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PROBLEMS FOR HYBRID FRACTIONAL DIFFERENTIAL EQUATIONS
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(Communicated by J. Lyons)

Abstract. In this paper, we study a system of nonlinear boundary value problems (BVPs) con-
sisting of more general class of sequential hybrid fractional equations (SHFDEs) together with
a class of nonlinear boundary conditions at both end points of the domain. The nonlinear func-
tions involved depend explicitly on the fractional derivatives. We study necessary conditions
required for existence of solutions to the suggested system of BVPs under the Caratheodory con-
ditions using the technique of measure of noncompactness and degree theory. We also develop
conditions for uniqueness results and also on stability analysis.

1. Introduction

The theory on existence theory of solutions of BVPs for fractional differential
equations, hybrid fractional differential equations and SHFDEs have attracted the at-
tention of many researchers, we refer to [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17,
18, 19, 20] and the reference therein for the recent development in this particular area of
interest. In most of these studies, BVPs with lower order fractional derivatives together
with either constant or linear boundary conditions are considered. However, in many
situations, there are possibilities to have nonlinear conditions at the boundary and the
differential equations may be of higher order involving functions that depend explicitly
on the fractional order derivatives. For example, in case of head flow problems, there
are possibilities to have some source or sink on both the sides of the boundary (at ζ = 0
and ζ = 1) which may be nonlinear functions and a controller at ζ = ζ0 (0 < ζ0 < 1) .
Such situation may have importance in application point of view and also in theoretical
development. The purpose of this paper is to investigate existence results for BVPs
involving nonlinear boundary conditions at both the end, that is, we study the following
class of three point BVPs

cDα
[ cDwζ (t)−∑m

1 Iβihi(t,ζ (t),Dw−1ζ (t))
f1(t,ζ (t),Dw−1ζ (t))

]
= g1(t,z(t), Iγ z(t))),

cDα
[ cDwz(t)−∑m

1 Iβi ki(t,z(t),Dw−1z(t))
f2(t,z(t),Dw−1z(t))

]
= g2(t,ζ (t), Iγ ζ (t)),

cDwζ (0) = 0, ζ (0) = ψ1(z(ζ0)), ζ (1) = ψ2(z(ζ0)),
Dwz(0) = 0, z(0) = φ1(ζ (ζ0)), z(1) = φ2(ζ (ζ0)),

(1)
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where t ∈ I = [0,1] and the parameters are such that 0 < α � 1, 1 < w � 2, 0 <
ζ0 < 1, the functions f j : I×R×R → R−{0} ( j = 1,2), hi, ki : I×R ×R → R

(i = 1,2, . . . .,m) and g j : I×R×R → R satisfy the Caratheodory conditions, and the
boundary functions ψ1, ψ2, φ1, φ2 : R → R are nonlinear. To the best of our knowl-
edge, existence, uniqueness and stability results had never been previously studied for
the above system of BVPs.

Choose Ω a bounded subset of a Banach space E , where E = {x∈C(I) : Dw−1ζ ∈
C(I)} endowed with the norm ‖ζ‖w = sup

0�t�1
|x(t)|+ sup

0�t�1
|Dw−1x| . Clearly, the prod-

uct space E×E is a Banach space under the norm ‖(ζ ,z)‖w = ‖ζ‖w +‖z‖w . We recall
the following definition [16].

DEFINITION 1. The Kuratowski measure of noncompactness μ : Ω → [0,∞) is
defined as

μ(Ω) = in f{d > 0 : Ω ∈ B admits a finite cover by sets of diameter � d },

where B denotes the family of all bounded subsets of E ×E .

We recall from [3] that the Kuratowski measure μ has the property that μ(Ω) = 0
iff Ω is relatively compact. The following theorem is available in [13].

THEOREM 1. Let T : E → E be μ -condensing and

Θ = {ζ ∈ E : ∃ λ ∈ [0,1] such that ζ = λTζ}.

If Θ is a bounded set in E , so there exists r > 0 such that Θ ⊂ Br(0) , then the degree

D(I−λT,Br(0),0) = 1, ∀ λ ∈ [0,1].

Consequently, T has at least one fixed point and the set of the fixed points of T lies in
Br(0) .

