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QUALITATIVE ANALYSIS OF DYNAMIC EQUATIONS

ON TIME SCALES USING LYAPUNOV FUNCTIONS

ELEONORA MESSINA, YOUSSEF RAFFOUL ∗ AND ANTONIA VECCHIO

(Communicated by F. Atici)

Abstract. We employ Lyapunov functions to study boundedness and stability of dynamic equa-
tions on time scales. Most of our Lyapunov functions involve the term |x| and its Δ -derivative.
In particular, we prove general theorems regarding qualitative analysis of solutions of delay
dynamical systems and then use Lyapunov functionals that partially include |x| to provide ex-
amples.

1. Introduction

We assume the reader is familiar with the concept on time scales and for introduc-
tory and basic materials we refer the reader to [5]. On the other hand when the time
scale is the set of discrete numbers, we refer the reader to [8], [9], [14], and [19].

We are interested in the study of certain dynamic equations on time scales and
to analyze the asymptotic properties of their solutions. There has been some recent
interest in the topic and we refer to [4, 11, 12], and the bibliography therein. We
observe here that in the study of stability, boundedness and the existence of solu-
tions of a given dynamical equation on time scales, there is a good chance that Lya-
punov functions/functionals will be used, and most likely will involve the term |x| .
As consequence, the delta derivative of |x| . Let T be an arbitrary time scale and let

x : T → R \ {0}. If T = R , then one can easily find d
dt |x(t)| = x(t)

|x(t)|x
′(t) by using the

equation x2(t) = |x(t)|2 and the product rule in real case. However, due to the prod-
uct rule on time scales (( f g)Δ = f Δgσ + f gΔ ), such straightforward calculations is not
possible.

Let σ(t) and μ(t) be the forward jump operator and the grainess function, respec-
tively of the time scale T . We have the following lemmas.

LEMMA 1. For any t ∈ T, we have

|x|Δ =
x+ xσ

|x|+ |xσ |x
Δ for x �= 0. (1)
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Proof. For the proof see [4, p.13]. �

We observe that the factor on the right side of (1) that multiplies xΔ depends not
only on the sign of x(t) but also on that of xσ (t) . Hence, the expression |x|Δ = x

|x|x
Δ

holds only if xxσ � 0 and x �= 0. We will try to separate this case from the case xxσ < 0
by separating the time scale T into two parts as follows (see also ([3]))

T
−
x : ={s ∈ T : x(s)xσ (s) < 0} ,

T
+
x : ={s ∈ T : x(s)xσ (s) � 0} . (2)

Observe that the set T
−
x consists only of right scattered points of T . The next result

gives a clear distinction between the relation of |x|Δ and x
|x|x

Δ.

LEMMA 2. [3, Lemma 5] Let x �= 0 be Δ-differentiable, then

|x(t)|Δ =

{
x(t)
|x(t)|x

Δ (t) if t ∈ T
+
x

− 2
μ(t) |x(t)|− x(t)

|x(t)|x
Δ (t) for t ∈ T

−
x

.

In particular,
x
|x|x

Δ � |x|Δ � − x
|x|x

Δ (t) for all t ∈ T
−
x . (3)

Proof. We refer to [3, Lemma 5]. �

Lemma 2 implies the following.

REMARK 1. If xxσ �= 0, then

x
|x|x

Δ � |x|Δ � xσ

|xσ |x
Δ for t ∈ T. (4)

Note that if xxσ �= 0 and t ∈ T
+
x , then x

|x| = xσ

|xσ | , and therefore, (4) gives x
|x|x

Δ =

|x|Δ . Moreover, if t ∈ T
−
x , then − x

|x| = xσ

|xσ | and the inequality (4) is equivalent to (3).
In Sections 2 and 3, dynamic equations and delay dynamic equations are consid-

ered, respectively. In addition, we state some stability definitions and make use of Lya-
punov functionals to obtain results concerning boundedness of solutions and stability
of the zero solution. In Section 2, we recall few results from [1].

