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Abstract. We show that the solution of the third order parameter dependant dynamic boundary
value problem yΔΔΔ = f

(
t,y,yΔ ,yΔΔ,λ

)
, y(t1) = y1, y(t2) = y2, y(t3) = y3 on a general time

scale may be (delta) differentiated with respect to y1, y2, y3, t1, t2, t3, and λ . We show that
the (delta) derivative of the solution solves the third order boundary value problem consisting of
either the variational equation (in the dense case), the dynamic analogue (in the scattered case),
or a modified variational equation in the parameter case with interesting boundary conditions in
all cases.

1. Introduction

Let T be a time scale and consider the third order parameter dependent boundary
value problem

yΔΔΔ = f
(
t,y,yΔ,yΔΔ,λ

)
, t ∈ T, (1.1)

satisfying the boundary conditions

y(t1) = y1, y(t2) = y2, y(t3) = y3, (1.2)

where t1, t2, t3 ∈ T
κ2

with σ(t1) < t2 � σ(t2) < t3 and y1,y2,y3,λ ∈ R .
Under suitable hypotheses for f , we will differentiate the solution of (1.1), (1.2)

with respect to each of y1,y2,y3 , and λ and delta differentiate the solution of (1.1),
(1.2) with respect to each of t1,t2 , and t3 .

A few hypotheses are:

(H1) f (t,d0,d1,d2,λ ) : T×R
4 → R is continuous;

(H2) ∂ f/∂di : T×R
4 → R , i = 0,1,2 are continuous;

(H3) ∂ f/∂λ : T×R
4 → R is continuous;

(H4) solutions of (1.1) extend to all of T .
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DEFINITION 1. The variational equation along a solution y(t) to (1.1) is

zΔΔΔ =
∂ f
∂d0

(
t,y(t),yΔ(t),yΔΔ,λ

)
z+

∂ f
∂d1

(
t,y(t),yΔ(t),yΔΔ,λ

)
zΔ

+
∂ f
∂d2

(
t,y(t),yΔ(t),yΔΔ,λ

)
zΔΔ. (1.3)

An associated nonhomogeneous equation related to the variational equation along
a solution y(t) of (1.1) is

zΔΔΔ =
∂ f
∂d0

(
t,y(t),yΔ(t),yΔΔ,λ

)
z+

∂ f
∂d1

(
t,y(t),yΔ(t),yΔΔ,λ

)
zΔ

+
∂ f
∂d2

(
t,y(t),yΔ(t),yΔΔ,λ

)
zΔΔ +

∂ f
∂λ

(
t,y(t),yΔ(t),yΔΔ,λ

)
. (1.4)

This work is part of a long line of research into the relationship between deriva-
tives of solutions of differential equations and associated variational or variational-like
equations. According to Hartman [9], Peano was the first to investigate the derivative
of a solution to a differential equation. In this foundational work by Hartman, the fo-
cus was on initial value problems, with derivatives taken with respect to the initial data.
Building on this work, Spencer [23] was one of the first to shift to boundary value prob-
lems, followed by Peterson [22] who considered derivatives with respect to boundary
values. These results were then extended by Henderson [10, 11], to include derivatives
with respect to boundary points.

More recent results [7, 8, 16] include work on different types of boundary con-
ditions, including multipoint and integral, with the multipoint case generalized to an
n -th order case in [12, 18]. Relatedly, research has also been done for difference
equations [2, 6, 13, 15, 19], including [20] Lyons’ results on the time scale T = hZ .
Also of influence to this work is the addition of a parameter to the differential equa-
tion and differentiation thereof as seen in [14, 21]. Finally and most pertinent to
this work, Baxter et al. in [1] considered delta derivatives to a second order dy-
namic equation on a general time scale. Now in this paper, the authors show that
the solution of the third order parameter dependant dynamic boundary value problem
yΔΔΔ = f

(
t,y,yΔ,yΔΔ,λ

)
, y(t1) = y1, y(t2) = y2, y(t3) = y3 , on a general time scale,

may be delta differentiated with respect to y1, y2, y3, t1, t2, t3, and λ .
The current paper echos the work of previous authors, using a dense point argu-

ment that follows a typical structure – utilizing a continuous dependence result and a
particular modification of Peano’s Theorem. Where this paper differs is in the use of
the mean value theorem when proving the main result. The mean value theorem on
time scales differs in that it involves two inequalities, which changes the approach in
the proof. Moreover, the consideration of parameter dependence is notable.