2. Existence criteria

Using Lemma 3.1 of [15], the system of BVPs (1) is equivalent to the following
system of integral equations

ζ (t) =
∫ 1

0

( m

∑
1

Kβi
(s,t)hi(s,ζ (s),Dw−1ζ (s))+K0(s,t)Φ1(s,ζ (s),z(s),Dw−1ζ (s))

)
ds

+ tψ2(z(ζ0))+ (1− t)ψ1(z(ζ0)),

z(t) =
∫ 1

0

( m

∑
1

Kβi
(s,t)ki(s,z(s),Dw−1z(s))+K0(s,t)Φ2(s,ζ (s),z(s),Dw−1z(s))

)
ds

+ tφ2(ζ (ζ0))+ (1− t)φ1(ζ (ζ0))
(2)
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where

Φ1(t,ζ (t),z(t),Dw−1ζ (t)) = f1(t,ζ (t),Dw−1ζ (t))Iαg1(t,z(t), Iγ z(t)),

Φ2(t,ζ (t),z(t),Dw−1z(t)) = f2(t,z(t),Dw−1z(t))Iαg2(t,ζ (t), Iγ ζ (t)),
(3)

Kβi
(s, t) =

−1
Γ(w+ βi)

{
t(1− s)w−1+βi; t � s,
t(1− s)w−1+βi − (t− s)w−1+βi; s � t,

K0(s,t) =
−1

Γ(w)

{
t(1− s)w−1; t � s,
t(1− s)w−1− (t− s)w−1; s � t.

Define operators A1, B1, A2, B2 : E → E by

A1(ζ ) =
∫ 1

0

( m

∑
1

Kβi
(s,t)hi(s,ζ (s),Dw−1ζ (s))+K0(s,t)Φ1(s,ζ (s),z(s),Dw−1ζ (s))

)
ds,

A2(z) =
∫ 1

0

( m

∑
1

Kβi
(s,t)ki(s,z(s),Dw−1z(s))+K0(s,t)Φ2(s,ζ (s),z(s),Dw−1z(s))

)
ds,

B1(z) = (1− t)ψ1(z(ζ0))+ tψ2(z(ζ0)), B2(ζ ) = (1− t)φ1(ζ (ζ0))+ tφ2(ζ (ζ0)),
(4)

then (2) can be written as a system of operator equations

ζ (t) = A1ζ (t)+B1z(t), z(t) = A2z(t)+B2ζ (t),t ∈ I

that is,

(ζ ,z) = (A+B)(ζ ,z), (5)

where A(ζ ,z) = (A1ζ ,A2z) , B(ζ ,z) = (B1z,B2ζ ) . Fixed points of the system of op-
erator equations (5) are solutions of the system of BVPs (1). From (4), it follows that

A(w−1)
1 (ζ ) =

∫ 1

0

( m

∑
1

Gβi
(s,t)hi(s,ζ (s),ζ (w−1)(s))

+G0(s,t)Φ1(s,ζ (s),z(s),ζ (w−1)(s))
)
ds,

A(w−1)
2 (z) =

∫ 1

0

( m

∑
1

Gβi
(s,t)ki(s,z(s),z(w−1)(s))

+G0(s,t)Φ2(s,ζ (s),z(s),z(w−1)(s))
)
ds,

B(w−1)
1 (z) =

t2−w

Γ(3−w)
(ψ2(z(ζ0))−ψ1(z(ζ0)),

B(w−1)
2 (ζ ) =

t2−w

Γ(3−w)
(φ2(ζ (ζ0))−φ1(ζ (ζ0)),

(6)

where the notation A(w−1) is used for the fractional derivative Dw−1A and,

Gβi
(s, t) =

−1
Γ(3−w)Γ(w+ βi)

{
t2−w(1− s)w−1+βi; t � s,
t2−w(1− s)w−1+βi − (t− s)βi ; s � t,
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G0(s, t) =
−1

Γ(3−w)Γ(w)

{
t2−w(1− s)w−1; t � s,
t2−w(1− s)w−1−Γw; s � t.

We note that

max
t∈[0,1]

|Kβi
(s, t)| � 1

Γ(w+ βi)
, max

t∈[0,1]
|Gβi

(s,t)| � 1
Γ(3−w)Γ(w+ βi)

,

max
t∈[0,1]

|K0(s, t)| � 1
Γ(w)

, max
t∈[0,1]

|G0(s,t)| � 1
Γ(3−w)Γ(w)

.

