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Abstract. In this paper, the authors study the existence and multiplicity of solutions to a non-
local p -Kirchhoff-type quasilinear elliptic equation with Dirichlet boundary conditions using a
variational approach. They also give some new criteria for the existence of sequences of solu-
tions to the problem. Some recent results are extended and improved. Examples are presented to
demonstrate the application of the results.

1. Introduction

In this paper, we consider the problem{
[M(

∫
Ω |∇u|pdx)]p−1(−Δpu) = f (x,u), in Ω,

u = 0, on ∂Ω,
(1)

where Ω ⊂ R
N is a bounded domain, Δpu = div(|∇u|p−2∇u) is the p -Laplacian with

1 < p < N , M : R
+ → R

+ , and f : Ω×R→ R .
Problem (1) can be viewed as a stationary form of the following hyperbolic model

introduced by Kirchhoff

ρ
∂ 2u
∂ t2

−
(

ρ0

h
+

E
2L

∫ L

0

∣∣∣∣∂u
∂x

∣∣∣∣
2

dx

)
∂ 2u
∂x2 = 0, (2)

which is a generalization of the wave equation for a vibrating string. The constants ρ ,
ρ0 , h , E , and L are related to physical properties of the string. The steady state version
of the problem, namely,{

−(a+b
∫

Ω |∇u|2dx)∇u) = f (x,u), in Ω,

u = 0, on ∂Ω,
(3)
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has received a lot of attention; some important and interesting results can be found, for
example, in [2, 13]. Moreover, problem (3) can be used to model certain physical and
biological systems; for example, see [3, 6, 10, 11, 18, 20, 23] and the references therein.
The study of Kirchhoff-type equations has already been extended to the case involving
the p -Laplacian {

[−M( 1
p

∫
Ω |∇u|pdx)]Δpu = f (x,u), in Ω,

u = 0, on ∂Ω.

Corrêa and Figueiredo [10] proved the existence of positive solutions to the p -
Kirchhoff type problem (1) and the problem{

−[M(
∫

Ω |∇u|pdx)]p−1Δpu = f (x,u)+ λ |u|s−2, in Ω,

u = 0, on ∂Ω,

where Ω is a bounded smooth domain in R
N , 1 < p < N , s � p∗ = pN

N−p , and M and
f are continuous functions. Sun [23] proved the existence and multiplicity of weak
solutions to a class of Kirchhoff type problems with Dirichlet boundary conditions by
using critical point theory and applying the symmetric Mountain Pass Theorem.

Here we shall use variational methods to obtain the existence and multiplicity of
solutions for Kirchhoff type equations with Dirichlet boundary value conditions. Under
suitable conditions on f and M , we prove the existence of a weak solution to problem
(1). Then by applying the Mountain Pass Theorem, we obtain the existence of nontrivial
solutions to problem (1). In addition, with the aid of the Fountain Theorem [24], we
obtain the existence of sequences of solutions tending to +∞ . Additionally, by the Dual
Fountain Theorem [24], we are able to show the existence of sequences of solutions
along which a certain functional is negative. Examples are given to illustrate each of
our results.

Our paper is organized in the following way. In Section 2, we recall some basic
definitions and state the main tools used in our proofs. In Section 3, we state and prove
the main theorems in this paper and provide examples of each result.

2. Preliminaries and basic notation

In this section, we introduce some definitions and state some results that will be
used later in the paper.

Throughout this paper, by weak solutions of the problem (1) we are referring to
the critical points of the associated energy functional

ϕ(u) =
1
p
M̂

(∫
Ω
|∇u|pdx

)
−
∫

Ω
F(x,u)dx

acting on the Sobolev space W 1,p
0 (Ω) , where

M̂(t) =
∫ t

0
[M(s)]p−1ds for t � 0
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and

F(x,t) =
∫ t

0
f (x,s)ds for t ∈ R.

Clearly, ϕ(u) ∈C1(W 1,p
0 (Ω),R) and

〈ϕ ′(u),v〉 =
[
M

(∫
Ω
|∇u|pdx

)]p−1∫
Ω
|∇u|p−2∇u ·∇vdx−

∫
Ω

f (x,u)vdx

for all u , v ∈W 1,p
0 (Ω) , where

X := W 1,p
0 (Ω) =

{
u ∈ Lp(Ω) :

∫
Ω
|∇u|p < ∞, u|∂Ω = 0

}

is a Banach space with the norm

‖u‖ = ‖u‖1,p :=
(∫

Ω
|∇u|pdx

) 1
p

for u ∈W 1,p
0 (Ω) .

