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Abstract. We study the existence of multiple nontrivial solutions of the second order discrete
problem {

−Δ2u(k−1) = f (k,u(k)), k ∈ [1,N]Z ,

u(0) = 0, u(N +1) = μu(N).

Our first theorem provides criteria for the existence of at least two nontrivial solutions of the
problem, and also finds conditions under which the two solutions are sign-changing. Our second
theorem proves, under some appropriate assumptions, that the problem has at least three nontriv-
ial solutions, one of which is positive, one is negative, and one is sign-changing. As applications
of our theorems, we further obtain several existence results for an associated eigenvalue problem.
We include two examples in the paper to show the applicability of our results. Our theorems are
proved by employing variational approaches, combined with the classic mountain pass lemma
and a result on the invariant sets of descending flow.

1. Introduction

Nonlinear difference equations appear naturally as discrete analogues and as nu-
merical solutions of differential equations which model diverse phenomena in many
fields ([5, 6]). The existence of solutions of various nonlinear discrete problems has
been studied by many researchers in recent years. In this paper, for any integers c and
d with c � d , let [c,d]Z = {z ∈ Z | c � z � d} . Here, we are concerned with the
existence of multiple nontrivial solutions of the problem{−Δ2u(k−1) = f (k,u(k)), k ∈ [1,N]Z,

u(0) = 0, u(N +1) = μu(N),
(1.1)

where μ ∈ [0,∞) , N ∈ N , f : [1,N]Z ×R → R , f (k,u) is continuous in u for each
k∈ [1,N]Z , and Δ is the forward difference operator defined by Δu(k)= u(k+1)−u(k)
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and Δ2u(k) = Δ(Δu(k)) . By a solution of problem (1.1), we mean a function u : [0,N +
1]Z → R such that u satisfies both the equation and the boundary conditions (BCs) in
(1.1). If u(k) > 0 for all k ∈ [1,N]Z , then u is called a positive solution; if u(k) < 0
for all k ∈ [1,N]Z , then u is called a negative solution; and if u(k) changes signs on
[1,N]Z , then u is said to be a sign-changing solution. Note that, when μ = 0, 1, the
BCs in (1.1) reduce, respectively, to the Dirichlet BCs

u(0) = u(N +1) = 0 (1.2)

and the mixed BCs
u(0) = Δu(N) = 0. (1.3)

In the literature, second order discrete problems with BCs (1.2) and (1.3) have
been extensively investigated by many researchers using a variety of methods such as
fixed point theory, lower and upper solution methods, and critical point theory. A small
sample of the related work can be found in [2, 7, 11, 14, 15]. When μ �= 0, problem
(1.1) can be regarded as a nonlocal perturbation of the discrete Dirichlet problem. There
are some works in the literature to study second order discrete problems with nonlocal
BCs. See, for example, [1, 3, 12, 13]. In particular, Cabada and Dimitrov [1] recently
studied the nonlocal problem{−Δ2u(k−1) = f (k,u(k)), k ∈ [1,N]Z,

u(0) = 0, u(N +1) = μ ∑b
k=a u(k), a,b ∈ [1,N]Z.

(1.4)

They first investigated the properties of Green’s function of the corresponding linear
problem, and then applied the derived properties and the well known Krasnoselski fixed
point theorem to obtain several existence criteria for positive solutions of problem (1.4).
For discrete nonlinear nonlocal problems, to the best of our knowledge, most of the
available existence results in the literature were proved by using various fixed point
theorems and variational approaches were rarely seen in the study of nonlocal discrete
problems.

In this paper, we study the nonlocal discrete problem (1.1). We first establish an
equivalent variational structure for the problem. When μ �= 0,1, the usual way for
establishing functionals does not work for problem (1.1). To overcome the obstacle
caused by the BC u(N + 1) = μu(N) , an extra term (i.e., cμJ(u)) is introduced into
our functional I (see (2.2) in Section 2). This is where our functional is different from
those functionals corresponding to the problems with usual BCs such as Dirichlet, Neu-
mann, mixed, periodic, and anti-periodic BCs. In our first existence result (Theorem
3.1), we apply variational methods, combined with the classic mountain pass lemma,
to prove that problem (1.1) has at least two nontrivial solutions. Utilizing the positivity
of the associated Green’s function (see Lemma 2.3), we further find conditions under
which the two solutions are sign-changing. In our second existence result (Theorem
3.2), we combine variational methods with the invariant sets of descending flow to de-
rive conditions to guarantee that problem (1.1) has at least three nontrivial solutions
consisting of one positive, one negative, and one sign-changing solutions. The theory
of invariant sets of descending flow was introduced in [10] by Liu and Sun in 2001 and
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has become a powerful tool to study multiple solutions of nonlinear problems. Some
recent applications of invariant sets of descending flow can be found in, for example,
[8, 9, 11]. Our proof of Theorem 3.2 is partly motivated by these papers, especially by
[11]. In order to apply the theory of invariant sets of descending flow to problem (1.1),
an appropriate inner product needs to be introduced for our working space (see (4.6)
in Subsection 4.2 for the inner product). Equipped with the well-chosen inner product,
we are able to verify all the conditions required to utilize the theory of invariant sets of
descending flow. To apply our theorems, we derive several criteria for the existence of
multiple nontrivial solutions to the eigenvalue problem{−Δ2u(k−1) = λ f (k,u(k)), k ∈ [1,N]Z,

u(0) = 0, u(N +1) = μu(N),
(1.5)

where λ > 0 is a parameter. We provide two examples to show the applicability of our
results.

