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QUALITATIVE ANALYSIS OF DYNAMIC EQUATIONS

ON TIME SCALES USING LYAPUNOV FUNCTIONS

ELEONORA MESSINA, YOUSSEF RAFFOUL ∗ AND ANTONIA VECCHIO

Abstract. We employ Lyapunov functions to study boundedness and stability of dynamic equa-
tions on time scales. Most of our Lyapunov functions involve the term |x| and its Δ -derivative.
In particular, we prove general theorems regarding qualitative analysis of solutions of delay
dynamical systems and then use Lyapunov functionals that partially include |x| to provide ex-
amples.
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