The remainder of the paper is arranged as follows. In Section 2, we present a
continuous dependence result for initial value problems and a time scales analogue of
Peano’s Theorem. Section 3 introduces a uniqueness property and establishes continu-
ous dependence for boundary value problems. Finally, in Section 4, we will present the
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main results. We assume throughout this paper that readers are familiar with the basic
concepts and definitions in time scales. For more information on time scales, see the
comprehensive books by Bohner and Peterson, [3, 4].

2. Derivatives of solutions to initial value problems

Consider (1.1) satisfying the initial conditions

y(t0) = c0, yΔ(t0) = c1, yΔΔ(t0) = c2, (2.1)

where t0 ∈ T
κ3

and c0,c1,c2 ∈ R .

An additional hypothesis:

(H5) solutions to (1.1), (2.1) are unique on all of T .

We will denote the unique solution of (1.1), (2.1) by u(t,t0,c0,c1,c2,λ ) . Through-
out this paper, we will refer to solutions of BVPs using y and solutions of IVPs using
u to help with notation even if referring to the same function.

The following continuous dependence result of IVPs will be employed. See [5]
for the proof for the first order IVP. This proof can be easily modified for higher order
problems.

THEOREM 1. Assume conditions (H1) and (H5) hold. Given an interval [a,b]T ,

a point t0 ∈ T
κ2

, λ ∈ R , and ε > 0 , there exists a δ (ε, [a,b]T,t0,c0,c1,c2,λ ) >
0 such that if |c0 − e0| < δ , |c1 − e1| < δ , |c2 − e2| < δ , and |λ − L| < ε then
|u(t,t0,c0,c1,c2,λ )−u(t,t0,e0,e1,e2,L)| < ε for t ∈ [a,b]T and e0,e1,e2,L ∈ R .

The next two theorems are analogues of Peano’s result for differential equations
and may be found in the book by Lakshmikantham et al. [17]. The first involves
differentiation of solutions of (1.1), (2.1) with respect to initial values and the parameter
λ .

THEOREM 2. Assume (H1)–(H2) and (H4)–(H5) hold. Let c0,c1,c2,λ ∈ R and
t0 ∈ T

κ3
. Suppose u(t,t0,c0,c1,c2,λ ) solves (1.1), (2.1). Then:

(a) for i = 0,1,2 , βi(t) := ∂u/∂ci exists and is the solution of (1.3) along u
satisfying the respective initial conditions

β0(t0) = 1, β Δ
0 (t0) = 0, β ΔΔ

0 (t0) = 0;

β1(t0) = 0, β Δ
1 (t0) = 1, β ΔΔ

1 (t0) = 0;

β2(t0) = 0, β Δ
2 (t0) = 0, β ΔΔ

2 (t0) = 1.

(b) if additionally (H3) holds, L(t) := ∂u/∂λ exists and is the solution of (1.4)
along u satisfying the initial conditions

L(t0) = 0, LΔ(t0) = 0, LΔΔ(t0) = 0.
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The following theorem involves differentiation of solutions of (1.1), (2.1) with
respect to initial points.

THEOREM 3. Assume (H1)–(H2) and (H4)–(H5) hold. Let c0,c1,c2,λ ∈ R and
t0 ∈ T

κ3
. Then, γ(t) := uΔto (t,t0,c0,c1,c2,λ ) is the solution of the third order linear

dynamic equation
γΔΔΔ = A0(t)γ +A1(t)γΔ +A2(t)γΔΔ,

satisfying the initial conditions for i = 0,1,2 ,

γΔi
(t0) = −uΔi+1

(t0,σ(t0),c0,c1,c2,λ ),

where

A0(t) =
∫ 1

0

∂ f
∂d0

(
t,su(t,σ(t0),c0,c1,c2,λ )+ (1− s)u(t,t0,c0,c1,c2,λ ),

uΔ(t,t0,c0,c1,c2,λ ),uΔΔ(t,t0,c0,c1,c2,λ )
)
ds,

A1(t) =
∫ 1

0

∂ f
∂d1

(
t,u(t,σ(t0),c0,c1,c2,λ ),suΔ(t, t0,σ(t0),c0,c1,c2,λ )

+ (1− s)uΔ(t,t0,c0,c1,c2,λ ),uΔΔ(t,t0,c0,c1,c2,λ )
)
ds,

A2(t) =
∫ 1

0

∂ f
∂d2

(
t,u(t,σ(t0),c0,c1,c2,λ ),uΔ(t,σ(t0),c0,c1,c2,λ ),

suΔΔ(t,t0,σ(t0),c0,c1,c2,λ )+ (1− s)uΔΔ(t,t0,c0,c1,c2,λ )
)
ds.