The rest of this paper is organized as follows. Section 2 contains some preliminary
lemmas, Section 3 contains the main results of this paper and two illustrative example,
and the proofs of the main theorems are presented in Section 4.

2. Preliminary results

For any fixed μ ∈ [0,∞) , let

Hμ = {u : [0,N +1]Z → R | u(0) = 0, u(N +1) = μu(N)}. (2.1)

Then, Hμ is a vector space with au + bv = {au(k)+ bv(k)} for any u,v ∈ Hμ and

a,b ∈ R . We equip Hμ with the norm ‖u‖ =
(
∑N

k=1 |u(k)|2)1/2
, u ∈ Hμ . It is easy to

see that Hμ is an N dimensional Banach space.
Let the functionals Φ,Ψ,J, I : Hμ → R be defined by

Φ(u) =
1
2

N+1

∑
k=1

|Δu(k−1)|2, Ψ(u) =
N

∑
k=1

F(k,u(k)), J(u) =
1
2
|u(N +1)|2,

and
I(u) = Φ(u)−Ψ(u)+ cμJ(u), (2.2)

where u ∈ Hμ , F(t,x) =
∫ x
0 f (k,s)ds, and

cμ =

{
0 if μ = 0,

1−μ
μ if μ > 0.

(2.3)

Then, Φ,Ψ,J, I are well defined and continuously differentiable whose derivatives are
the linear functionals Φ′(u) , Ψ′(u) , J′(u) , and I′(u) given by

Φ′(u)(v) =
N+1

∑
k=1

Δu(k−1)Δv(k−1), Ψ′(u)(v) =
N

∑
k=1

f (k,u(k))v(k),
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J′(u)(v) = u(N +1)v(N +1),

and

I′(u)(v) =
N+1

∑
k=1

Δu(k−1)Δv(k−1)−
N

∑
k=1

f (k,u(k))v(k)+ cμu(N +1)v(N +1) (2.4)

for any u,v ∈ Hμ .

LEMMA 2.1. Assume that u ∈ Hμ is a critical point of the functional I . Then, u
is a solution of problem (1.1).

Proof. Let u ∈ Hμ be a critical point of I . Then, (2.4) implies that

N+1

∑
k=1

Δu(k−1)Δv(k−1)−
N

∑
k=1

f (k,u(k))v(k)+ cμu(N +1)v(N +1) = 0

for any v ∈ Hμ . Note from the summation by parts formula that

N+1

∑
k=1

Δu(k−1)Δv(k−1) = Δu(N)v(N +1)−Δu(0)v(0)−
N

∑
k=1

Δ2u(k−1)v(k)

= Δu(N)v(N +1)−
N

∑
k=1

Δ2u(k−1)v(k).

Then, we have

[
Δu(N)+ cμu(N +1)

]
v(N +1)−

N

∑
k=1

[Δ2u(k−1)+ f (k,u(k))]v(k) = 0. (2.5)

If μ = 0, then v(N +1) = 0. If μ > 0, then u(N +1) = μu(N) and cμ = 1−μ
μ . Thus,

Δu(N)+ cμu(N +1) = u(N +1)−u(N)+
1− μ

μ
u(N +1)

=
1
μ

u(N +1)−u(N) = 0.

Hence, for any μ ∈ [0,∞) , we always have
[
Δu(N)+ cμu(N +1)

]
v(N+1) = 0. There-

fore, (2.5) reduces to ∑N
k=1[Δ2u(k−1)+ f (k,u(k))]v(k) = 0. Then, by the arbitrariness

of v ∈ Hμ we find that −Δ2u(k− 1) = f (k,u(k)) for all k ∈ [1,N]Z. Since u(0) = 0
and u(N + 1) = μu(N) by u ∈ Hμ , u is a solution of problem (1.1). This completes
the proof of the lemma. �

Below, we present an equivalent form of the functional Φ . Let

u = (u(0),u(1), · · · ,u(N),u(N +1)) ∈ Hμ .
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Since Hμ is isomorphic to R
N , in the sequel, we always identify u with the vector

u = (u(1), · · · ,u(N)) ∈ R
N . Let

Aμ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2+ μ2−2μ

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

. (2.6)

Then, Aμ is a symmetric positive definite matrix. Direct calculations lead to

Φ(u) =
1
2
uAμuT for all u ∈ Hμ .