3. Main results

We utilize the following assumptions throughout this paper.

(m0) There exists m0 > 0 such that M(t) � m0 ;

(m1) There exists 0 < K < 1 such that M̂(t) � KMp−1(t)t ;

( f0) There exists θ > p
K such that 0 < θF(x,t) � t f (x, t) for t ∈ R\{0} and x ∈ Ω ;

( f1) f : Ω×R → R is continuous and for some c > 0 and T > 0

| f (x,t)| � c(1+ |t|q−1), |t| � T,

for some q with p < q < p∗ and p∗ = Np
N−p ;

( f2) f (x, t) = o(|t|p−1) as t → 0 uniformly for x ∈ Ω .

The estimates in the following lemma will prove to be useful. It can be proved
similarly to the proof of [25, Lemma 2.2].

LEMMA 1. If condition ( f0) holds, then for every x ∈ Ω , the following inequali-
ties hold:

F(x,t) � F

(
x,

t
|t|
)
|t|θ , if 0 < |t| � 1;

F(x,t) � F

(
x,

t
|t|
)
|t|θ , if |t| � 1.
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In view of Lemma 1, ( f0) implies that, for every x ∈ Ω ,

F(x,t) � K1|t|θ , if |t| � 1,

F(x,t) � K2|t|θ , if |t| � 1, (4)

where K1 = sup
x∈Ω
|t|=1

F(x,t) , K2 = inf
x∈Ω
|t|=1

F(x,t) . Moreover, in view of ( f0) , we see that

K1 > 0 and K2 � 0. In addition, since F(x,t)−K2|t|θ is continuous on Ω× [0,1] ,
there exists a constant K3 > 0 such that

F(x,t) � K2|t|θ −K3 for all (x, |t|) ∈ Ω× [0,1]. (5)

So it follows from (4) and (5) that

F(x,t) � K2|t|θ −K3 for all (x,t) ∈ Ω×R. (6)

The first main result in this paper is contained in the following theorem.

THEOREM 1. Assume that conditions (m0) and (m1) hold, and for some c1 > 0

| f (x,t)| � c1(1+ |t|β−1), (7)

where 1 � β < p. Then problem (1) has a weak solution.

Proof. From (m0) , (m1) , and (7), we have |F(x, t)| � c1(|t|β + |t|) and M̂(t) �
Kmp−1

0 t , so in view of Sobolev embedding inequalities, for some ĉ1 > 0,

ϕ(u) =
1
p
M̂

(∫
Ω
|∇u|pdx

)
−
∫

Ω
F(x,u)dx

� K
p

mp−1
0

(∫
Ω
|∇u|pdx

)
−
∫

Ω
F(x,u)dx

� K
p

mp−1
0 ‖u‖p− c1

∫
Ω
|u|β dx− c1

∫
Ω
|u|dx

� Kmp−1
0

p
‖u‖p− ĉ1‖u‖β − ĉ1‖u‖→ +∞

as ‖u‖→ +∞ since p > β . Now since ϕ is lower semi-continuous, it has a minimum
point u in X , and so u is a weak solution of (1). �

We give the following example to illustrate Theorem 1.

EXAMPLE 1. Let N = 3, p = 2, Ω = {(x1,x2,x3) ∈ R
3 : x2

1 + x2
2 + x2

3 � 1} , and
consider the problem{

[1+(
∫

Ω |∇u|2)](−
2u) =
√|u|, in Ω,

u = 0, on ∂Ω,
(8)
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With M(t) = 1+ t for t ∈R
+ , M satisfies condition (m0) with m0 = 1 and M̂ satisfies

condition (m1) with K = 1
2 . Also, f (x,t) =

√|t| , so by choosing β = 3
2 , f (x,t)

satisfies condition (7) with c1 = 1. Thus, by Theorem 1, problem (8) has a weak
solution.

Next, we will show that ϕ satisfies the well-known Palais-Smale condition (PS).

LEMMA 2. Assume that (m0) , (m1) , and ( f0) hold. Then ϕ(u) satisfies the (PS)
condition.