(7)

Now, we list the following hypothesis.

(H1) f j : I×R×R → R−{0}, g j : I×R×R → R ( j = 1,2), hi, ki : I×R×R → R

(i = 1,2, . . . .,m) satisfy Caratheodory conditions.

(H2) There exist positive constants k j, λ j ∈ (0,1) and a j, b j such that for l, l1, l2 ∈ E
and j = 1,2, we have

|ψ j(l2)−ψ j(l1)| � k j|l2 − l1|, |ψ j(l)| � a j|l|,
|φ2(l2)−φ2(l1)| � λ j|l2 − l1|, |φ j(l)| � b j|l|.

(H3) There exists continuous functions θi, θ ∗
i : I → R (i = 1,2, . . . ,m) , and positive

constants μ j,ξ ,ρ ( j = 1,2) such that for z ∈ E ,

| f j(t, l(t), l(w−1)(t))| � μ j(|l(t)|+ |l(w−1)(t)|)+ ξ , |g j(t, l(t), Iγ l(t))| � ρ ,

|hi(t, l(t), l(w−1)(t))| � |θi|(|l(t)|+ |l(w−1)(t)|,
|ki(t, l(t), l(w−1)(t))| � |θ ∗

i |(|l(t)|+ |l(w−1)(t)|.

LEMMA 1. Assume that (H2) holds. Then the operator B is μ -Lipschitz with

constant k = κ1 + κ2 , where κ1 = max{k1,k2,λ1,λ2}, κ2 = max{ 2κ1t
2−w

Γ(3−w) , t ∈ I} . Fur-
ther B satisfies the following growth condition

‖B(ζ ,z)‖w � a‖(ζ ,z)‖, (8)

where a = ν1 + ν2 where ν1 = max{a1,a2,b1,b2}, ν2 = max{ 2ν1t
2−w

Γ(3−w) , t ∈ I} .

Proof. For (ζ ,z), (ζ ∗,z∗) ∈ E ×E with ζ < ζ ∗, z < z∗ , we have

|B(ζ ,z)−B(ζ ∗,z∗)| = |(B1z,B2ζ )− (B1z
∗,B2ζ ∗)| = |(B1z−B1z

∗,B2ζ −B2ζ ∗)|.

Now, using the definition (4), we obtain

B1z−B1z
∗ = (1− t)(ψ1(z(ζ0))−ψ1(z∗(ζ0)))+ t(ψ2(z(ζ0))−ψ2(z∗(ζ0))),

B2ζ −B2ζ ∗ = (1− t)(φ1(ζ (ζ0))−φ1(ζ ∗(ζ0)))+ t(φ2(ζ (ζ0))−φ2(ζ ∗(ζ0))).
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Hence, it follows that

|B(ζ ,z)−B(ζ ∗,z∗)| � (1− t)|ψ1(z(ζ0))−ψ1(z∗(ζ0))|+ t|ψ2(z(ζ0))−ψ2(z∗(ζ0))|
+(1− t)|φ1(ζ (ζ0))−φ1(ζ ∗(ζ0))|+ t(φ2(ζ (ζ0))−φ2(ζ ∗(ζ0))|,

which in view of (H2) implies that

|B(ζ ,z)−B(ζ ∗,z∗)| � (tk2 +(1− t)k1)|z− z∗|+(tλ2 +(1− t)λ1)|ζ − ζ ∗|.

Hence, it follows that that

‖B(ζ ,z)−B(ζ ∗,z∗)‖ � κ1‖(ζ ,z)− (ζ ∗,z∗)‖, (9)

where κ1 = max{k1,k2,λ1,λ2} . Further, we have

|B(w−1)(ζ ,z)−B(w−1)(ζ ∗,z∗)| = |B(w−1)
1 z−B(w−1)

1 z∗,B(w−1)
2 ζ −B(w−1)

2 ζ ∗)|. (10)

Using the definition (6), we obtain

B(w−1)
1 (z)−B(w−1)

1 (z∗) =
t2−w[(ψ2(z(ζ0))−ψ2(z∗(ζ0)))+ (ψ1(z∗(ζ0))−ψ1(z(ζ0)))]

Γ(3−w)
,

B(w−1)
2 (ζ )−B(w−1)

2 (ζ ∗) =
t2−w[(φ2(ζ (ζ0))−φ2(ζ ∗(ζ0)))+ (φ1(ζ ∗(ζ0))−φ1(ζ (ζ0)))]

Γ(3−w)
,

which in view of (H2) implies that

|B(w−1)
1 (z)−B(w−1)

1 (z∗)| � t2−w(k1 + k2)
Γ(3−w)

|z(ζ0))− z∗(ζ0))|,

|B(w−1)
2 (ζ )−B(w−1)

2 (ζ ∗)| � t2−w(λ1 + λ2)
Γ(3−w)

|ζ (ζ0))− ζ ∗(ζ0))|.