Note that if t0 is right-dense, i.e. σ(t0) = t0 , then γΔΔ = A0(t)γ + A1(t)γΔ +
A2(t)γΔΔ is the variational equation, (1.3), for (1.1) along u(t) .

3. Uniqueness and continuous dependence for boundary value problems

We will make one more hypothesis upon (1.1) that will guarantee uniqueness of
solutions to boundary value problems of (1.1). To that end, we need the following
definition.

DEFINITION 2. The function v : T→R is said to have a generalized zero at a∈T

if v(a) = 0 or v(ρ(a))v(a) < 0.

We make two disconjugate-type hypotheses for dynamic equations. The first pro-
vides uniqueness for solutions of (1.1), (1.2), and the second provides uniqueness for
solutions of third order linear dynamic equations:

(H6) suppose y1(t) and y2(t) are solutions of (1.1). If y1(t)− y2(t) has a gener-
alized zero at t1, t2, t3 ∈ T

κ2
with σ(t1) < t2 � σ(t2) < t3 , then y1(t)− y2(t) ≡ 0 on

T .
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(H7) if s(t) is a solution to the linear dynamic equation

sΔΔΔ = M(t)s+N(t)sΔ +P(t)sΔΔ

such that s(t) has a generalized zero at t1,t2,t3 ∈ T
κ2

with σ(t1) < t2 � σ(t2) < t3 ,
then s(t) ≡ 0 on T .

Last, we provide a continuous dependence result with respect to boundary values.
The proof involves an application of the Brouwer theorem on invariance of domain.
See [5] for the proof mechanics.

THEOREM 4. Assume conditions (H1)–(H6). Let y(t) be a solution of (1.1). Also,

let t1, t2, t3 ∈ T
κ2

with σ(t1) < t2 � σ(t2) < t3 and y1,y2,y3,λ ∈ R . If for i = 1,2,3 ,

|ti − si| < δ for si ∈ T
κ2

, σ(s1) < s2 � σ(s2) < s3 , for i = 1,2,3 , |yi − xi| < δ for
xi ∈R , and |λ −L|< δ , then there exists a δ > 0 such that the boundary value problem
for (1.1) satisfying

w(s1) = x1, w(s2) = x2, w(s3) = x3

has a unique solution w(t,s1,s2,s3,x1,x2,x3,L) . Moreover, as δ → 0 , this solution
converges uniformly to y(t) on T .

4. Main results: Derivatives of solutions to boundary value problems

The first two theorems are BVP analogues of Theorem 2 which consider bound-
ary values and the parameter respectively. The proofs of these theorems are similar.
Therefore, only the parameter case is shown in detail.

THEOREM 5. Assume conditions (H1)–(H7) are satisfied. Suppose that the func-
tion y(t, t1, t2, t3,y1,y2,y3,λ ) is a solution of (1.1), (1.2) on T where t1,t2, t3 ∈ T

κ2

with σ(t1) < t2 � σ(t2) < t3 and y1,y2,y3,λ ∈ R . Then, for i = 1,2,3 , zi := ∂y/∂yi

exists on T and is the solution of (1.3) along y(t) that satisfies the respective boundary
conditions

z1(t1) = 1, z1(t2) = 0, z1(t3) = 0;

z2(t1) = 0, z2(t2) = 1, z2(t3) = 0;

z3(t1) = 0, z3(t2) = 0, z3(t3) = 1.