Proof. Assume that {un}n∈N ⊂X such that {ϕ(un)}n∈N is bounded and ϕ ′(un)→
0 as n→+∞. Then, there is a positive constant k0 such that |ϕ(un)|� k0 and ||ϕ ′(un)||
� k0 for all n ∈ N . Therefore, from the definition of ϕ ′ , for some k1 > 0, from ( f0) ,
(m1) , and (m0) , we have

k0 + k1‖un‖ � ϕ(un)− 1
θ
〈ϕ ′(un),(un)〉

=
1
p
M̂

(∫
Ω
|∇un|pdx

)
−
∫

Ω
F(x,un)dx

− 1
θ

[
M

(∫
Ω
|∇un|pdx

)]p−1(∫
Ω
|∇un|pdx

)

+
1
θ

∫
Ω

f (x,un)undx

� K
p

[
M

(∫
Ω
|∇un|pdx

)]p−1(∫
Ω
|∇un|pdx

)

− 1
θ

[
M

(∫
Ω
|∇un|pdx

)]p−1(∫
Ω
|∇un|pdx

)

�
(

K
p
− 1

θ

)[
M

(∫
Ω
|∇un|pdx

)]p−1(∫
Ω
|∇un|pdx

)

�
(

K
p
− 1

θ

)
mp−1

0 ‖un‖p.

Since θ > p
K by ( f0) , this implies that {un} is bounded. Now, using the same argument

as in the proof of [9, Lemma 2.4], we can prove that {un} converges strongly to u in
X . Consequently, ϕ satisfies the (PS) condition. �

Our next theorem establishes the existence of a nontrivial solution.

THEOREM 2. Assume that ( f0) , ( f1) , ( f2) , (m0) , and (m1) hold. Then, the
problem (1) has a nontrivial weak solution.

Proof. We will show that ϕ satisfies the conditions of the Mountain Pass Theorem
[24, Theorem 2.10]. By Lemma 2, ϕ satisfies the (PS) condition in X . Since p < q <
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p∗ , X can be embedded in Lp , so there exists C > 0 such that ‖u‖p �C‖u‖ for u∈ X .

Let ε > 0 satisfy εCp < Kmp−1
o

2p . By the definition of F and conditions ( f1) and ( f2) ,

F(x,t) � ε|t|p + ĉ|t|q for (x,t) ∈ Ω×R (9)

for some ĉ > 0. From (m0) and (9),

ϕ(u) � Kmp−1
0

p

(∫
Ω
|∇u|pdx

)
− ε

∫
Ω
|u|p− ĉ

∫
Ω
|u|q

� Kmp−1
0

p
‖u‖p− εCp‖u‖p− ĉCq‖u‖q

� Kmp−1
0

2p
‖u‖p− ĉCq‖u‖q.

Therefore, there exist 0 < r < 1 and δ > 0 such that ϕ(u) � δ > 0 for all u with
‖u‖ � r .

From ( f0) and the fact that d
dt F(x,t) = f (x,t) , we can easily see that there are

constants K2 , K3 > 0 such that (6) holds. If t > 0, from (m1) and the fact that M̂′(t) =
Mp−1(t) , we have

1
Kt

� Mp−1(t)
M̂(t)

, (10)

so M̂(t) � γt 1
K , for some constant γ > 0 and all t � 1. Now if w ∈ X \ {0} and for t

large enough that
∫

Ω |∇(tw)|pdx � 1, then for some constant γ1 > 0

ϕ(tw) =
1
p
M̂

(∫
Ω
|∇(tw)|pdx

)
−
∫

Ω
F(x,tw)dx

� γ
p

(∫
Ω
|∇(tw)|pdx

) 1
K

− γ1t
θ
∫

Ω
|w|θ dx− γ1

� γ
p
t

p
K

(∫
Ω
|∇w|pdx

) 1
K

− γ1t
θ
∫

Ω
|w|θ dx− γ1 →−∞

as t →+∞ since θ > p
K . Now ϕ(0) = 0, so ϕ satisfies the conditions of the Mountain

Pass Theorem, and hence ϕ has at least one nontrivial critical point that corresponds to
a nontrivial weak solution of (1). �

We now give an example to illustrate the above theorem.