Therefore, it follows that

|B(w−1)(ζ ,z)−B(w−1)(ζ ∗,z∗)| � 2κ1t2−w

Γ(3−w)
(|ζ (ζ0)− ζ ∗(ζ0)|+ |z(ζ0)− z∗(ζ0)|),

which implies that

‖B(w−1)(ζ ,z)−B(w−1)(ζ ∗,z∗)‖ � κ2‖(ζ ,z)− (ζ ∗,z∗)‖, (11)

where κ2 = max{ 2κ1t
2−w

Γ(3−w) : t ∈ I} . From (9) and (11), it follows that

‖B(ζ ,z)−B(ζ ∗,z∗)‖w � k‖(ζ ,z)− (ζ ∗,z∗)‖, where k = κ1 + κ2. (12)

Hence B is μ−Lipschitz with constant k .
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For the growth condition, choose any (ζ ,z) ∈ E × E and consider |B(ζ ,z)| =
|(B1z,B2ζ )| , which in view of the definition (4) and the hypothesis (H2) implies that

|B1(z)| � t|ψ2(z(ζ0))|+(1− t)|ψ1(z(ζ0))| � (ta2 +(1− t)a1)|z(ζ0)| � ν|z(ζ0)|,
|B2(ζ )| � t|φ2(ζ (ζ0))|+(1− t)|φ1(ζ (ζ0))| � (tb2 +(1− t)b1)|ζ (ζ0)| � ν|ζ (ζ0)|,

where ν = max{a1,a2,b1,b2} . Hence, it follows that

‖B(ζ ,z)‖ � ν‖(ζ ,z)‖. (13)

Further, using (6)and the hypothesis (H2) , we obtain

|B(w−1)
1 (z)| � t2−w

Γ(3−w)
(|ψ1(z(ζ0))|+ |ψ2(z(ζ0))| � 2νt2−w

Γ(3−w)
|z(ζ0)|,

|Bw−1
2 (ζ )| � t2−w

Γ(3−w)
(|φ1(ζ (ζ0))|+ |φ2(ζ (ζ0))| � 2νt2−w

Γ(3−w)
|ζ (ζ0)|,

which implies that

‖Bw−1(ζ ,z)‖ � ν1‖(ζ ,z)‖, (14)

where ν1 = max{ 2νt2−w

Γ(3−w) , t ∈ I} . From (13) and (14), it follows that

‖B(ζ ,z)‖w � a‖ζ ,z‖,
where a = ν + ν1 . �

LEMMA 2. Assume that (H1) and (H3) hold. Then the operator A is μ -Lipschitz
with constant 0 . Further A satisfies the following growth condition

‖A(ζ ,z)‖w � (1+
1

Γ(3−w)
)(b‖(ζ ,z)‖w +d), (15)

where b = ∑m
1

‖θ̂i‖
Γ(w+βi)

+ ρμ
ΓwΓ(α+1) , d = 2ρμξ

ΓwΓ(α+1) , θ̂i = max{θi,θ ∗
i } , and μ = max{μ1,μ2} .

