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Abstract. Let m � 2 and a > 0 . We consider the existence and uniqueness of solutions to the
fourth-order iterative boundary value problem

x(4)(t) = f (t,x(t),x[2] (t), . . . ,x[m] (t)), −a � t � a,

with solutions satisfying Lidstone boundary conditions x(−a) = x(a) = 0 , x′′(−a) = x′′(a) =
0 . Here the iterative functions are defined by x[2](t) = x(x(t)) and for j = 3, . . .m,x[ j] (t) =
x(x[ j−1](t)) . The main tool employed to establish our results is the Schauder fixed point theorem.

1. Introduction

Let a > 0. In this paper we consider the existence and uniqueness of solutions of
the fourth-order boundary value problem,

x(4)(t) = f (t,x(t),x[2](t), . . . ,x[m](t)), −a < t < a, (1)

x(−a) = x(a) = 0, (2)

x′′(−a) = x′′(a) = 0, (3)

where m � 2. The iterative function values are defined by x[2](t) = x(x(t)) and for
j = 3, . . . ,m , by x[ j](t) = x(x[ j−1](t)) .

Throughout the paper we assume that f : [−a,a]×R
m+1 → R is continuous. We

will propose further growth conditions on the function f later in the paper as needed.
To the best of our knowledge, this is the first paper to consider fourth-order iterative
boundary value problems.

The study of iterative differential equations can be traced back to the works of
Eder [6] and Petuhov [13]. In 1965 Petuhov [13] considered the existence of solu-
tions to the functional differential equation x′′(t) = λx(x(t)) under the conditions that
x maps the interval [−T,T ] onto itself and that x(0) = x(T ) = α . Eder [6] consid-
ered the existence, uniqueness, and analyticity of solutions of the first order problem
x′(t) = x(x(t)) . Wang [15], in 1990, used Schauder’s fixed point theorem to obtain a
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solution of x′ = f (x(x(t))) , x(a) = a . In 1993, Fečkan [10] used the Contraction Map-
ping Principle to establish the existence of solutions for the initial value problem for
the iterative differential equation x′(t) = f (x(x(t))) , x(0) = 0. More recently, Kauf-
mann [11] used Schauder’s fixed point theorem and the Contraction Mapping Principle
to show the existence and uniqueness of solutions of the second order boundary value
problems x′′(t) = f (t,x(t) , x[2](t)) , x(a) = a , x(b) = b and x′′(t) = f (t,x(t),x[2](t)) ,
x(a) = b , x(b) = a . Cheraiet, et. al. [2] in 2021 studied the nonlocal third-order differ-
ential iterative differential equation x′′′(t)+ f (x[0](t),x[1](t), . . . ,x[n](t)) = 0, x(0) = 0,
x′′(0) = 0, α

∫ η
0 x(t)dt = x(T ) . For more on iterative differential equations see the

papers [12], [14], [15], [17], [18] and references therein.
The study of boundary value problems with Lidstone boundary conditions also

has a rich history. Davis and Henderson [5] used shooting methods to obtain the exis-
tence of solutions for y(4) = f (x,y,y′,y′′,y′′′) with solutions satisfying Lidstone bound-
ary conditions of the form, y(x1) = y1 , y′′(x2) = y2 , y′′(x3) = y3 , y(x4) = y4 , where
x1 � x2 � x3 � x4 . In [3], Davis, Eloe, and Henderson considered the existence of
triple positive solutions of y(2m)(t) = f (y(t), . . . ,y(2 j)(t), . . . ,y(2(m−1))(t)) , 0 � t � 1,
y(2i)(0) = 0 = y(2i)(1) , 0 � i � m− 1. In [9], Eloe used cone theoretic techniques to
establish the existence of positive solutions of the Lidstone boundary value problem
y(2m)(t) = λa(t) f (y(t), . . . ,y(2 j)(t), . . . ,y2(m−1)(t)) , 0 < t < 1, y(2i)(0) = 0 = y(2i)(1) .
See the papers [4], [7], [8], and references therein for more information about Lidstone
boundary value problems.