2. Boundedness and stability

In this section we define what Peterson and Tisdell [13] call a type I Lyapunov
function and summarize a few of the results. Through this paper we use the notation

[t0,∞)T =: [t0,∞)∩T.
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We begin by considering the boundedness and uniqueness of solutions to the first-order
dynamic equation

xΔ = f (t,x), t � 0, (5)

subject to the initial condition

x(t0) = x0, t0 � 0, x0 ∈ R, (6)

where here x(t)∈R
n , f : [0,∞)T×D→R

n where D⊂R
n and open and f is a contin-

uous, nonlinear function and t is from a so-called time scale” T (which is a nonempty
closed subset of R). Throughout this section we assume 0 ∈ T (for convenience) and
f (t,0) = 0 when discussing stability, for all t in the time scale interval [0,∞)T , and
call the zero solution the trivial solution of (5). Equation (5) subject to (6) is known as
an initial value problem (IVP) on time scales.

DEFINITION 1. We say V : R
n → R

+ is a “type I” Lyapunov function and say
“type I” on R

n provided

V (x) =
n

∑
i=1

Vi(xi) = V1(x1)+ . . .+Vn(xn),

where each Vi : R
+ → R

+ is continuously differentiable and Vi(0) = 0.

The following Chain Rule shall be very useful throughout the remainder of this
paper. Its proof can be found in Potzsche [15] and Bohner and Peterson [5], Theorem
1.90.

THEOREM 1. Let V : R → R be continuously differentiable and suppose that x :
T → R is delta differentiable. Then V ◦ x is delta differentiable and

[V (x(t))]Δ =
{∫ 1

0
V ′

(
x(t)+hμ (t)xΔ (t)

)
dh

}
xΔ(t).

Now assume that V : R
n → R is a “type I” function and x is a solution to (5).

Then by the results of [1] we are motivated to define V̇ : T×R
n → R by either of the

following identities

V̇ (t,x) =
{∫ 1

0
∇V (x+hμ(t) f (t,x))dh

}
f (t,x)

=
n

∑
i=1

{∫ 1

0
V ′

i (xi +hμ(t) fi(t,x))dh

}
fi(t,x)

=

⎧⎨
⎩

∑n
i=1 {Vi(xi + μ(t) fi(t,x))−Vi(xi)}/μ(t), when μ(t) �= 0,

∑n
i=1V ′

i (xi) fi(t,x), when μ(t) = 0,
(7)

For x ∈ R
n , ||x|| denotes the Euclidean norm of x . For any n×n matrix A , define the

norm of A by |A|= sup{|Ax| : ||x||� 1} . If x is scalar then we use the supremum norm.
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For the purpose of studying the stability of the zero solution we ask that f (t,0) = 0.
Below we state some stability definitions on time scales. Similar ones can be found for
the continuous case by referring to [6].

DEFINITION 2. We say a solution x(t) of (5) is bounded if for any t0 ∈ [0,∞) and
number r there exists a number α(t0,r) depending on t0 and r such that ||x(t,t0,x0)||�
α(t0,r) for all t � t0 and x0, |x0| < r. It is uniformly bounded if α is independent of
t0.

DEFINITION 3. The zero solution of (5) is stable (S) if for each ε > 0, there is a
δ = δ (ε) > 0 such that |x0|< δ implies |x(t,t0,x0)| < ε . It is uniformly stable (US) if
δ is independent of t0.

DEFINITION 4. The zero solution of (5) is uniformly asymptotically stable (UAS)
if it is (US) and there exists a γ > 0 with the property that for each μ > 0 there exists
T = T (γ) > 0 such that |x0| < γ,t � t0 +T implies |x(t,t0,x0)| < μ .

Throughout this paper we denote wedges by Zi, i = 1,2,3, .... such that Zi[0,∞)T →
[0,∞) be continuous with Zi(0) = 0, Zi(r) strictly increasing, and Zi(r)→∞ as r →∞.