Let λ μ
i be the eigenvalues of Aμ ordered as 0 < λ μ

1 < λ μ
2 < .. . < λ μ

N < ∞. Then, it is
easy to verify that

1
2

λ μ
1 ‖u‖2 � Φ(u) � 1

2
λ μ

N ‖u‖2. (2.7)

Now, we recall some facts from the critical point theory. As usual, the functional
I is said to satisfy the Palais–Smale (PS) condition if every sequence {un} ⊂ Hμ , such
that I(un) is bounded and I′(un) → 0 as n → ∞ , has a convergent subsequence. Here,
the sequence {un} is called a PS sequence of I . We recall the following classic moun-
tain pass lemma of Ambrosetti and Rabinowitz (see, for example, [4, Theorem 7.1]).
Below, we denote by Br(u) the open ball centered at u ∈ X with radius r > 0, Br(u)
its closure, and ∂Br(u) its boundary.

LEMMA 2.2. Let (X ,‖ · ‖) be a real Banach space and I ∈ C1(X ,R) . Assume
that I satisfies the PS condition and there exist u0,u1 ∈ X and ρ > 0 such that

(A1) u1 �∈ Bρ(u0);

(A2) max{I(u0), I(u1)} < infu∈∂Bρ (u0) I(u) .

Then, I possesses a critical value which can be characterized as

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) � inf
u∈∂Bρ(u0)

I(u),

where Γ = {γ ∈C([0,1],X) : γ(0) = u0, γ(1) = u1} .

Next, let G : [0,N +1]Z× [1,N]Z be the Green’s function to the linear problem{−Δ2u(k−1) = 0, k ∈ [1,N]Z,

u(0) = 0, u(N +1) = μu(N).

Then, u ∈ Hμ is a solution of problem (1.1) if and only if u is a fixed point of the
completely continuous operator T : Hμ → Hμ defined by

Tu(k) =
N

∑
l=1

G(k, l) f (l,u(l)), k ∈ [0,N +1]Z. (2.8)
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The positivity of G(k, l) is summarized in Lemma 2.3 below whose part (a) is
well known (see, for example, [17, Lemma 1.1]) and part (b) can be obtained from [1,
Theorem 2.1].

LEMMA 2.3. The Green’s function G(k, l) has the following properties:

(a) If μ = 0 , then G(k, l) > 0 for all k ∈ [1,N]Z and l ∈ [1,N]Z .

(b) If μ ∈ (0, N+1
N

)
, then G(k, l) > 0 for all k ∈ [1,N +1]Z and l ∈ [1,N]Z .

Finally, we need the following lemma to prove our multiplicity results. This lemma
is taken from [10, Theorem 3.2].

LEMMA 2.4. Let H be a Hilbert space. Assume that the functional I ∈C1(H,R)
satisfies the PS condition and I′(u) has the expression I′(u) = u−T(u) for all u ∈ H .
Assume that there exist two open convex subsets D1 and D2 of H satisfying D1∩D2 �=
/0 , T (∂D1) ⊂ D1 , and T (∂D2) ⊂ D2 . If there exists a path h : [0,1] → H such that

h(0) ∈ D1 \D2, h(1) ∈ D2 \D1, and inf
u∈D1∩D2

I(u) > sup
t∈[0,1]

I(h(t)),

then I has at least four distinct critical points, one in D1∩D2 , one in D1 \D2 , one in
D2 \D1 , and one in H \ (D1∪D2) .

3. Main results

In this section, we state our existence results and provide two examples for illus-
tration. For convenience, we use the notations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F∞ = limsup|x|→∞
maxk∈[1,N]Z F(k,x)

|x|2 ,

F0 = limsup|x|→0

maxk∈[1,N]Z F(k,x)
|x|2 ,

F∞ = liminf|x|→∞
mink∈[1,N]Z F(k,x)

|x|2 ,

f 0 = limsup|x|→0

maxk∈[1,N]Z | f (k,x)|
|x| ,

f ∞
ϑ = limsup|x|→∞

maxk∈[1,N]Z | f (k,x)|
|x|ϑ , ϑ > 1.

(3.1)

Recall also that Hμ is defined by (2.1), cμ is defined by (2.3), and λ μ
1 and λ μ

N are the
smallest and largest eigenvalues of the matrix Aμ given in (2.6).
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THEOREM 3.1. Assume that

(H1) Either μ > 1 and λ μ
1 + μ(1− μ) > 0 or 0 � μ � 1 ;

(H2) F∞ < αμ and F0 < αμ , where

αμ =

{ 1
2

[
λ μ

1 + μ(1− μ)
]

if μ > 1 and λ μ
1 + μ(1− μ) > 0,

1
2λ μ

1 if 0 � μ � 1;
(3.2)

(H3) there exists w ∈ Hμ such that ∑N
k=1 F(k,w(k)) > βμ , where

βμ =

{ 1
2 λ μ

N ‖w‖2 if μ > 1 and λ μ
1 + μ(1− μ) > 0,

1
2

(
λ μ

N + cμ μ2
)‖w‖2 if 0 � μ � 1.