The remainder of the paper is organized as follows. In section 2 we present pre-
liminary material needed to prove our results. In particular, we transform the boundary
value problem into a an integral equation. We also state a necessary condition concern-
ing the norm of the difference of two iterative functions as well as Schauder’s fixed
point theorem. In section 3 we present our main theorems. The first result gives suffi-
cient conditions for the existence of solutions of (1), (2), (3). Our second result gives an
alternative inequality under which there exists a solution to the boundary value problem.
By sharpening the inequality, solutions are shown to be unique.

2. Preliminaries

We begin this section by converting the boundary value problem (1), (2), (3), into
an integral equation and stating properties of the kernel that will be used in the sequel.

The Green’s function G1(t,s) associated with the second-order boundary value
problem

−y′′ = 0,

y(−a) = y(a) = 0,

is

G1(t,s) =
1
2a

{
(a− s)(t +a), −a � t � s � a,
(s+a)(a− t), −a � s � t � a.

Note that (a− s)(t + a),−a � t � s � a, is positive and increasing as a function of t .
Hence, 0 � (a−s)(t +a) � (a−s)(s+a) for all −a � t � s . Similarly 0 � (s+a)(a−
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t) � (s+a)(a− s) , for all s � t � a . Thus,

0 � G1(t,s) � G(s,s) =
1
2a

(a2− s2).

Since maxs∈[−a,a]
1
2a(a2− s2) = a

2 , then 0 � G1(t,s) � a
2 , for all t,s ∈ [−a,a] .

The Green’s function G(t,s) associated with

x(4) = 0,

x(−a) = x(a) = 0,

x′′(−a) = x′′(a) = 0,

is

G(t,s) =
∫ a

−a
G1(t,r)G1(r,s)dr.

See [7] and [16] for details. From G1(t,s) � a/2 we see that,

G(t,s) �
∫ a

−a

(a
2

)2
ds =

a3

2
.

So, if x is a solution of (1), (2), (3), then x satisfies the integral equation

x(t) =
∫ a

−a
G(t,s) f (s,x(s),x[2](s), . . . ,x[m](s))ds. (4)

It can be shown that if x ∈C[−a,a] satisfies −a � x(t) � a for all t ∈ [−a,a] and the
integral equation (4), then x is a solution of the boundary value problem (1), (2), (3).
The following lemma holds.

LEMMA 2.1. The function x is a solution of (1), (2), (3) if and only if −a �
x(t) � a, t ∈ [−a,a], and x is a fixed point of (4).

For our Banach space, we let Φ = (C[−a,a],‖ · ‖), where the norm is given by
‖x‖ = maxt∈[−a,a] |x(t)| . In view of Lemma 2.1, we seek a fixed point of the operator
T : Φ → Φ defined by

(Tx)(t) =
∫ a

−a
G(t,s) f (s,x(s),x[2](s), . . . ,x[m](s))ds. (5)

When we consider the uniqueness of solutions, we will have need of the set

Φ(K,M) = {x ∈ Φ : ‖x‖ � K and |x(t2)− x(t1)| � M|t2 − t1|,t1,t2 ∈ [−a,a]}, (6)

as well as the following lemma (see [14] and [17]).

LEMMA 2.2. If x,y ∈ Φ(K,M) then∣∣∣x[m](t1)− x[m](t2)
∣∣∣ � Mm|t1 − t2|, m = 0,1,2, . . . (7)
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for all t1, t2 ∈ [−a,a] and

‖x[m] − y[m]‖ �
m−1

∑
j=0

M j‖x− y‖, m = 1,2,3, . . . . (8)

Proof. The inequality (7) follows by first noting that∣∣∣x[2](t1)− x[2](t2)
∣∣∣ = |x(x(t1))− x(x(t2))|
= |x(s1)− x(s2)|
� M|s1 − s2| � M2|t1 − t2|,

and then proceeding by induction.
To show that the inequality (8) is valid, we first note that if x,y ∈ Φ(K,M) , then

‖x− y‖� M0‖x− y‖ . Now, suppose that (8) holds for some integer m . That is, for this
integer m ,

‖x[m] − y[m]‖ �
m−1

∑
j=0

M j‖x− y‖.