THEOREM 2. Suppose there exists a “type I” function V (t,x) and Z1 such that

Z1(||x||) � V (t,x), t � t0 (8)

V̇ (t,x) � 0, (9)

where V̇ (t,x) is given by (7) and

Z1(||x||) → ∞, as ||x|| → ∞. (10)

Assume for any initial time t0 with x(t0) = x0 , and V (t0,x0) is bounded, then solutions
of (5) are bounded. If the bound on V (t0,x0) is uniform regardless of t0 , then the
solutions are said to be uniformly bounded (UB).

Proof. We refer to [1, Lemma 5]. �
The next example is to illustrate the use of such Lyapunov “type I” functions.

EXAMPLE 1. Consider the scalar nonlinear Volterra integro-dynamic equation

xΔ(t) = a1(t)x(t)+a2(t)
x(t)

1+ x2(t)
, t ∈ [0,∞)T. (11)

Let the function α : T → R be defined by

α(t) :=

{
− 2

μ(t) −a1(t) for t ∈ [0,∞)
T
−
x

a1(t) for t ∈ [0,∞)
T

+
x

. (12)
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If there exists a β > 0 such that

α(t)+ |a2(t)| � −β for all t ∈ [0,∞)T

then all solutions of (11) are bounded. To see this, consider the Lyapunov function

V (t,x) = |x(t)|.

Then along the solutions of (11) we have by using Lemma 2

V̇ (t,x) =
x
|x|x

Δ (t)

=
x
|x|

(
a1(t)x(t)+a2(t)

x(t)
1+ x2(t)

)

=
x2

|x|
(

a1(t)+a2(t)
1

1+ x2(t)

)
� (a1(t)+ |a2(t)|) |x(t)|
= (α (t)+ |a2(t)|) |x(t)|
� −β |x(t)|

for t ∈ [0,∞)
T

+
x

. On the other hand, for t ∈ [0,∞)
T
−
x

, we have

V̇ (t,x) = − 2
μ (t)

|x(t)|− x(t)
|x(t)|x

Δ (t)

= − 2
μ (t)

|x(t)|− x
|x|

(
a1(t)x(t)+a2(t)

x(t)
1+ x2(t)

)

= − 2
μ (t)

|x(t)|− x2

|x|
(

a1(t)+a2(t)
1

1+ x2(t)

)

= |x(t)|
(
− 2

μ (t)
−a1(t)−a2(t)

1
1+ x2(t)

)

�
(
− 2

μ (t)
−a1(t)+ |a2(t)|

)
|x(t)|

= (α (t)+ |a2(t)|) |x(t)|
� −β |x(t)|.

Clearly,
Z1(||x||) = ||x|| → ∞, as ||x|| → ∞.

Therefore, the results follow from Theorem 2.

THEOREM 3. Let V be a “type I” and Zi, i = 1,2, be defined as before. Assume
that for t0 � 0 every solution x(t) = x(t,t0,x0) of (5) satisfies

Z1(|x(t)|) � V (t,x(·)) � αZ2(|x(t)|) (13)
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and
V̇(5)(t,x(·)) � −ρZ2(|x(t)|) (14)

for some constants ρ and α > 0 .
Then solutions of (5) are uniformly bounded and the zero solution of (5) is (UAS)

Proof. Let H > 0 such that |x(t0)| < H , and set V (t) = V (t,x(·)) . By (14), V (t)
is monotonically decreasing and hence, by (13), we have

Z1(|x(t)|) � V (t) � V (t0)
� αZ2(H). (15)

Let ε > 0 be given. Choose H such that H < ε and

αZ2(H) < Z1(ε).

Hence from (15), we have |x(t)| < ε, for t � t0 . Consequently, the zero solution of (5)
is (US). Also, it follows from (15) that

|x(t)| < Z−1
1

(
αZ2(H)

)
,

which implies solutions of (5) are (UB).
Integrate (14) from t0 to t to obtain

−V(t0) � V (t)−V(t0) � −ρ
∫ t

t0
Z2(|x(s)|)Δs

and hence ∫ t

t0
Z2(|x(s)|)Δs � V (t0)

ρ
� αZ2(H)

ρ
.