Proof. By (H1) and (4), the continuity of A1 and A2 implies the continuity of
A(ζ ,z) = (A1ζ ,A2z) for each fixed t . For (ζ ,z) ∈ E×E , using the definitions (4) and
(6), we obtain

|A1ζ (t)|+ |A(w−1)
1 ζ (t)| �

∫ 1

0

( m

∑
1

(|Kβi
(s,t)|+ |Gβi

(s, t)|)|hi(s,ζ (s),ζ (w−1)(s))|

+(|K0(s,t)|+ |G0(s,t)|)|Φ1(s,ζ (s),ζ (w−1)(s))|)ds,

which in view of (7) and (H3) implies that

|Aζ (t)|+ |A(w−1)ζ (t)|
�

(
1+

1
Γ(3−w)

)( m

∑
1

|θi|‖ζ‖w

Γ(w+ βi)
+

1
Γ(w)

|Φ1(s,ζ (s),ζ (w−1)(s))|).
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Now, using the definition (3) of Φ1 , we have

|Φ1(t,ζ (t),z(t),ζ (w−1)(t))| = | f1(t,ζ (t),ζ (w−1)(t))|Iα |g1(t,z(t), Iγ z(t))|,

which in view of (H3) implies that

|Φ1(t,ζ (t),z(t),ζw−1(t))| � ρμ1

Γ(α +1)
(‖ζ‖w + ξ ) on E ×E. (16)

Hence it follows that

‖A1ζ (t)‖+‖A(w−1)
1 ζ (t)‖ �

(
1+

1
Γ(3−w)

)( m

∑
1

‖θi‖‖ζ‖w

Γ(w+ βi)
+

ρμ1(‖ζ‖w + ξ )
ΓwΓ(α +1)

)
.

(17)

Similarly, we obtain

‖A2z(t)‖+‖A(w−1)
2 z(t)‖ �

(
1+

1
Γ(3−w)

)( m

∑
1

‖θ ∗
i ‖‖z‖w

Γ(w+ βi)
+

ρμ2(‖z‖w + ξ )
ΓwΓ(α +1)

)
.

(18)

Hence, from (17) and (18) it follows that

‖A(ζ ,z)‖w �
(
1+

1
Γ(3−w)

)( m

∑
1

‖θ̂i‖‖(ζ ,z)‖w

Γ(w+ βi)
+

ρμ(‖(ζ ,z)‖w +2ξ )
ΓwΓ(α +1)

)

=
(
1+

1
Γ(3−w)

)
(b‖(ζ ,z)‖w +d),

(19)

where θ̂i = max{θi,θ ∗
i } , μ = max{μ1,μ2} , b = ∑m

1
‖θ̂i‖

Γ(w+βi)
+ ρμ

ΓwΓ(α+1) , d = 2ρμξ
ΓwΓ(α+1) ,

which implies that A is uniformly bounded on any bounded subset w of E ×E .
For (x,y) ∈ E ×E and t1, t2 ∈ I with t1 < t2 , consider

|A(ζ ,z)t2 −A(ζ ,z)t1| = |(A1(ζ )t2 −A1(ζ )t1,A2(z)t2 −A2(z)t1)|,
|A(w−1)(ζ ,z)t2 −A(w−1)(ζ )t1,A

(w−1)
2 (z)t2 −A(w−1)

2 (z)t1)|.
(20)

Now using (4) and (6), we obtain

|A1(ζ )t2 −A1(ζ )t1|+ |A(w−1)
1 (ζ )t2 −A(w−1)

1 (ζ )t1|

�
∫ 1

0

( m

∑
1

(|Kβi
(s, t2)−Kβi

(s,t1)|+ |Gβi
(s,t2)−Gβi

(s, t1)|)|hi(s,ζ (s),ζ (w−1)(s))|

+(|K0(s, t2)−K0(s,t1)|+ |G0(s,t2)−G0(s,t1)|)|Φ1(s,ζ (s),z(s),ζ (w−1)(s))|)ds,
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which in view of the relations (7), (H3) , (16) and the following relations

σ1(t) =
∫ 1

0
|ΔKβi

(s, t)|ds =

[
(t2 − t1)+ (tw+βi

2 − tw+βi
1 )− (t2− t)w+βi +(t1− t)w+βi)

]
Γ(w+ βi +1)

,

σ2(t) =
∫ 1

0
|ΔK0(s, t)|ds =

1
Γ(w+1)

[
(t2 − t1)+ (tw2 − tw1 )− (t2− t)w +(t1− t)w)

]
,

σ3(t) =
∫ 1

0
|ΔGβi

(s, t)|ds =

[
(t2−w

2 − t2−w
1 )+ tβi+1

2 − tβi+1
1 − (t2− t)βi+1 +(t1− t)βi+1)

]
Γ(3−w)Γ(w+ βi +1)

,

σ4(t) =
∫ 1

0
|ΔG0(s, t)|ds =

1
Γ(3−w)Γ(w+1)

[
t2−ω
2 − t2−w

1

]
,

(21)

where ΔF(s, t) = F(s,t2)−F(s,t2) denotes the difference, yield

‖(A1ζ )t2 − (A1ζ )t1‖w �
m

∑
1

(σ1(t)+ σ3(t))(|θ̂i|‖ζ‖w)+ (σ1(t)+ σ3(t)
ρμ(‖ζ‖w + ξ )

Γ(α +1)
.