For all t ∈ [−a,a] we have,∣∣∣x[m+1](t)− y[m+1](t)
∣∣∣ �

∣∣∣x(x[m](t))− x(y[m](t))
∣∣∣+ ∣∣∣x(y[m](t))− y(y[m](t))

∣∣∣
� |x(s1)− x(s2)|+‖x− y‖
� M|s1 − s2|+‖x− y‖
= M|x[m](t)− y[m](t)|+‖x− y‖
� M‖x[m] − y[m]‖+‖x− y‖

� M
m−1

∑
j=0

M j‖x− y‖+‖x− y‖ =
m

∑
j=0

M j‖x− y‖.

Hence ‖x[m] − y[m]‖ � ∑m−1
j=0 M j‖x− y‖ implies ‖x[m+1] − y[m+1]‖ � ∑m

j=0 M j‖x− y‖
and (8) follows. �

We end this section by stating Schauder’s fixed point theorem [1].

THEOREM 2.3. (Schauder) Let A be a nonempty compact convex subset of a
Banach space and let T : A → A be continuous. Then T has a fixed point in A.

3. Existence and uniqueness of solutions

We state and prove our main results in this section as well as provide examples.
Let T :C[−a,a]→C[−a,a] be defined by (5). In order for the solution of the boundary
value problem to be well-defined we need the range of Tx to be bounded. In particular,
we need −a � (Tx)(t) � a for all t ∈ [−a,a] . For our first result we will assume the
following condition.
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(H1) There exists α ∈ L[−a,a] such that | f (t,y1,y2, . . . ,ym+1)| � α(t) for all t ∈
[−a,a] and yi ∈ R , i = 1,2, . . . ,m+1.

THEOREM 3.1. Suppose that condition (H1) holds. Assume that

a2

2

∫ a

−a
α(s)ds � 1.

Then there exists a solution of the boundary value problem (1), (2), (3).

Proof. Consider the convex set Φa = {x ∈ Φ : ‖x‖ � a} . Since |G(t,s)| � a3

2 , we
have

|(Tx)(t)| �
∫ a

−a
|G(t,s)|| f (s,x(s),x[2](s), . . . ,x[m](s))|ds

� a3

2

∫ a

−a
α(s)ds

� a,

for all t ∈ [−a,a] . Thus, −a � (Tx)(t) � a , t ∈ [−a,a] . Since T is a bounded linear
operator, then T is continuous. Hence by Schauder’s Theorem, there exists a fixed
point x ∈ Φa . By Lemma 2.1 the function x is a solution of (1), (2), (3). �

As an example of Theorem 3.1 we consider the boundary value problem,

x(4)(t) = ct2 sin(x[2]), (9)

x(−π/2) = x(π/2) = 0, (10)

x′′(−π/2) = x′′(π/2) = 0. (11)

Here m = 2 and f (t,x,x[2]) = ct2 sin(x[2]) . Let α(t) = ct2 . Then | f (t,x1,x2)| � α(t)
for all t ∈ [−π/2,π/2] and

1
2

(π
2

)2 ∫ π/2

−π/2
cs2 ds =

π5

192
c.

Thus, if c < 192
π5 ≈ 0.6274, then there exists a solution of (9), (10), (11).

For our next results, we assume that f satisfies the following growth condition.

(H2) There exists α� ∈ L[−a,a] , � = 1,2, . . . ,m+1, such that

| f (t,x1,x2, . . . ,xm+1)− f (t,y1,y2, . . . ,ym+1)| �
m+1

∑
�=1

α�(t)‖x�− y�‖

for all t ∈ [−a,a] , and xi,yi ∈ R , i = 1,2, . . . ,m+1.
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THEOREM 3.2. Let ρ = | f (s,0,0, . . .0)| . Assume that condition (H2) holds and
suppose that

ρa3 +
a3

2

m+1

∑
�=1

∫ a

−a
α�(s)ds

�−1

∑
k=0

ak � 1. (12)

Then there exists a solution of the boundary value problem (1), (2), (3).