THEOREM 6. Assume conditions (H1)–(H7) are satisfied. Suppose that the func-
tion y(t, t1, t2, t3,y1,y2,y3,λ ) is a solution of (1.1), (1.2) on T where t1,t2, t3 ∈ T

κ2

with σ(t1) < t2 � σ(t2) < t3 and y1,y2,y3,λ ∈ R . Then, Λ := ∂y/∂λ exists on T and
is the solution of (1.4) along y(t) that satisfies the boundary conditions

Λ(t1) = 0, Λ(t2) = 0, Λ(t3) = 0.
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Proof. Let δ > 0 from Theorem 4 and 0 < |h|< δ . Define the difference quotient

Λh(t) =
1
h
[y(t,λ +h)− y(t,λ )].

For notational purposes, we suppress the boundary data as it is fixed, i.e. y(t,λ ) :=
y(t,t1, t2, t3,y1,y2,y3,λ ) . With that in mind, we consider the boundary conditions for
Λh . When h �= 0 and for i = 1,2,3,

Λh(ti) =
1
h
[y(ti,λ +h)− y(ti,λ )] =

1
h
[yi − yi] = 0.

We now treat the boundary value problem as an initial value problem at the point
t1 . To that end, let

μ1 = yΔ(t1,λ ), μ2 = yΔΔ(t1,λ ),

ν1 = yΔ(t1,λ +h)− μ1, ν2 = yΔΔ(t1,λ +h)− μ2.

As a result, we can denote the BVP solution y(t,t1,t2,t3,y1,y2,y3,λ ) by the IVP
solution u(t, t1,y1,μ1,μ2,λ ) , and the difference quotient by

Λh(t) ≡ 1
h

[
u(t,t1,y1,μ1 + ν1,μ2 + ν2,λ +h)−u(t,t1,y1,μ1,μ2,λ )

]
.

By Theorem 4, we have that as h → 0, then ν1,ν2 → 0. Now, utilizing two
telescoping sums, we obtain

Λh(t) =
1
h

[
u(t, t1,y1,μ1 + ν1,μ2 + ν2,λ +h)−u(t, t1,y1,μ1 + ν1,μ2 + ν2,λ )

+u(t, t1,y1,μ1 + ν1,μ2 + ν2,λ )−u(t,t1,y1,μ1,μ2 + ν2,λ )

+u(t, t1,y1,μ1,μ2 + ν2,λ )−u(t,t1,y1,μ1,μ2,λ )
]
.

We apply the mean value theorem three times to get

Λh(t) =
1
h

[
∂u
∂λ

(
t,u(t,t1,y1,μ1 + ν1,μ2 + ν2,λ + h)

)
(λ +h−λ )

+
∂u

∂ μ1

(
t,u(t,t1,y1,μ1 + ν1,μ2 + ν2,λ )

)
(μ1 + ν1− μ1)

+
∂u

∂ μ2

(
t,u(t,t1,y1,μ1,μ2 + ν2,λ )

)
(μ2 + ν2− μ2)

]
.

Write each partial derivative using the notation from Theorem 2, giving us

Λh(t) = L
(
t,u(t,t1,y1,μ1 + ν1,μ2 + ν2,λ + h)

)

+
ν1

h
β1

(
t,u(t,t1,y1,μ1 + ν1,μ2 + ν2,λ )

)

+
ν2

h
β2

(
t,u(t,t1,y1,μ1,μ2 + ν2,λ )

)
,
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where h ∈ (−h,h) , ν1 ∈ (−ν1,ν1) , and ν2 ∈ (−ν2,ν2) . Additionally, L(t,u(·)) solves
(1.4) and β1(t,u(·)) and β2(t,u(·)) are solutions to (1.3) along their respective u(·) .
We continually suppress the components of u to ease the notation. To show that
limh→0 Λh(t) exists, we need to show that limh→0

ν1
h and limh→0

ν2
h exist.

Recall that Λh(t2) = 0 and Λh(t3) = 0. Therefore, we have

0 = L(t2,u(·))+
ν1

h
β1(t2,u(·))+

ν2

h
β2(t2,u(·))

0 = L(t3,u(·))+
ν1

h
β1(t3,u(·))+

ν2

h
β2(t3,u(·))

which we can rewrite in matrix-vector form
[−L(t2,u(·))
−L(t3,u(·))

]
=

[
β1(t2,u(·)) β2(t2,u(·))
β1(t3,u(·)) β2(t3,u(·))

][
ν1/h
ν2/h

]
,

where we define −Lh = Bhνh for shorthand.
Now, consider the matrix B defined along the solution u(t)

B =
[

β1(t2,u(t)) β2(t2,u(t))
β1(t3,u(t)) β2(t3,u(t))

]
.