(3.3)

Then, problem (1.1) has at least two nontrivial solutions.
If, in addition to the above conditions, we further assume that μ and f satisfy

(H4) μ < N+1
N and x f (k,x) < 0 for all k ∈ [1,N]Z and x �= 0 ,

then the two nontrivial solutions are sign-changing solutions.

The following corollaries are direct consequences of Theorem 3.1.

COROLLARY 3.1. Assume that (H1) holds and there exists w ∈ Hμ such that

βμ

∑N
k=1 F(k,w(k))

< min
{αμ

F∞ ,
αμ

F0

}
,

Then, for each λ ∈
(

βμ
∑N

k=1 F(k,w(k))
, min

{
αμ
F∞ ,

αμ
F0

})
, problem (1.5) has at least two

nontrivial solutions. Moreover, if (H4) holds, the two nontrivial solutions are sign-
changing solutions.

COROLLARY 3.2. Assume that (H1) holds, F∞ = F0 = 0 , and there exists w ∈
Hμ such that ∑N

k=1 F(k,w(k)) > 0 , Then, for each λ ∈
(

βμ
∑N

k=1 F(k,w(k))
, ∞
)

, problem

(1.5) has at least two nontrivial solutions. Moreover, if (H4) holds, the two nontrivial
solutions are are sign-changing solutions.

THEOREM 3.2. Assume that

(A1) 0 � μ � 1 ;

(A2) F∞ > 1
2 (λ μ

N + cμ μ2);

(A3) there exists δ > 0 such that | f (k,x)| < λ μ
1
N |x| for all (k, |x|) ∈ [1,N]Z × [0,δ ];
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(A4) there exists ϑ > 1 and C > 0 such that | f (k,x)| � C(1+ |x|ϑ ) for all (k,x) ∈
[1,N]Z ×R;

(A5) x f (k,x) > 0 for all k ∈ [1,N]Z and x �= 0 .

Then, problem (1.1) has at least three nontrivial solutions, one of which is positive, one
is negative, and one is sign-changing.

Corollaries 3.3 and 3.4 below follow directly from Theorem 3.2.

COROLLARY 3.3. Assume that (A1) and (A5) hold and there exist ϑ > 1 and
M > 0 such that

λ μ
N + cμ μ2

2F∞
< min

{
λ μ

1

f 0N
,

M
f ∞
ϑ

}
.

Then, for each λ ∈
(

λ μ
N +cμ μ2

2F∞
, min

{
λ μ

1
f 0N

, M
f ∞
ϑ

})
, problem (1.5) has at least three non-

trivial solutions, one of which is positive, one is negative, and one is sign-changing.

COROLLARY 3.4. Assume that (A1) and (A5) hold, F∞ > 0 , and f 0 = f ∞
ϑ = 0 ,

where ϑ > 1 . Then, for each λ ∈
(

λ μ
N +cμ μ2

2F∞
, ∞
)

, problem (1.5) has at least three

nontrivial solutions, one of which is positive, one is negative, and one is sign-changing.

We now provide two examples to apply our results.

EXAMPLE 3.1. Let N = 5, μ = 1
2 , and

f (k,x) =

⎧⎪⎪⎨
⎪⎪⎩

−4k if x > 1,

−4kx3 if |x| � 1,

4k if x < −1,

for all (k,x) ∈ [1,5]Z ×R. (3.4)

Consider the problem{−Δ2u(k−1) = λ f (k,u(k)), k ∈ [1,5]Z,

u(0) = 0, u(6) = 1
4u(5),

(3.5)

where λ > 0 is a parameter.
We claim that, for each λ ∈ (3.3035, ∞) , problem (3.5) has at least two nontrivial

sign-changing solutions.
In fact, from (3.4) we see that x f (k,x) < 0 for all k ∈ [1,5]Z and x �= 0, and

F(k,x) =

⎧⎪⎪⎨
⎪⎪⎩

−k(4x−3) if x > 1,

−kx4 if |x| � 1,

k(4x+3) if x < −1,

for all (k,x) ∈ [1,5]Z ×R.
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Then, in view of (3.1), we have F∞ = F0 = 0. Using MATLAB, we find that the
smallest and largest eigenvalues λ μ

1 and λ μ
5 of Aμ , defined by (2.6), are given by

λ μ
1 = 0.2432 and λ μ

5 = 3.7142. Choose w ∈ Hμ so that w(k) = −1 for all k ∈ [1,N]Z
and w(k) = 0 for k = 0, 6. Then, we have ∑5

k=1 F(k,w(k)) = 15 > 0. Thus, all the
conditions of Corollary 3.2 are satisfied. Note from (2.3) and (3.3) that

βμ

∑5
k=1 F(k,w(k))

=
1
30

(λ μ
5 + cμ μ2)‖w‖2 ≈ 3.3035.