EXAMPLE 2. Consider the problem{
[(1+

∫
Ω |∇u| 11

3 dx)
3
8 ]

8
3 (−Δ 11

3
u) = f (x,u), in Ω,

u = 0, on ∂Ω.
(11)



Differ. Equ. Appl. 14, No. 2 (2022), 227–237. 233

Here, N = 4, p = 11
3 , Ω = {(x1,x2,x3,x4) ∈ R

4 : x2
1 + x2

2 + x2
3 + x2

4 � 8} ⊂ R
4 , and

p∗ = (44/3)
4−(11/3) = 44. Now M(t) = (1 + t)

3
8 for t ∈ R

+ , and we see that M satisfies

condition (m0) with m0 = 1. Also, M̂(t) =
∫ t
0 [(1 + s)

3
8 ]

8
3 = t + t2/2, and with K =

1
2 , M̂(t) � 1

2 [(1 + t)
3
8 ]

8
3 t , so condition (m1) holds. Letting f (x,t) = t12 , we have

F(x,t) = t13/13, so for 13 = θ > p
K = 22/3, 13× t13/13 � t × t12 , and we see that

(f0 ) is satisfied. In addition, |t12| � c(1 + |t|q−1) for some q with 11/3 < q < 44,

which means (f1 ) holds. Finally, we see that f (x,t) = o(|t| 8
3 ) as t → 0, so (f2 ) holds.

Therefore, by Theorem 2, the problem (11) has at least one nontrivial weak solution.

Our next two theorems are concerned with the existence of sequences of solutions.

THEOREM 3. In addition to conditions (m0) , (m1) , ( f0) , and ( f1) , assume that

( f3) f (x,−t) = − f (x,t) for x ∈ Ω and t ∈ R .

Then the problem (1) has sequences of solutions {±uk}∞
1 such that ϕ(±uk) → +∞ as

k → +∞ .

In order to prove this theorem, we need to introduce the following additional con-
cepts. Since X is a reflexive and separable Banach space, there exist {e j} ⊂ X and
{e∗j} ⊂ X∗ such that

X = span{e j : j = 1,2, ...}, X∗ = span{e∗j : j = 1,2, ...}W ∗
,

and

〈e j,e
∗
j〉 =

{
1, i = j,

0, i �= j.

For convenience, we write Xj = span{e j} , Yk = ⊕k
j=1Xj , and Zk = ⊕∞

j=kXj .
The following lemma is a special case of [17, Lemma 4.9].

LEMMA 3. ([17]) If 1 < q < p∗ , let

βk = sup{|u|q : ‖u‖ = 1, u ∈ Zk}.

Then limk→+∞βk = 0 .

We also need the following variant of the Palais-Smale condition.

DEFINITION 1. We say that ϕ satisfies the (PS)∗c condition with respect to (Yn)
if any sequence {unj} ⊂ X such that {unj} ∈ Ynj , ϕ(unj) → c , and 〈(ϕ |Yn j

)′,unj〉 → 0
as n j → +∞ contains a subsequence converging to a critical point of ϕ .

The next lemma gives conditions, compatible with those used in this paper, under
which a functional will satisfy the (PS)∗c condition. In this regard, we will need the
following definition.



234 J. R. GRAEF, S. HEIDARKHANI, L. KONG AND A. GHOBADI

DEFINITION 2. A function ϕ is of the type (S+) if un ⇀ u and limn→∞〈ϕ ′(un),
(un−u)〉� 0, then un → u .

LEMMA 4. If conditions (m0) , (m1) , ( f0) , and ( f1) hold, then ϕ satisfies the
(PS)∗c condition.

Proof. Assume that unj ⊂ X satisfies unj ∈Ynj , ϕ(unj)→ c , and 〈(ϕ |Yn j
)′,unj 〉→

0 as n j → +∞ . Similar to the process of verifying the (PS) condition in Lemma 2,
‖unj‖ is bounded and we can assume that unj ⇀ u in X . Since X =

⋃
n j

Yn j , we can
choose vn j ∈ Ynj such that vn j → u . Hence,

lim
n j→+∞

〈ϕ ′(unj),(unj −u)〉= lim
n j→+∞

〈ϕ ′(unj),(unj − vn j)〉+ lim
n j→+∞

〈ϕ ′(unj ),(vn j −u)〉

= lim
n j→+∞

〈(ϕ |Yn j
)′(unj),(unj − vn j)〉 = 0.

Since ϕ ′ is of (S+) type, it follows that unj → u . Furthermore, we have ϕ ′(unj) →
ϕ ′(u) . We need to show that ϕ ′(u) = 0. For an arbitrarily wk ∈Yk , for n j � k , we have

〈ϕ ′(u),wk〉 = 〈(ϕ ′(u)−ϕ(unj)),wk〉+ 〈ϕ ′(unj),wk〉
= 〈(ϕ ′(u)−ϕ(unj)),wk〉+ 〈(ϕ |Yn j

)′(unj ),wk〉.