By continuous dependence, if matrix B has an inverse, then matrix Bh also has an
inverse.

For contradiction, assume that B is not invertible. If this is true, there exists c1 �= 0
and c2 �= 0 in ∈ R such that

c1

[
β1(t2,u(t))
β1(t3,u(t))

]
+ c2

[
β2(t2,u(t))
β2(t3,u(t))

]
=

[
0
0

]
.

Define p(t) := c1β1(t,u(t))+ c2β2(t,u(t)) , which solves (1.3). Therefore,

p(t1) = c1β1(t1,u(t))+ c2β2(t1,u(t)) = c1(0)+ c2(0) = 0,

p(t2) = c1β1(t2,u(t))+ c2β2(t2,u(t)) = 0,

p(t3) = c1β1(t3,u(t))+ c2β2(t3,u(t)) = 0.

Since p(t1) = p(t2) = p(t3) = 0, by condition (H7), p(t) ≡ 0. However, by The-
orem 2,

pΔ(t1) = c1β Δ
1 (t1,u(t))+ c2pβ Δ

2 (t1,u(t)) = c1(1)+ c2(0) = c1 �= 0.

Thus, p(t) �≡ 0. Therefore, B is invertible. Subsequently, Bh is invertible. Therefore,
�νh = −B−1

h
�Lh . Now, define

[
n1

n2

]
= lim

h→0
�νh = lim

h→0

[
ν1/h
ν2/h

]
= lim

h→0
[A−1

h
�Lh] = A−1�L.
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With this, we now have

Λ(t) = lim
h→0

Λh(t)

= lim
h→0

[
L(t,u(·))+

ν1

h
β1(t,u(·))+

ν2

h
β2(t,u(·))

]

= L(t,y(t))+n1β1(t,y(t))+n2β2(t,y(t)),

which solves (1.4). Also note,

Λ(t1) = lim
h→0

Λh(t1) = 0, Λ(t2) = lim
h→0

Λh(t2) = 0, Λ(t3) = lim
h→0

Λh(t3) = 0. �

The third result deals with delta differentiation of the solution y(t) of (1.1), (1.2)
with respect to the boundary points. Since the boundary points could be dense or scat-
tered, we will have to consider both cases separately in the proof.

THEOREM 7. Assume conditions (H1)–(H7) hold. Let y(t,t1,t2,t3,y1,y2,y3,λ ) be

a solution of (1.1), (1.2) on T , where t1,t2,t3 ∈ T
κ2

with σ(t1) < t2 � σ(t2) < t3 and
y1,y2,y3,λ ∈ R . Then, for i = 1,2,3 , νi := yΔti (t,t1,t2,t3,y1,y2,y3,λ ) is a solution of
the linear dynamic equation

νΔΔΔ
i = A0i(t)νi +A1i(t)νΔ

i +A2iνΔΔ
i ,

where

A0i(t) =
∫ 1

0

∂ f
∂d0

(
t,sy(t,σ(ti))+ (1− s)y(t,ti),yΔ(t,σ(ti)),yΔΔ(t,σ(ti))

)
ds,

A1i(t) =
∫ 1

0

∂ f
∂d1

(
t,y(t,ti),syΔ(t,σ(ti))+ (1− s)yΔ(t,ti),yΔΔ(t,σ(ti))

)
ds,

A2i(t) =
∫ 1

0

∂ f
∂d2

(
t,y(t,ti),yΔ(t,ti),syΔΔ(t,σ(ti))+ (1− s)yΔΔ(t,ti)

)
,ds

with respective boundary conditions

ν1(t1) = −yΔ(t1,σ(t1),t2,t3,y1,y2,y3,λ ), ν1(t2) = 0, ν1(t3) = 0;

ν2(t1) = 0, ν2(t2) = −yΔ(t2,t1,σ(t2),t3,y1,y2,y3,λ ), ν2(t3) = 0;

ν3(t1) = 0, ν3(t2) = 0, ν3(t2) = −yΔ(t3,t1,t2,σ(t3),y1,y2,y3,λ ).