The claim then follows from Corollary 3.2.

EXAMPLE 3.2. Let N = 6, μ = 1
2 , and

f (k,x) =

{
4kx3 if |x| � 1,

4kx if |x| > 1,
for all (k,x) ∈ [1,6]Z ×R. (3.6)

Consider the problem{−Δ2u(k−1) = λ f (k,u(k)), k ∈ [1,6]Z,

u(0) = 0, u(7) = 1
4u(6),

(3.7)

where λ > 0 is a parameter.
We claim that, for each λ ∈ (1.0101, ∞) , problem (3.7) has at least three nontrivial

solutions, one of which is positive, one is negative, and one is sign-changing.
In fact, from (3.6) we see that x f (k,x) > 0 for all k ∈ [1,6]Z and x �= 0, and

F(k,x) =

{
kx4 if |x| � 1,

2kx2− k if |x| > 1,
for all (k,x) ∈ [1,6]Z ×R.

Then, in view of (3.1), we have F∞ = 2 > 0 and f 0 = f ∞
ϑ = 0 for any ϑ > 1. Thus, all

the conditions of Corollary 3.4 are satisfied. Using MATLAB, we find that the smallest
and largest eigenvalues λ μ

1 and λ μ
6 of Aμ , defined by (2.6), are given by λ μ

1 = 0.1818

and λ μ
6 = 3.7905. Note from (2.3) that

λ μ
6 +cμ μ2

2F∞
≈ 1.0101. Then, applying Corollary

3.4 to problem (3.7) yields the claim.

4. Proofs of the main results

4.1. Proofs of Theorem 3.1

In this subsection, we prove Theorem 3.1.

LEMMA 4.1. Assume that (H1) holds and F∞ < αμ . Then, the functional I , de-
fined by (2.2), is coercive and satisfies the PS condition.
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Proof. We first show that I is coercive, i.e.,

lim
‖u‖→∞

I(u) = ∞ for all u ∈ Hμ . (4.1)

Since F∞ < αμ , for a fixed K1 ∈ (F∞,αμ) , there exists a constant C1 > 0 such that

F(k,x) � K1|x|2 +C1 for all (k,x) ∈ [1,N]Z ×R. (4.2)

Assume first that μ > 1 and λ μ
1 + μ(1− μ) > 0. For any u ∈ Hμ , |u(N + 1)| =

μ |u(N)| � μ‖u‖ . Then, from (2.2), (2.3), (2.7), and (4.2),

I(u) � 1
2

λ μ
1 ‖u‖2−

N

∑
k=1

(
K1|u(k)|2 +C1

)
+

1− μ
2μ

μ2‖u‖2

=
[
1
2

[
λ μ

1 + μ(1− μ)
]−K1

]
‖u‖2−C1N.

Then, in view of (3.2) and the fact that K1 < αμ , we see that (4.1) holds.
Next, assume that 0 � μ � 1. Then, again from (2.2), (2.3) (2.7), and (4.2), we

have

I(u) � 1
2

λ μ
1 ‖u‖2−

N

∑
k=1

(
K1|u(k)|2 +C1

)
=
(

1
2

λ μ
1 −K1

)
‖u‖2−C1N.

Then, (4.1) holds as well by (3.2) and the fact that K1 < αμ . Thus, we have proved
that I is coercive. Since Hμ is a finite dimensional Banach space, I satisfies the PS
condition. This completes the proof of the lemma. �

We now prove Theorem 3.1.

Proof. We first show that 0 is a strict local minimizer of I . First notice that

I(0) = Φ(0)−Ψ(0)+ cμJ(0) = 0. (4.3)

Since F0 < αμ , for a fixed K ∈ (F∞,αμ) , there exists ρ > 0 such that

F(t,x) � K|x|2 for all (t,x) ∈ [1,N]Z ×R with |x| � ρ .

Let u ∈ Bρ(0) \ {0} . Then, |u(N + 1)| = μ |u(N)| � μ‖u‖ . Assume first that μ > 1
and λ μ

1 + μ(1− μ) > 0. From (2.2), (2.3), (2.7), and (3.2), we have

I(u) � 1
2

λ μ
1 ‖u‖2−K

N

∑
k=1

|u(k)|2 +
1− μ
2μ

μ2‖u‖2

=
[
1
2

[
λ μ

1 + μ(1− μ)
]−K

]
‖u‖2 > 0.

Similarly, we have I(u) > 0 if 0 � μ � 1. Hence, 0 is a strict local minimizer of I .
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Let w be given in (H3). Then, |w(N +1)|= μ |w(N)| � μ‖w‖ . From (2.2), (2.3),
(2.7), and (H3), we obtain that

I(w) � 1
2

λ μ
N ‖w‖2−

N

∑
k=1

F(k,w(k)) < 0 if μ > 1 and λ μ
1 + μ(1− μ) > 0

and

I(w) � 1
2

(
λ μ

N + cμ μ2)‖w‖2−
N

∑
k=1

F(k,w(k)) < 0 if 0 � μ � 1.

