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AN EFFICIENT HEAT PROBLEM

T. A. BURTON

Abstract. By means of fixed point theory we study properties of solutions of a Volterra integral
heat equation

x(t) = a(t)−
∫ t

0
A(t− s) f (s,x(s))ds

by first mapping it into

x(t) = z(t)+
∫ t

0
R(t− s)

[
x(s)− f (s,x(s))

J

]
ds

where

z(t) = a(t)−
∫ t

0
R(t− s)a(s)ds,

R is the resolvent of JA , J is a large positive number, and f is bounded.
It turns out that the linear part

x(t) = z(t)+
∫ t

0
R(t− s)x(s)ds

has a unique fixed point which is a uniformly good approximation of a fixed point for the non-
linear equation.

The objective is to obtain conditions under which the heat applied by a(t) concentrates on
the solution x(t) .
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