On the other hand, if we integrate (13) from t0 to t we arrive at

∫ t

t0
V (s)Δs � α

αZ2(H)
ρ

=
α2

ρ
Z2(H)

de f
= aZ2(H). (16)

Since V (t) is positive and decreasing for all t ∈ [t0,∞)T , we have

∫ t

t0
V (s)Δs � V (t)(t − t0).

Let ε > 0 be given. Then, for t � t0 + aZ2(H)
Z1(ε) we have form (13) and (16) that

Z1(|x(t)|) � V (t) � aZ2(H)
t− t0

< Z1(ε). (17)



Differ. Equ. Appl. 14, No. 2 (2022), 215–226. 221

Hence, inequality (17) implies that

|x(t)| � Z−1
1

(aZ2(H)
t− t0

)
< ε.

From this we have the (UAS). �

REMARK 2. According to Theorem 3, the zero solution of (11) is (UAS).

We have the following simple example.

EXAMPLE 2. For all t ∈ [0,∞)T , we assume the functions a(t) and b(t) are right-
dense continuous with a(t) > 0. Consider the two dimensional system{

xΔ = −a(t)x+b(t)y,
yΔ = −b(t)x−a(t)y

. (18)

If
−2a(t)+ μ(t)(a2(t)+b2(t) � −α

for positive constant α, then (0,0) of (18) is (UAS). To see this, we let

V (x,y) = x2 + y2.

Then, we have along the solutions of (18) that

V̇ (t,x) = 2x · f (t,x)+ μ(t)‖ f (t,x)‖2

= 2x(−a(t)x+b(t)y)+2y(−b(t)x−a(t)y)

+ μ(t)
(−a(t)x+b(t)y

)2 + μ(t)
(−b(t)x−a(t)y

)2

=
[−2a(t)+ μ(t)(a2(t)+b2(t)

]
(x2 + y2).

Thus, by Theorem 3 , (0,0) of (18) is (UAS) and all its solutions are uniformly
bounded.

3. Delay dynamic equations

Next we switch to delay dynamic equations and prove that if there exists a Lya-
punov functional with certain criterion, then the zero solution is (US). We consider the
general dynamic system with delay

xΔ(t) = f (t,x(δ (t))), t ∈ [t0,∞)T (19)

on an arbitrary time scale T which is unbounded above and 0 ∈ T . We assume the
function f is rd-continuous, where x∈R

n and f : [t0,∞)T×R
n �→R

n with f (t,0) = 0.
The delay term δ : [t0,∞)

T
→ [δ (t0),∞)

T
is strictly increasing, invertible and delta

differentiable such that δ (t) < t,
∣∣δ Δ(t)

∣∣ < ∞ for t ∈ T , and δ (t0) ∈ T .
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For more on delay dynamic equations on time scales we refer to [4] and [18]. Let
t0 ∈ T and let φ : [δ (t0),t0]T→ R

n , be a given rd−continuous initial function. We say
that x(t) := x(t; t0,φ) is the solution of (19) if x(t) = φ(t) on [δ (t0),t0]T and satisfies
(19) for all t � t0 . We set

Et0 = [δ (t0),t0]T

that we call the the initial interval.

For x ∈ Rn , |x| denotes the Euclidean norm of x . In addition, for any n× n matrix
A , |A| will denote any compatible norm so that |Ax| � |A||x|. For positive constant
H , we let CH(t) denote the set of rd-continuous functions ψ : [δ (t0), t]T → Rn and
‖ψ‖ = sup{|ψ(s)| : δ (t0) � s � t} � H. In addition φt denotes φ ∈CH(t).

DEFINITION 5. Let x(t) = 0 be a solution of (19).

(a) The zero solution of (19) is stable if for each ε > 0 and t1 � t0 there exists δ∗ > 0
such that [φ ∈CH(t1), ‖φ‖ < δ∗,t � t1] imply that |x(t, t1,φ)| < ε.

