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AN OPERATOR SPLITTING APPROACH FOR

TWO–DIMENSIONAL KAWARADA PROBLEMS
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Abstract. The authors study a second order operator splitting formula for computing numerical
solutions of singular and nonlinear Kawarada partial differential equation initial-boundary value
problems. Their investigations particularly focus at the global numerical error, algorithmic real-
ization, and stability of the decomposed schemes. Computational experiments are presented to
validate and illustrate their results. The simulation demonstrates the viability and capability of
the new splitting methods for solving nonlinear and singular problems with potential industrial
applications.
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