if y ∈ P is

a fixed point of A , then y is a symmetric solution of (1), (2), which provides a new
method to convert the boundary value problem to a fixed point problem.

THEOREM 1. For y ∈ P, y is a solution of (1), (2) if and only if y is a fixed point
of the operator A.

Proof. Let y ∈ P , and suppose that y is a solution of (1), (2). Therefore, y is a
fixed point of the operator T , that is,

y(t) = Ty(t) =
∫ t

0
s(1− t) f (y(s)) ds+

∫ 1

t
t(1− s) f (y(s)) ds.

Hence, for t ∈ [0, 1
2

]
, we have that

y′(t) = (Ty)′(t)

= t(1− t) f (y(t))−
∫ t

0
s f (y(s)) ds− t(1− t) f (y(t))+

∫ 1

t
(1− s) f (y(s)) ds

= −
∫ t

0
s f (y(s)) ds−

∫ 0

1−t
u f (y(1−u)) du

= −
∫ t

0
s f (y(s)) ds+

∫ 1−t

0
u f (y(u)) du

=
∫ 1−t

t
s f (y(s)) ds

=
∫ 1

2

t
s f (y(s)) ds+

∫ 1−t

1
2

s f (y(s)) ds

=
∫ 1

2

t
s f (y(s)) ds−

∫ t

1
2

(1−u) f (y(1−u)) du

=
∫ 1

2

t
s f (y(s)) ds+

∫ 1
2

t
(1− s) f (y(s)) ds

=
∫ 1

2

t
f (y(s)) ds.

Therefore, we have that

d
dt

(
y(t)e

∫ 1
2

t λ (r) dr

)
= e

∫ 1
2

t λ (r) dr(y′(t)−λ (t)y(t))

= e
∫ 1

2
t λ (r) dr

(∫ 1
2

t
f (y(s)) ds−λ (t)y(t)

)
.

Hence, since y(0) = 0, by integrating we have that

y(t)e
∫ 1

2
t λ (r) dr =

∫ t

0
e
∫ 1

2
s λ (r) dr

(∫ 1
2

s
f (y(r)) dr−λ (s)y(s)

)
ds,
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and thus

y(t) =
∫ t

0
e
∫ t
s λ (r) dr

(∫ 1
2

s
f (y(r)) dr−λ (s)y(s)

)
ds = Ay(t).

We have verified that y is a fixed point of the operator A .
For the necessary direction, suppose that z ∈ P is a fixed point of the operator A .

Hence, for t ∈ [0, 1
2

]
we have that

z(t) =
∫ t

0
e
∫ t
s λ (r) dr

(∫ 1
2

s
f (z(r)) dr−λ (s)z(s)

)
ds = Az(t) = z(1− t).

Essentially reversing the steps in the sufficiency direction, we have that

z(t)e
∫ 1/2
t λ (r) dr =

∫ t

0
e
∫ 1/2
s λ (r) dr

(∫ 1
2

s
f (z(r)) dr−λ (s)z(s)

)
ds.

Therefore, by differentiating we have

z′(t)e
∫ 1/2
t λ (r) dr −λ (t)e

∫ 1/2
t λ (r) drz(t) = e

∫ 1/2
t λ (r) dr

(∫ 1
2

t
f (z(r)) dr−λ (t)z(t)

)
,

so

z′(t) =
∫ 1

2

t
f (z(r)) dr = (Tz)′(t).

Hence, by integrating we have that

z(t) = Tz(t)

since Az(0) = 0 = z(0) and Tz(0) = 0 for all z ∈ P . Therefore, z is a fixed point of T
and thus is a solution of (1), (2). �

The operators T and A have the same fixed points which correspond to solutions
of our boundary value problem. When f is increasing we have that T is increasing, but
we need a few more hypotheses for the operator A to be increasing. When we have that
additional information it can be easier to find upper solutions of our boundary value
problem. Below we verify a condition for an operator A to be increasing, which very
much depends on the function λ .

THEOREM 2. For a real number α , define λ (r) = α
(

1
2 − r

)
, and suppose that

f is a differentiable function with f ′(x) � α for all x � 0 . Then, the operator A is
increasing on E .

Proof. Let y0,y1 ∈ P with y0 � y1 . Thus, by properties of a cone, we have that
for all w,z ∈ [0,1] with w � z that

(y1− y0)(w) � (y1− y0)(z).
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For s ∈ [0, 1
2 ] , let ts ∈ [s, 1

2 ] such that

∫ 1
2

s
[ f (y1(r))− f (y0(r))] dr =

(
1
2
− s

)
[ f (y1(ts))− f (y0(ts))]

by the mean value theorem for integrals, and let rs ∈ [y0(ts),y1(ts)] such that

f (y1(ts))− f (y0(ts)) = f ′(rs)(y1(ts)− y0(ts))

by the mean value theorem. Hence,

(Ay1 −Ay0)(t)

=
∫ t

0
e
∫ t
s λ (r) dr

(∫ 1
2

s
[ f (y1(r))− f (y0(r))] dr−λ (s)(y1(s)− y0(s))

)
ds

=
∫ t

0
e
∫ t
s λ (r) dr

((
1
2
− s

)
[ f (y1(ts))− f (y0(ts))]−λ (s)(y1(s)− y0(s))