(b) The zero solution of (19) is uniformly stable if it is stable and if δ∗ is independent
of t1 � t0.

(c) The zero solution of (19) is asymptotically stable if it is stable and if for each t1 � t0
there is an η > 0 such that [φ ∈CH(t1), ‖φ‖< η ] imply that |x(t,t1,φ)| → 0 as t → ∞.

THEOREM 4. Assume the existence of a scalar functional V (t,ψt) that is Crd in
t and locally Lipschitz in ψt when t � t0 and ψt ∈ Et with ||ψt || < D for positive
constant D. Assume V (t,0) = 0 and

Z1(|ψ(t)|) � V (t,ψt). (20)

(a) If

V̇ (t,ψt) � 0 for t0 � t < ∞ and ||ψt || � D, (21)

then the zero solution of (19) is stable.

(b) If in addition to (a),

V (t,ψt) � Z2(||ψt ||), (22)

then the zero solution of (19) is uniformly stable.

(c) If there is an M > 0 with | f (t,ψt)| � M for t0 � t < ∞ and ||ψt || � D, and if

V̇ (t,ψt) � −Z2(|ψ(t)|), (23)

then the zero solution of (19) is asymptotically stable.
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Proof. Let ε > 0 be given such that ε < D. Let t1 � t0 and since V is continous
and V (t,0) = 0 there exists δ∗ > 0 such that φ ∈ Et1 with ||φt1 || < δ∗ implies that
V (t1,φt1) < Z1(ε). Due to condition (21) we have

Z1(|x(t,t1,φt1 |) � V (t,x(t,t1,φt1)) � V (t1,φt1)
� Z1(ε),

from which it follows that

|x(t,t1,φt1)| � W−1
1

(
Z1(ε)

)
= ε.

This concludes the proof of (a).
For part (b) we let ε > 0 be given such that ε < D. Let δ∗ > 0 with Z2(δ∗) <

Z1(ε). Set t1 � t0 and φt1 ∈ Et1 with ||φt1 || < δ ∗ . Then

Z1(|x(t,t1,φt1)|) � V (t,xt(t1,φt1)) � V (t1,φt1)
� Z2(δ∗) < Z1(ε).

It follows that
|x(t,t1,φt1)| � W−1

1

(
Z1(ε)

)
= ε.

This concludes the proof of (b).
To prove (c), let t1 � t0 be given and let 0 < ε < D. Find δ as in part (b) and

take η = δ ∗ . Let φt1 ∈Ct1(H) with ||φt1 || < δ ∗ . We write x(t) = x(t,t1,φt1). Thew
proof will be done vis contradiction. Thus we assume x(t) � 0 as t → ∞. Then there
is an ε1 > 0 and a sequence {tn} → ∞ with |x(tn)| � ε1. Since | f (t,ψt )| � M, for
t0 � t < ∞ and ||ψt || � D, there is a T > 0 and an ε2 < ε1 with |x(tn)| � ε2, for
tn � t � tn +T. A combination of this and condition (23) we have

0 � V (t,xt) � V (t1,φt1)−
∫ t

t1
Z2(|x(s|)Δs

� V (t1,φt1)−
n

∑
i=2

∫ ti+T

ti
Z2(|x(s|)Δs

� V (t1,φt1)−
n

∑
i=2

∫ ti+T

ti
Z2(ε2)Δs

= V (t1,φt1)−nTZ2(ε2) →−∞, as n → ∞,

a contradiction. This concludes the proof of (c) �
As an application of Theorem 4, we consider the scalar delay dynamical system

xΔ(t) = b(t)x(t)+a(t)x(δ (t)), t ∈ [t0,∞)T (24)

where a,b : [t0,∞)T → R are continuous and the delay function δ (t) satisfies all the
requirements as given in the beginning of this section. For more on stability results
for equations that are similar to (24) we refer the reader to [2] and [4]. We have the
following theorem.
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THEOREM 5. Let γ be a positive constant and define the function α : T→ (−∞,0)
by

α(t) :=

{ |1+μ(t)b(t)|−1+γ
μ(t) for t ∈ [0,∞)T−

b(t)+ γ for t ∈ [0,∞)T+

(25)

In addition we assume that
|a(t)|− γδ Δ(t) � 0.