Hence, 0 is not a global minimizer of I .
Next, we show that I has a global minimizer. Let i0 ∈ R be chosen so that I(w) <

i0 < 0. Let S = {u ∈ Hμ | I(u) � i0}. Then, S �= /0 . By Lemma 4.1, I is coervive, and
so S is bounded. Thus, I has a minimum i1 on S (see, for example, [16, Corollary
38.10]). It is clear that i1 is also the minimum of I on Hμ , i.e., 0 > i1 = minu∈S I(u) =
minu∈Hμ I(u) > −∞. Then, there exists u1 ∈ Hμ such that

I(u1) = i1 < 0. (4.4)

Hence, u1 is a critical point of I and u1 �≡ 0. By Lemma 2.1, u1 is a nontrivial solution
of problem (1.1).

We now apply Lemma 2.2 to show the existence of a second critical point of I . By
Lemma 4.1, I satisfies the PS condition. Recall that u0 := 0 is a strict local minimizer
of I . Then, there exists 0 < ρ < ‖u1‖ such that r := infu∈∂Bρ (u0) I(u) > 0. From (4.3)
and (4.4), we see that all the conditions of Lemma 2.2 are satisfied. Then, Lemma 2.2
implies that there exists a critical point u2 of I such that

I(u2) � r > 0. (4.5)

In view of (4.4) and (4.5), we have u1 �= u2 and u2 �≡ 0. Then, by Lemma 2.1, u2 is a
second nontrivial solution of problem (1.1).

Finally, we prove that, under the condition (H4), u1 and u2 are sign-changing
solutions. Assume, to the contrary, that u1 is not sign-changing. Then, we have either
u1(k) � 0 or u1(k) � 0 for all k ∈ [0,N + 1]Z . Without loss of generality, we may
assume that u1(k) � 0 on [0,N + 1]Z . Then, from (H4), f (k,u1(k)) � 0 for all k ∈
[1,N]Z . Note that u1(k) = ∑N

l=1 G(k, l) f (l,u1(l)), k ∈ [0,N + 1]Z. and G(k, l) � 0
for all (k, l) ∈ [0,N + 1]Z × [1,N]Z by Lemma 2.3. Then, u1(k) � 0 on [0,N + 1]Z .
Thus, u1(k) ≡ 0 on [0,N +1]Z . This contradicts with the fact that u1(t) is nontrivial.
Hence, u1 is a sign-changing solution. Similarly, we can show that u2 is also a sign-
changing solution. This completes the proof of the theorem. �

4.2. Proofs of Theorem 3.2

Let Hμ be defined by (2.1). Since 0 � μ � 1 by (A1), the constant cμ defined by
(2.3) is nonnegative. Then, we can equip Hμ with the inner product

〈u,v〉 =
N+1

∑
k=1

Δu(k−1)Δv(k−1)+ cμu(N +1)v(N +1), u,v ∈ Hμ , (4.6)
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from which the induced norm ‖ · ‖1 is given by

‖u‖1 =

(
N+1

∑
k=1

|Δu(k−1)|2 + cμ |u(N +1)|2
)1/2

, u ∈ Hμ .

Then, Hμ is an N dimensional Hilbert space and the norms ‖ · ‖1 and ‖ · ‖ are equiva-
lent.

LEMMA 4.2. Let I and T be defined by (2.2) and (2.8), respectively. Then, for
any u,v ∈ Hμ , we have

〈Tu,v〉 =
N

∑
k=1

f (k,u(k))v(k) (4.7)

and
I′(u) = u−Tu. (4.8)

Proof. For any u,v ∈ Hμ , from (2.4), we have

I′(u)(v) = 〈u,v〉−
N

∑
k=1

f (k,u(k))v(k). (4.9)

By the summation by parts formula, it follows that

〈Tu,v〉 =
N+1

∑
k=1

Δ(Tu)(k−1)Δv(k−1)+ cμ (Tu)(N +1)v(N +1)

= Δ(Tu)(N)v(N +1)−Δ(Tu)(0)v(0)

−
N

∑
k=1

Δ2(Tu)(k−1)v(k)+ cμ (Tu)(N +1)v(N +1)

= [Δ(Tu)(N)+ cμ (Tu)(N +1)]v(N +1)+
N

∑
k=1

f (k,u(k))v(k). (4.10)

If μ = 0, then v(N +1) = 0. If 0 < μ � 1, then (Tu)(N +1) = μ (Tu)(N) and cμ =
1−μ

μ . Thus,

Δ(Tu)(N)+ cμ (Tu)(N +1) = (Tu)(N +1)− (Tu)(N)+
1− μ

μ
(Tu)(N +1)

=
1
μ

(Tu)(N +1)− (Tu)(N) = 0.