Passing to the limit on the right side of above expression shows that 〈ϕ ′(u),wk〉= 0 for
every wk ∈ Yk . Thus, ϕ ′(u) = 0, and this shows that ϕ satisfies the (PS)∗c condition
for every c ∈ R . �

The proof of Theorem 3 also makes use of the following result which is known as
the Fountain Theorem [24].

LEMMA 5. Assume that:

(A1) X is a Banach space and ϕ ∈C1(X ,R) is an even functional;

(A2) For each k = 1,2, ... , there exist ρk > rk > 0 such that

inf
u∈Zk,‖u‖=rk

ϕ(u) → +∞ as k → +∞;

(A3) max
u∈Yk,‖u‖=ρk

ϕ(u) � 0;

(A4) ϕ satisfies the (PS)∗c condition for every c > 0 .

Then ϕ has a sequence of critical values tending to +∞ .

Proof of Theorem 3. By Lemma 4 and condition ( f3) , ϕ is an even functional and
satisfies the (PS)∗c condition. We will prove that if k is large enough, then there exist
ρk > rk > 0 such that (A2) and (A3) hold. Thus, the conclusion of the theorem can be
obtained from the Fountain Theorem.
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To see that (A2) holds, first note that from ( f1) there exists ĉ > 0 such that

F(x,t) � ĉ(|t|+ |t|q) for (x,t) ∈ Ω×R.

Then for u ∈ Zk , from (m0) , (m1) , and the Sobolev embedding theorem,

ϕ(u) =
1
p
M̂

(∫
Ω
|∇u|pdx

)
−
∫

Ω
F(x,u)dx

� Kmp−1
0

p

∫
Ω
|∇u|pdx− ĉ

∫
Ω
|u|qdx− ĉ

∫
Ω
|u|dx

� Kmp−1
0

p
‖u‖p− ĉ|u|qq− c∗‖u‖

� Kmp−1
0

p
‖u‖p− ĉβ q

k ‖u‖q− c∗‖u‖ (12)

for some c∗ > 0.

Let γk =

(
ĉqβ q

k

Kmp−1
0

)p−q

. Then since 1 < p < q and βk → 0, by Lemma 3, we see

that γk → ∞ as k → ∞ . Then if ‖u‖ = γk , we have

ϕ(u) � Kmp−1
0

(
1
p
− 1

q

)
‖u‖p +

Kmp−1
0

q
‖u‖p− ĉβ q

k ‖u‖q− c∗‖u‖

= Kmp−1
0

(
1
p
− 1

q

)
γ p
k +

Kmp−1
0

q
γ p
k − ĉβ q

k γq
k − c∗γk

= Kmp−1
0

(
1
p
− 1

q

)
γ p
k − c∗γk → ∞

as k → ∞ since 1 < p < q and γk → ∞ .
To prove (A3) holds, note that from ( f0) , we have F(x,t) � K2|t|θ −K3 (see (6)).

Therefore, for any w ∈ Yk with ‖w‖ = 1 and 1 < t = ρk so that
∫

Ω |t∇w|pdx � 1, we
have

ϕ(tw) =
1
p
M̂

(∫
Ω
|t∇w|pdx

)
−
∫

Ω
F(x, tw)dx

� c

(∫
Ω
|t∇w|pdx

) 1
K

−K2t
θ
∫

Ω
|w|θ dx−K3

� cρ
p
K
k

(∫
Ω
|∇w|pdx

) 1
K

−K2ρθ
k

∫
Ω
|w|θ dx−K3.

Since θ > p
K and dimYk = k , it is easy to see that ϕ(u) → −∞ as ‖u‖ → +∞ for

u ∈Yk .
Therefore, by the Fountain Theorem, Lemma 5 above, the conclusion of the theo-

rem follows, and this completes the proof. �

As an example of Theorem 3 we have the following one.
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EXAMPLE 3. Consider problem (11) but with f (x,t) = ts where s > 0 is odd and
s+ 1 > p/K . As in Example 2, conditions (m0 ) and (m1 ) are satisfied. Clearly, (f3 )
holds as well. It is easy to see that condition (f0 ) holds with θ = s+1. If 11/3< q < 44
and q > s+ 1, then |ts| � c(1+ |t|q−1) , so (f1 ) is satisfied. Then by Theorem 3, our
example has a sequence of solutions {±uk}∞

1 such that ϕ(±uk) → +∞ as k → +∞ .
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