)
ds

=
∫ t

0
e
∫ t
s λ (r) dr

(
1
2
− s

)
( f (y1(ts))− f (y0(ts))−α(y1(s)− y0(s)))ds

�
∫ t

0
e
∫ t
s λ (r) dr

(
1
2
− s

)
( f (y1(ts))− f (y0(ts))−α(y1(ts)− y0(ts)))ds

�
∫ t

0
e
∫ t
s λ (r) dr

(
1
2
− s

)(
f ′(rs)(y1(ts)− y0(ts))−α(y1(ts)− y0(ts))

)
ds

=
∫ t

0
e
∫ t
s λ (r) dr

(
1
2
− s

)
(y1(ts)− y0(ts))

(
f ′(rs)−α

)
ds

� 0,

and

(Ay1 −Ay0)′(t)

=
∫ 1

2

t
f (y1(r))− f (y0(r)) dr−λ (t)(y1(t)− y0(t))

+
∫ t

0
λ (t)e

∫ t
s λ (r) dr

(∫ 1
2

s
f (y1(r))− f (y0(r)) dr−λ (s)(y1(s)− y0(s))

)
ds

=
(

1
2
− t

)
f (y1(tt))− f (y0(tt))−λ (t)(y1(t)− y0(t))

+
∫ t

0
λ (t)e

∫ t
s λ (r) dr

((
1
2
− s

)
f (y1(ts))− f (y0(ts))−λ (s)(y1(s)− y0(s))

)
ds

=
(

1
2
− t

)
( f (y1(tt))− f (y0(tt))−α(y1(t)− y0(t)))

+
∫ t

0
λ (t)e

∫ t
s λ (r) dr

(
1
2
− s

)
( f (y1(ts))− f (y0(ts))−α(y1(s)− y0(s)))ds
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=
(

1
2
− t

)(
f ′(rt )(y1(t)− y0(t))−α(y1(t)− y0(t))

)
+
∫ t

0
λ (t)e

∫ t
s λ (r) dr

(
1
2
− s

)(
f ′(rs)(y1(s)− y0(s))−α(y1(s)− y0(s))

)
ds

=
(

1
2
− t

)
(y1(t)− y0(t))

(
f ′(rt )−α

)
+
∫ t

0
λ (t)e

∫ t
s λ (r) dr

(
1
2
− s

)
(y1(s)− y0(s))

(
f ′(rs)−α

)
ds

� 0.

Therefore, Ay1−Ay0 is non-negative and increasing. Clearly, (Ay1−Ay0)(t) = (Ay1 −
Ay0)(1− t) , hence Ay1−Ay0 ∈ P . Thus,

Ay0 � Ay1

and we have proven that A is an increasing operator on the cone P . �

3. Applications

In a cone, when an increasing operator has an upper estimate for a fixed point, there
is a fixed point for the operator which can be found by iteration. For the boundary value
problem (1), (2), when f ′(x) � 8 (so f (x) � 8x since f (0) � 0 as f : [0,∞) → [0,∞))
for all x , then for every positive real number R and corresponding function yR(t) ≡ R
we have that

TyR

(
1
2

)
=
∫ 1

0
G

(
1
2
,s

)
f (R) ds =

f (R)
8

> R

hence T does not have a constant, upper solution. In the application below, we show
that if the function f satisfies some additional hypotheses, then the operator A does
have a constant upper solution, in which case the fixed point of A (which is also a fixed
point of T ) can be found by iterating on this upper estimate for a fixed point of A .

THEOREM 3. For a positive, real number α , define λ (r) = α
( 1

2 − r
)
. Suppose

that f is a differentiable function with f ′(x) � α for all x � 0 . If k > α is a real
number such that

(k−α)e
α
8 � α

and
f (R) � kR,

then
y0 = R

is an upper estimate for a fixed point of A. Hence, the sequence of Picard iterates
defined by yn+1 = Ayn for whole numbers n converges to a fixed point of the operator
A which is a solution of the boundary value problem (1), (2).
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Proof. Let y0 ≡ R . Thus, for t ∈ [0, 1
2

]
, we have

Ay0(t) =
∫ t

0
e
∫ t
s λ (r) dr

(∫ 1
2

s
f (R) dr−α

(
1
2
− s

)
R

)
ds

�
∫ t

0
e

α(1−2s)2
8

(∫ 1
2

s
(k−α)R dr

)
ds

=
(

(k−α)R
2

)∫ t

0
(1−2s)e

α(1−2s)2
8 ds

=
(

(k−α)R
α

)∫ α
8

α(1−2t)2
8

eudu

=
(

(k−α)R
α

)(
e

α
8 − e

α(1−2t)2
8

)

�
(

(k−α)R
α

)
e

α
8

� R = y0(t).

Therefore,
y1 = Ay0 � y0,

hence we have that
{yn}∞

n=0 ⊆ P

is a bounded, equicontinuous family of functions. It follows, by the Ascoli-Arzela
Theorem, that yn → y∗ ∈ P , which is a fixed point of the operator A . Hence, y∗ is a
solution of the boundary value problem (1), (2). �

EXAMPLE 1. The boundary value problem

y′′(t)+11y(t)+2cos(y(t)) = 0, t ∈ (0,1), (6)

y(0) = y(1) = 0, (7)

has a solution guaranteed by Theorem 3 with upper solution y0 ≡ π
2 , λ = 9 and k = 11

since
f ′(y) = 11−2sin(y) � 9,

f
(π

2

)
� 11π

2
,

and
(11−9)e

9
8 � 9.
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