(i) If
α(t) � 0, (26)

then the zero solution of (24) is uniformly stable.
(ii) If

|b(t)|+ δ < 1, (27)

then the zero solution of (24) is asymptotically stable.
(iii) If inequality (27) holds, then solutions of (24) are integrable.

Proof. Let

V (t,x) = |x(t)|+ γ
∫ t

δ (t)
|x(s)|Δs. (28)

Then along the solutions of (24) we have for t ∈ [0,∞)T+ that

V̇ (t,x) =
x
|x|x

Δ(t)+ γ|x(t)|− γ|x(δ (t))δ Δ(t)

=
x
|x|

(
b(t)x(t)+a(t)x(δ (t)

)
+ γ|x|− γ|x(δ (t))|δ Δ(t)

� (b(t)+ γ)|x|+ (|a(t)|− γδ Δ(t)
)|x(t)|

� α|x|.
On the other hand, for t ∈ [0,∞)T− , then t is right scattered (i.e., μ(t) > 0) and, we
have that

V̇ (t,x)

= |x|Δ + γ|x(t)|− γ|x(δ (t))δ Δ(t)

=
|x+ μ(t)xΔ|− |x|

μ(t)
+ γ|x(t)|− γ|x(δ (t))δ Δ(t)

=
|x+ μ(t)

(
b(t)x(t)+a(t)x(δ (t))

)|− |x|
μ(t)

+ γ|x(t)|− γ|x(δ (t))δ Δ(t)

� |x+ μ(t)b(t)x(t)|+ μ(t)|a(t)||x(δ (t)|− |x|
μ(t)

+ γ|x(t)|− γ|x(δ (t))δ Δ(t)

� (|1+ μ(t)b(t)||x(t)|+ μ(t)|a(t)||x(δ (t)|− |x|+ μ(t)γ|x(t)|−μ(t)γ|x(δ (t))δ Δ(t)
μ(t)

=

(
|1+ μ(t)b(t)|−1+ γ

)
μ(t)

|x(t)|+ (|a(t)|− γδ Δ(t)
)|x(δ (t))| � α|x|.
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If α(t) = 0, then we have V̇ (t,x) � 0. It is easy to see that (a) of Theorem 4 is satisfied
with Z1(|ψ(t)|) = |ψ(t)|. Left to verify (22). Due to condition (27) we have that

V̇ (t,x) � −η |x(t)| for some positive constant γ. (29)

Let t1 ∈ [t0,∞)T,φ ∈CH(t1),x(t) = x(t,t1,φ). Then by integrating (29) from δ (t1) to t
we arrive at

V (xt)−V(φt1) � −η
∫ t1

δ (t1)
|x(s)|Δs � 0.

Or,
V (xt)−V(φt1) � 0.

Now using
|x(t)| � V (xt),

and since V is decreasing we arrive at

|x(t)| � V (xt) � V (φt1)

= φ(t1)+ η
∫ t1

δ (t1)
|φ(s)|Δs

�
[
1+ η(t1− δ (t1))||φt1 ||

]
.

Thus we may take Z2(||ψt ||) =
[
1+ η(t1− δ (t1))||φt1 ||

]
. This completes the proof of

(i) and (ii). To prove the integrability of all solutions we integrate (ii) (29) from t0 to t
and get

V (t,xt)−V(t0,φt0) �
∫ t

t0
|x(s)|Δ,

from which we arrive at∫ t

t0
|x(s)|Δs � −V (t,xt)+V(t0,φt0 )

� V (t0,φt0)

� |φt0 |+ η
∫ t0

δ (t0)
|φ(s)|Δs < ∞.

This completes the proof. �
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