Proof. We show that T : Φ(a,a) → Φ(a,a) where K = M = a in (6). Let x ∈
Φ(a,a) . Then,

|(Tx)(t)| �
∫ a

−a
|G(t,s)|| f (s,x(s),x[2](s), . . . ,x[m](s))|ds

� a3

2

∫ a

−a
| f (s,0, . . . ,0)|

+| f (s,x(s),x[2](s), . . . ,x[m](s))− f (s,0, . . . ,0)|ds

� a3

2

∫ a

−a
ρ +

m+1

∑
�=1

α�(s)‖x[�]‖ds

� a3

2

[
2aρ +

m+1

∑
�=1

∫ a

−a
α�(s)ds

�−1

∑
k=0

ak‖x‖
]

� a

[
a3ρ +

a3

2

m+1

∑
�=1

∫ a

−a
α�(s)ds

�−1

∑
k=0

ak

]

� a.

Thus, −a � Tx(t) � a for all t ∈ [−a,a] . By Schauder’s Theorem, there exists a fixed
point x of T in Φ(a,a) . By Lemma 2.1, x is a solution of (1), (2), (3), and the proof is
complete. �

COROLLARY 3.3. Suppose either ρ > 0 or ρ = 0 and the inequality (12) is strict.
Then there exists a unique solution of (1), (2), (3).

Proof. If either ρ > 0 or ρ = 0 and the inequality (12) is strict, then

a3

2

m+1

∑
�=1

∫ a

−a
α�(s)ds

�−1

∑
k=0

ak < 1. (13)

Assume x and y are distinct fixed points of (5). That is x = Tx and y = Ty . From
(H2), (8), and (13), we have,

|x(t)− y(t)| = |(Tx)(t)− (Ty)(t)|
�

∫ a

−a
|G(t,s)|∣∣ f (s,x(s),x[2](s), . . . ,x[m])

− f (s,y(s),y[2](s), . . . ,y[m])
∣∣ds

� a3

2

∫ a

−a

m+1

∑
�=1

α�(s)‖x[�]− y[�]‖ds
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� a3

2

∫ a

−a

m+1

∑
�=1

α�(s)
�−1

∑
k=0

ak‖x− y‖ds

�
[

a3

2

∫ a

−a

m+1

∑
�=1

α�(s)
�−1

∑
k=0

ak ds

]
‖x− y‖

< ‖x− y‖.
Hence we have the contradiction ‖x− y‖ < ‖x− y‖ . Thus, the solution is unique and
the proof is complete. �

As an example of Corollary 3.3, we again consider the boundary value problem
(9), (10), (11). Note that f (t,x1,x2) = ct2 sin(x2) satisfies

| f (t,x1,x2)− f (t,y1,y2)| � ct2|x2− y2|
for all t,x2,y2 ∈ [−π/2,π/2] . So, ρ = 0,α0(t) = α1(t) = 0, and α2(t) = ct2 . The left
hand side of (12) becomes

ρa3 +
a3

2

3

∑
�=1

∫ a

−a
α�(s)ds

�−1

∑
k=0

ak =
a3

2

∫ a

−a
α2(s)ds(1+a+a2)

=
π3

16
cπ3

12

(
1+

π
2

+
π2

4

)

=
π6

192

(
1+

π
2

+
π2

4

)
c.

Consequently, if c < 768
π6(4+2π+π2) ≈ 0.0386, then by Corollary 3.3 there exists a unique

solution to (9), (10), (11).

REMARK 1. We can generalize the boundary value problem to

x(4)(t) = f (t,x(t),x[2](t), . . . ,x[m](t)), a < t < b,

x(−a) = x(b) = 0,

x′′(−a) = x′′(b) = 0,

where a � 0 and b > 0, and obtain equivalent results to Theorem 3.1, Theorem 3.2, and
Corollary 3.3. Furthermore, if we let a = 0, we can also obtain results on the positivity
of solutions.

REMARK 2. The technique can easily be extended to the (2n)th,n � 2, order
boundary value problem,

(−1)nx(2n)(t) = f (t,x(t),x[2](t), . . . ,x[m](t)), a < t < b,

x(a) = x′′(a) = · · · = x(2(n−1))(a) = 0,

x(b) = x′′(b) = · · · = x(2(n−1))(b) = 0,

and similar results to our main theorems may be obtained.
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