Proof. The proof will only present ν1(t) as ν2(t) and ν3(t) are similar. As t2 , t3 ,
y1 , y2 , y3 , and λ are fixed in this case, we denote y(t,t1,t2,t3,y1,y2,y3,λ ) by y(t,t1)
and consider two cases; t1 is right-scattered and t1 is right-dense.

Case 1: Assume t1 < σ(t1) , i.e. t1 is right-scattered.
First, we show that ν1(t) = yΔt1 (t,t1) is a solution of the linear dynamic equation

νΔΔΔ
1 = A01ν1 +A11νΔ

1 +A21νΔΔ
1 with the stated boundary conditions.
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Checking the boundary conditions and using a telescoping sum, we see that

ν1(t1) = yΔt1 (t1,t1)

=
1

μ(t1)
[y(t1,σ(t1))− y(t1,t1)]

=
1

μ(t1)
[y(t1,σ(t1))− y(σ(t1),σ(t1))+ y(σ(t1),σ(t1))− y1]

= −yΔ(t1,σ(t1))+
1

μ(t1)
[y1− y1]

= −yΔ(t1,σ(t1)),

and for i = 2,3,

ν1(ti) = yΔt1 (ti,t1) =
1

μ(t1)
[y(ti,σ(t1))− y(ti,t1)] =

1
μ(t1)

[yi − yi] = 0.

Now, we show ν1 solves the dynamic equation. Notice

νΔΔΔ
1 =

[
yΔt1 (t,t1)

]ΔΔΔ

=
1

μ(t1)

[
yΔΔΔ(t,σ(t1))− yΔΔΔ(t,t1)

]

=
1

μ(t1)

[
f
(
t,y(t,σ(t1)),yΔ(t,σ(t1)),yΔΔ(t,σ(t1))

)

− f
(
t,y(t,t1),yΔ(t,t1),yΔΔ(t,t1)

)]
.

We then apply two telescoping sums,

νΔΔΔ
1 =

1
μ(t1)

[
f
(
t,y(t,σ(t1)),yΔ(t,σ(t1)),yΔΔ(t,σ(t1))

)

− f
(
t,y(t, t1),yΔ(t,σ(t1)),yΔΔ(t,σ(t1))

)

+ f
(
t,y(t, t1),yΔ(t,σ(t1)),yΔΔ(t,σ(t1))

)
− f

(
t,y(t,t1),yΔ(t,t1),yΔΔ(t,σ(t1))

)

+ f
(
t,y(t, t1),yΔ(t,t1),yΔΔ(t,σ(t1))

)
− f

(
t,y(t,t1),yΔ(t,t1),yΔΔ(t,t1)

)]
.

Then, using the fundamental theorem of calculus we can write,

νΔΔΔ
1 =

1
μ(t1)

∫ 1

0

d f
ds

(
t,sy(t,σ(t1))+ (1− s)y(t,t1),yΔ(t,σ(t1),yΔΔ(t,σ(t1))

)
ds

+
1

μ(t1)

∫ 1

0

d f
ds

(
(t,y(t,t1),syΔ(t,σ(t1))+ (1− s)yΔ(t, t1),yΔΔ(t,σ(t1))

)
ds

+
1

μ(t1)

∫ 1

0

d f
ds

(
t,y(t,t1),yΔ(t,t1),syΔΔ(t,σ(t1))+ (1− s)yΔΔ(t,t1)

)
ds.
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Finally, applying the mean value theorem

νΔΔΔ
1 =

∫ 1

0

∂ f
∂d0

(
t,sy(t,σ(t1))+ (1− s)y(t,t1),yΔ(t,σ(t1),yΔΔ(t,σ(t1))

)
ds

×
(

y(t,σ(t1))− y(t,t1)
μ(t1)

)

+
∫ 1

0

∂ f
∂d1

(
t,y(t,t1),syΔ(t,σ(t1))+ (1− s)yΔ(t,t1),yΔΔ(t,σ(t1))

)
ds

×
(

yΔ(t,σ(t1))− yΔ(t,t1)
μ(t1)

)

+
∫ 1

0

∂ f
∂d2

(
t,y(t,t1),yΔ(t,t1),syΔΔ(t,σ(t1))+ (1− s)yΔΔ(t, t1)

)
ds

×
(

yΔΔ(t,σ(t1))− yΔΔ(t,t1)
μ(t1)

)

= A01ν1 +A11νΔ
1 +A21νΔΔ

1 .