(22)

Similarly, we have

‖(A2z)t2 − (A2z)t1‖ �
m

∑
1

(σ1(t)+ σ3(t))(|θ̂i|‖z‖w)+ (σ1(t)+ σ3(t)
ρμ(‖z‖w + ξ )

Γ(α +1)
.

(23)

Hence it follows from (22) and (23) that

‖A(ζ ,z)t2 −A(ζ ,z)t1‖w = ‖(A1ζ )t2 − (A1ζ )t1‖w +‖(A2z)t2 − (A2z)t1‖w

�
m

∑
1

(σ1(t)+ σ3(t))|θ̂i|‖(ζ ,z)‖w +(σ2(t)+ σ4(t))
ρμ

Γ(α +1)
(‖(ζ ,z)‖w +2ξ ).

(24)

From (21), it is clear that σ1(t)→ 0,σ2(t)→ 0,σ3(t)→ 0,σ4(t)→ 0 as t1 → t2 . Hence,
from (24) it follows that ‖A(ζ ,z)t2−A(ζ ,z)t1‖w → 0 as t1 → t2 which implies that A
is equicontinuous and by Arza Ascoli theorem A is compact. Hence, the operator A is
μ -Lipschitz with zero constant. �

THEOREM 2. Assume that (H1)− (H3) hold. Then the system (5) has at least one
solution in E ×E provided that a+(1+ 1

Γ(3−ω) )b < 1 . Moreover, the set of solutions
of (5) is bounded in E ×E .

Proof. By Lemma (1), B is μ -lipschitz with constant k and by Lemma (2), A is
μ -lipschitz with constant 0. Hence A+B is μ -lipschitz with constant k and hence
A+B is μ -condensing. By Theorem (1), the BVPs (1) has at least one solution pro-
vided that the set G = {(ζ ,z)∈E×E : (ζ ,z) = λ (A+B)(ζ ,z),0 < λ < 1} , is bounded.
For (ζ ,z) ∈ G , we have

‖(ζ ,z)‖w = λ (‖A(ζ ,z)‖w +‖B(ζ ,z)‖w),
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which in view of the growth conditions (8) and (15) implies that

‖(ζ ,z)‖w � λ
((

1+
1

Γ(3−w)

)
b+a

)
‖(ζ ,z)‖w + λd

(
1+

1
Γ(3−w)

)
. (25)

Since (1+ 1
Γ(3−w) )b+a < 1, it follows that G is bounded. �

3. Uniqueness and stability of solutions

Assume the following hypothesis

(H4) For (l, l ) ∈ E ×E the following hold:

| f j(t, l(t), l(w−1)(t))−| f j(t, l (t), l
(w−1)

(t))| � μ j(|l(t)− l (t)|+|l(w−1)(t)− l
(w−1)

(t)|),
|hi(t, l(t), l(w−1)(t))−hi(t, l (t), l

(w−1)
(t))| � |θi|(|l− l |+ |l(w−1)− l

(w−1)|),
|ki(t, l(t), l(w−1)(t))− ki(t, l (t), l

(w−1)
(t))| � |θ ∗

i |(|l− l |+ |l(w−1)− l
(w−1)|),

|g(t, l(t),I γ l(t))−g(t, l (t),I γ l (t))| � ρ |l− l |.

THEOREM 3. Assume that (H1)− (H4) hold. Then the system (5) has a unique

solution provided k+(1+ 1
Γ(3−w) )(∑

m
1

‖θ̂i‖
Γ(w+βi)

+ ρμ
ΓwΓ(α+1) ) < 1 .