Thus, for all 0 � μ � 1, we always have [Δ(Tu)(N)+(Tu)(N +1]v(N +1) = 0. Then,
(4.10) reduces to (4.7). From (4.7) and (4.9), we have I′(u)(v) = 〈u,v〉− 〈Tu,v〉, from
which (4.8) follows. This completes the proof of the lemma. �
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LEMMA 4.3. Assume that (A1) and (A2) hold. Then, the functional I satisfies the
PS condition.

Proof. Since F∞ > 1
2 (λ μ

N + cμ μ2) , for a fixed K2 ∈ ( 1
2(λ μ

N + cμ μ2),F∞
)
, there

exists a constant C2 > 0 such that

F(k,x) � K2|x|2−C2 for all (k,x) ∈ [1,N]Z ×R. (4.11)

Let {un} ⊂ Hμ be a sequence such that |I(un)| � L for some L > 0. Then, |un(N +
1)|= μ |un(N)|� μ‖un‖ . This, together with (2.2), (2.3), (2.7), and (4.11), implies that

−L � I(un) � 1
2

λ μ
N ‖un‖2−

N

∑
k=1

(
K2|un(k)|2 −C2

)
+

1
2
cμ μ2‖un‖2

=
[
1
2

(
λ μ

N + cμ μ2)−K2

]
‖un‖2 +C2N. (4.12)

Then,
[
K2− 1

2

(
λ μ

N + cμ μ2
)]‖un‖2 �C2N+L. Since K2 > 1

2

(
λ μ

N + cμ μ2
)
, we see that

{un} is bounded in Hμ . In view of the fact that the dimension of Hμ is finite, {un} has
a convergent subsequence. This completes the proof of the lemma. �

Let

Λ+ =
{
u ∈ Hμ | u(k) � 0 on [0,N +1]Z

}
and Λ− =

{
u ∈ Hμ | u(k) � 0 on [0,N +1]Z

}
.

For any ε > 0, define two open convex subsets D+
ε and D−

ε by

D+
ε =
{
u ∈ Hμ | dist(u,Λ+) < ε

}
and D−

ε =
{
u ∈ Hμ | dist (u,Λ−) < ε

}
,

where dist(u,Λ±) = infv∈Λ± ‖u− v‖1 . Obviously, D+
ε ∩D−

ε �= /0 and Hμ \ (D+
ε ∪D−

ε )
only contains sign-changing functions.

LEMMA 4.4. Assume that (A3)–(A5) hold. Then, there exists ε > 0 such that

T (∂D+
ε ) ⊂ D+

ε and T (∂D−
ε ) ⊂ D−

ε for any ε ∈ (0, ε ].

Moreover, any nontrivial critical points of the functional I in D+
ε (D−

ε ) are positive
(negative) solutions of problem (1.1).

Proof. We only prove the conclusion involving D−
ε . The proof for the other case

is similar and hence is omitted. For any u ∈ Hμ , by the definition of ‖ · ‖1 , we see that
‖u‖2

1 = 2Φ(u)+ cμ|u(N + 1)|2 Note that |u(N + 1)| = μ |u(N)| � μ‖u‖ . Then, from
(2.7), we have λ μ

1 ‖u‖2 � ‖u‖2
1 �
(
λ μ

N + cμ μ2
)‖u‖2. Thus,

√
λ μ

1 ‖u‖ � ‖u‖1 �
√(

λ μ
N + cμ μ2

)‖u‖. (4.13)
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For any u∈Hμ , let u+(k) = max{u(k),0} and u−(k) = min{u(k),0} for all k∈ [0,N+
1]Z , and let y = (Tu)(k) ∈ Hμ . Then, u(k) = u+(k)+u−(k) , and from (4.13), we have

‖u+‖ = inf
v∈Λ− ‖u− v‖� 1√

λ μ
1

inf
v∈Λ− ‖u− v‖1 =

1√
λ μ

1

dist (u,Λ−). (4.14)

From (A3) and (A4), there exists ζ ∈ (0,λ μ
1 /N) and C3 > 0 such that

| f (k,x)| � ζ |x|+C3|x|ϑ for all (k,x) ∈ [1,N]Z ×R. (4.15)

Note that dist(y,Λ−)= infv∈Λ− ‖y−v‖1 � ‖y−y−‖1 = ‖y+‖1. Then, dist(y,Λ−)‖y+‖1 �
‖y+‖2

1 = 〈y+,y+〉= 〈(Tu)+,y+〉. From (2.8), Lemma 2.3, and (A5), we see that (Tu)+(k)
� T (u+)(k) for all k ∈ [0,N +1]Z . Thus, from (4.7) in Lemma 4.2 and (4.13)–(4.15),

dist(y,Λ−)‖y+‖1 � 〈T (u+),y+〉 =
N

∑
k=1

f (k,u+(k))y+(k)

�
N

∑
k=1

(
ζ |u+(k)|+C3|u+(k)|ϑ

)
y+(k)

�
(

ζN‖u+‖+C3N‖u+‖ϑ
)
‖y+‖

�
(

ζN

λ μ
1

dist(u,Λ−)+C4(dist(u,Λ−))ϑ
)
‖y+‖1,

where C4 = C3N(λ μ
1 )−

ϑ+1
2 . Hence, dist(y,Λ−) � ζN

λ μ
1

dist(u,Λ−)+C4(dist (u,Λ−))ϑ .

