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LYAPUNOV–TYPE INEQUALITIES FOR

THIRD ORDER NONLINEAR EQUATIONS

BRIAN BEHRENS AND SOUGATA DHAR ∗

Abstract. We derive Lyapunov-type inequalities for general third order nonlinear equations in-
volving multiple ψ -Laplacian operators of the form

(ψ2((ψ1(u′))′))′ +q(x) f (u) = 0,

where ψ2 and ψ1 are odd, increasing functions, ψ1 is sub-multiplicative and 1
ψ1

is convex,
and f is a continuous function which satisfies a sign condition. Our results utilize q+ and
q− , as opposed to |q| which appears in most results in the literature. Additionally, these new
inequalities generalize previously obtained results, and the proofs utilize a different technique
than most other works in the literature. Furthermore, using the obtained inequalities, we obtain a
constraint on the location of the maximum of a solution, properties of oscillatory solutions, and
an upper bound for the number of zeroes.
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