Proof. For (ζ ,z),(ζ , z) ∈ E ×E , using the definition (4), we have

|A1(ζ )−A1(ζ )| �
∫ 1

0

( m

∑
1
|Kβi

(s,t)||hi(s,ζ ,ζ (w−1))−hi(s,ζ ,ζ
(w−1)

)|

+ |K0(s,t)|Φ1(s,ζ ,z,ζ (w−1))−Φ1(s,ζ ,z,ζ
w−1

)|)ds,

which in view of (7) and (H4) implies that

|A1(x)−A1(x)| �
m

∑
1

|θi|‖ζ − ζ‖w

Γ(w+ βi)
+

1
Γw

|Φ1(s,ζ ,z,ζ (w−1))−Φ1(s,ζ ,z,ζ
(w−1)

)|.
(26)

Using the definition (3) of Φ1 and (H4) , we obtain

|Φ1(t,ζ ,z,ζ (w−1))−Φ1(t,ζ ,z,ζ
(w−1)

)|
� | f1(t,ζ ,ζ (w−1))− f1(t,ζ ,ζ

(w−1)
)||Iαg1(t,z, Iγ z)|

� ρμ1‖ζ − ζ‖w

Γ(α +1)
� ρμ‖ζ − ζ‖w

Γ(α +1)
.

(27)
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Hence, it follows from (26) that

‖A1(ζ )−A1(ζ )‖ �
( m

∑
1

‖θi‖
Γ(w+ βi)

+
ρμ

ΓwΓ(α +1)

)
‖ζ − ζ‖w. (28)

Similarly, we obtain

‖A2(z)−A2(z)‖ �
( m

∑
1

‖θ ∗
i ‖

Γ(w+ βi)
+

ρμ
ΓwΓ(α +1)

)
‖z− z‖w. (29)

Now, using (6), (7), (H4) and (27), we obtain

‖A(ω−1)
1 (ζ )−A(w−1)

1 (ζ )‖ � 1
Γ(3−w)

( m

∑
1

‖θi‖
Γ(w+ βi)

+
ρμ

ΓwΓ(α +1)

)
‖ζ − ζ‖w.

(30)
Similarly, we have

‖A(w−1)
2 (z)−A(w−1)

2 (z)‖ � 1
Γ(3−w)

( m

∑
1

‖θ ∗
i ‖

Γ(w+ βi)
+

ρμ
ΓwΓ(α +1)

)
‖z− z‖w. (31)

From (28), (29), (30) and (31) it follows that

‖A(x,y)−A(ζ , z)‖� (1+
1

Γ(3−w)
)
( m

∑
1

‖θ̂i‖
Γ(w+ βi)

+
ρμ

ΓwΓ(α +1)

)
‖(ζ ,z)−(ζ , z)‖w.

(32)
Hence from (12) and (32), it follows that

‖(A+B)(ζ ,z)− (A+B)(ζ , z )‖w � δ‖(ζ ,z)− (ζ , z)‖w, (33)

where δ = k +(1+ 1
Γ(3−w) )(∑

m
1

‖θ̂i‖
Γ(w+βi)

+ ρμ
ΓwΓ(α+1) ) . Since δ < 1, by Bannach con-

traction principle, the system of BVPs (5) has a unique solution. �

THEOREM 4. Under the assumptions (H2) and (H4) , the fractional order hybrid
differential equation (5) is Hyers-Ulam stable provided that

δ = k+
(
1+

1
Γ(3−w)

)( m

∑
1

‖θ̂i‖
Γ(w+ βi)

+
ρμ

ΓwΓ(α +1)

)
< 1.

Proof. Let ε > 0 be given, (ζ ,z) be a solution of the inequality

‖(ζ ,z)− (A+B)(ζ ,z)‖w < ε,

and (ζ ∗,z∗) be a solution of the following system

(ζ ∗,z∗) = (A+B)(ζ ∗,z∗). (34)
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Hence, it follows that

‖(ζ ,z)− (ζ ∗,z∗)‖w � ‖(ζ ,z)− (A+B)(ζ ,z)‖w +‖(A+B)(ζ ,z)− (ζ ∗,z∗)‖w

� ε +‖(A+B)(ζ ,z)− (A+B)(ζ ∗,z∗)‖w,

‖(ζ ,z)− (ζ ∗,z∗)‖w � ε + δ‖(ζ ,z)− (ζ ∗,z∗)‖w,

hence, it follows that

‖(ζ ,z)− (ζ ∗,z∗)‖w � εζ , where ζ =
1

1− δ
, (35)

which show the stability of the system. �
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