Case 2: Assume t1 = σ(t1) i.e. t1 is right-dense.
First, notice that in this case,

νΔΔΔ
1 = A01(t)ν1 +A11(t)νΔΔ

1 +A21(t)νΔ
1

is the variational equation (1.3) along y(t) . Because t1 = σ(t1) , t1 is right-dense in T

and so for any δ > 0, card(t1−δ ,t1 +δ ) = ∞ . Choose δ as in Theorem 4 and for each
0 �= t1 +h ∈ (t1− δ , t1 + δ )T , define

ν1h(t) =
1
h
[y(t,t1 +h)− y(t,t1)].

First, note that

v1h(t1) =
1
h
[y(t1,t1 +h)− y(t1,t1)]

=
1
[
y(t1,t1 +h)− y(t1 +h,t1 +h)+ y(t1 +h,t1 +h)− y(t1,t1)]

=
1
h
[y(t1,t1 +h)− y(t1 +h,t1 +h)+ y1− y1]

=
1
h
[y(t1,t1 +h)− y(t1 +h,t1 +h)],

and for i = 2,3,

v1h(ti) =
1
h
[y(ti,t1 +h)− y(ti,t1)] =

1
h
[yi − yi] = 0.

Now, view y(t) as a solution of an initial value problem at the initial point t1 . Let

μ1 = yΔ(t1,t1), μ2 = yΔΔ(t1, t1),
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ε1 = yΔ(t1,t1 +h)− μ1, ε2 = yΔΔ(t1,t1 +h)− μ2.

Notice that by continuous dependence, as t1 + h → t1 , then ε1,ε2 → 0. Thus, our
solution y(t) may be written using initial value problem notation u(t, t1,y1,μ1,μ2) .
Therefore, in terms of u and two telescoping sums, we have

ν1h(t) =
1
h

[
u(t,t1 +h,y1,μ1 + ε1,μ2 + ε2)−u(t,t1,y1,μ1,μ2)

]

=
1
h

[
u(t,t1 +h,y1,μ1 + ε1,μ2 + ε2)−u(t,t1,y1,μ1 + ε1,μ2 + ε2)

+u(t,t1,y1,μ1 + ε1,μ2 + ε2)−u(t,t1,y1,μ1,μ2 + ε2)

+u(t,t1,y1,μ1,μ2 + ε2)−u(t,t1,y1,μ1,μ2)
]
.

By the mean value theorem on time scales, see [4, page 5], there exists 0 �= t1 +
τh,t1 + ξh ∈ (t1−h, t1 +h)T such that

γ(t,u(t, t1 + τh,y1,μ1 + ε1,μ2 + ε2))(t1 +h− t1)
� u(t, t1 +h,y1,μ1 + ε1,μ2 + ε2)−u(t,t1,y1,μ1 + ε1,μ2 + ε2)
� γ(t,u(t,t1 + ξh,y1,μ1 + ε1,μ2 + ε2))(t1 +h− t1),

where γ is as defined in Theorem 3.
By the standard mean value theorem, there exist an 0 �= ε1 ∈ (−ε1,ε1) such that

u(t, t1,y1,μ1 + ε1,μ2 + ε2)−u(t,t1,y1,μ1,μ2 + ε2)
= β1(t,u(t,t1,y1,μ1 + ε1,μ2 + ε2))(μ1 + ε1− μ1),

and an 0 �= ε2 ∈ (−ε2,ε2) such that

u(t, t1,y1,μ1,μ2 + ε2)−u(t,t1,y1,μ1,μ2)
= β2(t,u(t,t1,y1,μ1,μ2 + ε2))(μ2 + ε2− μ2),

where β1,β2 are as defined in Theorem 2.
Combining the above together and suppressing the respective function compo-

nents, we have

γτ(t,u(·))+
ε1

h
β1(t,u(·))+

ε2

h
β2(t,u(·)) � ν1h(t)

� γξ (t,u(·))+
ε1

h
β1(t,u(·))+

ε2

h
β2(t,u(·)).