Let ε =
(

λ μ
1 −ζN

2λ μ
1 C4

) 1
ϑ−1

. Then, in view of the fact that ζN < λ μ
1 , we see that ε is well

defined and ε > 0. Moreover, for any ε ∈ (0, ε ] , if dist(u,Λ−) � ε , we have

dist(y,Λ−) � ζN

λ μ
1

dist (u,Λ−)+
(

λ μ
1 − ζN

2λ μ
1

)
dist(u,Λ−)

=
λ μ

1 + ζN

2λ μ
1

dist(u,Λ−) < dist (u,Λ−) � ε. (4.16)

Thus, T (∂D−
ε ) ⊂ D−

ε .
Now, let u ∈ D−

ε be a nontrivial critical point of I Then, by (4.8) in Lemma 4.2,
we have Tu(k) = u(k) . From (4.16), we obtain that dist(u,Λ−) = 0, i.e., u∈ Λ−\{0} .
In view of Lemma 2.3 and (A5), we see that u(k) < 0 for all k ∈ [1,N]Z . Hence, u(k)
is a negative solution of problem (1.1). This completes the proof of the lemma. �

Now, we are ready to prove Theorem 3.2

Proof. From (A3), there exists ν ∈
(

0,
λ μ

1
2N

)
such that

|F(k,x)| � ν|x|2 for all (k, |x|) ∈ [1,N]Z × [0,δ ]. (4.17)
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Let ε ∈
(

0,min

{
ε ,δ
√

λ μ
1

})
, where ε is given in Lemma 4.4. For any u∈D+

ε ∩D−
ε ,

as in (4.14), we have ‖u±‖ = infv∈Λ∓ ‖u− v‖ � 1√
λ μ

1

dist (u,Λ∓) � 1√
λ μ

1

ε < δ . This

implies that |u(k)| < δ on [1,N]Z . Thus, from (2.2), (2.3) (2.7), and (4.17),

I(u) � 1
2

λ μ
1 ‖u‖2−ν

N

∑
k=1

|u(k)|2 =
(

1
2

λ μ
1 −ν

)
‖u‖2.

Since ν < 1
2N λ μ

1 � 1
2 λ μ

1 , there exists I∗ � 0 such that inf
u∈D+

ε ∩D−
ε

I(u) = I∗ . Let ξ μ
1 be

the positive normalized eigenvavector of Aμ corresponding to λ μ
1 . Let Y = span{ξ μ

1 } .
For any u∈Y , as in deriving (4.12), we have I(u) �

[
1
2

(
λ μ

N + cμ μ2
)−K2

]‖u‖2+C2N,

where K2 > λ μ
N +cμ μ2 and C2 > 0. Thus, I(u)→−∞ as ‖u‖→ ∞ . Then, there exists

C5 > 0 large enough so that I(u) < I∗ − 1 for all u ∈ Y with ‖u‖ = C5 . Let a path

h : [0,1]→Y be defined by h(t) =C5
[cos(πt)+sin(πt)]ξ μ

1
‖[cos(πt)+sin(πt)]ξ μ

1 ‖ . Then, ‖h‖=C5 and h(t) ∈Y

for any t ∈ [0,1] . Hence, I(h(t)) < I∗ −1. Moreover, we have

h(0) =C5
ξ μ

1

‖ξ μ
1 ‖ ∈ D+

ε \D−
ε , h(1) = −C5

ξ μ
1

‖ξ μ
1 ‖

∈ D−
ε \D+

ε ,

and
inf

u∈D+
ε ∩D−

ε

I(u) = I∗ > I+ −1 � sup
t∈[0,1]

I(h(t)).

Then, from Lemmas 4.2 and 4.4, we see that all the conditions of Lemma 2.4, with H =
Hμ , D1 = D+

ε , and D2 = D−
ε , are satisfied. Hence, by Lemma 2.4, I has four critical

points: u1 ∈ D+
ε ∩D−

ε , u2 ∈ D+
ε \D−

ε , u3 ∈ D−
ε \D+

ε , u4 ∈ H \ (D+
ε ∪D−

ε ) . In view of
Lemma 2.1, the four critical points correspond to a trivial solutions, a positive solution,
a negative solution, and a sign-changing solution of problem (1.1). This completes the
proof of the theorem. �
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