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A FOURTH–ORDER ITERATIVE BOUNDARY VALUE

PROBLEM WITH LIDSTONE BOUNDARY CONDITIONS

ERIC R. KAUFMANN

Abstract. Let m � 2 and a > 0 . We consider the existence and uniqueness of solutions to the
fourth-order iterative boundary value problem

x(4)(t) = f (t,x(t),x[2] (t), . . . ,x[m] (t)), −a � t � a,

with solutions satisfying Lidstone boundary conditions x(−a) = x(a) = 0 , x′′(−a) = x′′(a) =
0 . Here the iterative functions are defined by x[2](t) = x(x(t)) and for j = 3, . . .m,x[ j] (t) =
x(x[ j−1](t)) . The main tool employed to establish our results is the Schauder fixed point theorem.
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