Since ν1h(t2) = ν1h(t3) = 0,

γτ(t2,u(·))+
ε1

h
β1(t2,u(·))+

ε2

h
β2(t2,u(·)) � 0

� γξ (t2,u(·))+
ε1

h
β1(t2,u(·))+

ε2

h
β2(t2,u(·)),

γτ(t3,u(·))+
ε1

h
β1(t3,u(·))+

ε2

h
β2(t3,u(·)) � 0

� γξ (t3,u(·))+
ε1

h
β1(t3,u(·))+

ε2

h
β2(t3,u(·)).
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We write this in matrix form with inequalities. However, here, the inequalities are
component-wise.

[
γτ(t2,u(·))
γτ(t3,u(·))

]
+

[
β1(t2,u(·)) β2(t2,u(·))
β1(t3,u(·)) β2(t3,u(·))

][
ε1/h
ε2/h

]
�

[
0
0

]

�
[

γξ (t2,u(·))
γξ (t3,u(·))

]
+

[
β1(t2,u(·)) β2(t2,u(·))
β1(t3,u(·)) β2(t3,u(·))

][
ε1/h
ε2/h

]
.

Thus,
[

γτ(t2,u(·))
γτ(t3,u(·))

]
�

[
β1(t2,u(·)) β2(t2,u(·))
β1(t3,u(·)) β2(t3,u(·))

][
ε1/h
ε2/h

]
�

[
γξ (t2,u(·))
γξ (t3,u(·))

]
,

or more succinctly, and recalling that the inequalities are component-wise,

Γτ � BhEh � Γξ .

To solve for Eh , we want to show that B−1
h exists. Therefore, we investigate the

matrix along the u(t) :

B =
[

β1(t2,u(t)) β2(t2,u(t))
β1(t3,u(t)) β2(t3,u(t))

]
.

By continuous dependence, if B−1 exists, then so does B−1
h .

For contradiction, assume that B is not invertible. Then, there exist coefficients
c1 �= 0 and c2 �= in R such that

c1

[
β1(t2,u(t))
β1(t3,u(t))

]
+ c2

[
β2(t2,u(t))
β2(t3,u(t))

]
=

[
0
0

]
.

Set p(t)= c1β1(t,u(t))+c2β2(t,u(t)) . Therefore, p(t) solves (1.3) as it is a linear
combination of solutions β1 and β2 . We know that

p(t1) = c1β1(t1,u(t))+ c2β2(t1,u(t)) = c1(0)+ c2(0) = 0,

p(t2) = c1β1(t2,u(t))+ c2β2(t2,u(t)) = 0,

p(t3) = c1β1(t3,u(t))+ c2β2(t3,u(t)) = 0.

Thus, by (H7), p(t) ≡ 0. However,

pΔ(t1) = c1β Δ
1 (t1,u(t))+ c2β Δ

2 (t1,u(t)) = c1(1)+ c2(0) = c1 �= 0.

Thus, B is invertible, and so B−1
h exists.

Solving the component-wise matrix inequality yields

min{B−1
h Γτ ,B

−1
h Γξ } � Eh � max{B−1

h Γτ ,B
−1
h Γξ }.

By the squeeze theorem, we have

E = lim
t1+h→t1

Eh = B−1Γ,
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or after direct calculation,

e1 = lim
t1+h→t1

ε1

h
=

β2(t3,y(t))γ(t2,y(t))−β2(t2,y(t))γ(t3,y(t))
β1(t2,y(t))β2(t3,y(t))−β1(t3,y(t))β2(t2,y(t))

,

e2 = lim
t1+h→t1

ε2

h
=

β1(t2,y(t))γ(t3,y(t))−β1(t3,y(t))γ(t2,y(t))
β1(t2,y(t))β2(t3,y(t))−β1(t3,y(t))β2(t2,y(t))

.

Piecing everything together,

ν(t) = lim
t1+h→t1

ν1h(t) = γ(t,y(t))+ e1β1(t,y(t))+ e2β2(t,y(t)),

which solves the variational equation along y(t) .
Finally, checking the boundary conditions gives us:

ν1(t1) = lim
t1+h→t1

ν1h(t) = lim
t1+h→t1

1
h
[y(t1,t1 +h)− y(t1 +h,t1 +h)] = −yΔ(t1,t1),

ν1(t2) = lim
t1+h→t1

ν1h(t) = lim
t1+h→t1

0 = 0,

ν1(t3) = lim
t1+h→t1

ν1h(t) = lim
t1+h→t1

0 = 0. �
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