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CONVEXITY IN FRACTIONAL h–DISCRETE CALCULUS

FERHAN M. ATICI ∗ AND JAGAN M. JONNALAGADDA

(Communicated by J. Henderson)

Abstract. In this paper, we consider a time scale hNa , where a ∈R and h ∈ R
+ . The fractional

h -difference operator is defined in the sense of Riemann–Liouville with the forward difference
operator Δ . First, we discuss monotonicity concept via fractional h -difference operators for the
functions defined on hNa . Second, we obtain some criteria to have the functions be ν -convex.

1. Introduction

As pointed out several times in the literature, the fractional calculus is lacking
geometric meanings for some of its concepts, such as fractional integral, monotonicity
and convexity via fractional derivatives. While this is the case for the fractional calculus
in continuous time, discrete counter-part of the fractional calculus known as discrete
fractional calculus provides mathematicians to define some new concepts such as ν -
monotonicity, ν -convexity to analyze the functions and their graphs. A paper by Dahal
and Goodrich [3] was initiated with a discussion of monotonicity via fractional order
difference operators. Later, Atıcı and Uyanik [2] defined the concept of ν -monotonicity
where 0 < ν < 1. Recently, in the papers [1, 4, 5, 6, 7, 8, 9, 10], ν -monotonicity has
been studied extensively with Δ and ∇ operators. The ν -convexity concept has been
defined in the paper by Lizama and Goodrich [8].

In this paper, our goal is to carry the concepts of ν -monotonicity and ν -convexity
in discrete fractional calculus to h -discrete fractional calculus. To achieve our goal, we
have three sections. In Section 1, we give basic definitions in h -discrete fractional cal-
culus. In Section 2, we define ν -monotonicity in the h -discrete fractional calculus. We
state and prove two theorems which give connections between the sign of the fractional
h -difference operator of a function and its ν -monotonicity. In Section 3, we define ν -
convexity in h -discrete fractional calculus. We then give some criteria for ν -convexity
via h -discrete fractional operators.
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2. Basic definitions

Let a ∈ R and h ∈ R
+ , where R is the set of real numbers. We define

hNa := {a,a+h,a+2h, . . .}.

DEFINITION 2.1. Let a ∈ R , h ∈ R
+ , f : hNa → R and n ∈ N1 . The first order

forward (delta) h -difference operator for a function f is defined by

Δh f (t) =
f (t +h)− f (t)

h
, t ∈ hNa,

and the nth -order forward h -difference operator for f is defined recursively by

Δn
h f (t) = ΔhΔn−1

h f (t), t ∈ hNa.

DEFINITION 2.2. For any t , r ∈ R and h > 0, the h -falling factorial function is
defined by

t(r)h = hr Γ( t
h +1)

Γ( t
h +1− r)

,

where the quotient is well-defined. Here Γ(·) denotes the Euler gamma function. We
use the convention that division at a pole yields zero.

LEMMA 2.1. For any t , r ∈ R and h > 0 ,

Δht
(r)
h = rt(r−1)

h . (2.1)

DEFINITION 2.3. Let α > 0 and a be two real numbers. For a function f : hNa →
R , the delta h -fractional sum with order α is defined by

Δ−α
h,a f (t) :=

1
Γ(α)

t/h−α

∑
s=a/h

(t−σ(sh))(α−1)
h f (sh)h, t ∈ hNa+αh,

where h > 0 and σ(t) = t +h .

DEFINITION 2.4. For a function f : hNa → R , the delta h -fractional difference
of order α in the sense of Riemann–Liouville is defined by

Δα
h,a f (t) := Δn

hΔ−(n−α)
h,a f (t), t ∈ hNa+nh−αh,

where a , α ∈ R , n−1 < α < n , and n is a positive integer.
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3. ν -monotonicity

DEFINITION 3.1. Let ν be any positive real number, f : hNa → R be a function
satisfying f (a) � 0. f is called a ν -increasing function on hNa , if

f (a+(k+1)h) � ν f (a+ kh),

for all k ∈ N0 . Note that if f is increasing on hNa and 0 < ν < 1, then f is ν -
increasing on hNa . Also, if f is ν -increasing on hNa and ν � 1, then f is increasing
on hNa . If ν = 1, then f is increasing on hNa if and only if f is ν -increasing on
hNa .

THEOREM 3.2. Let u : hNa →R be a function satisfying u(a) � 0 . Fix ν ∈ (0,1)
and suppose that

Δν
h,au(t) � 0, t ∈ Na+h−νh.

Then, u is ν -increasing function on hNa .

Proof. We will prove that u is ν -increasing function on hNa by mathematical
induction. First, by Definition 2.4, we observe that

Δν
h,au(t) = ΔhΔ−(1−ν)

h,a u(t) = Δh

[
1

Γ(1−ν)

t/h−(1−ν)

∑
s=a/h

(t−σ(sh))(−ν)
h u(sh)h

]
� 0.

Let

m(t) =
1

Γ(1−ν)

t/h−(1−ν)

∑
s=a/h

(t −σ(sh))(−ν)
h u(sh)h.

Since Δhm(t) � 0, m(t) is an increasing function on hNa+(1−ν)h . This implies that

m(a+(2−ν)h)−m(a+(1−ν)h)

=
1

Γ(1−ν)

a/h+1

∑
s=a/h

(a+(2−ν)h−σ(sh))(−ν)
h u(sh)h

− 1
Γ(1−ν)

a/h

∑
s=a/h

(a+(1−ν)h−σ(sh))(−ν)
h u(sh)h

=
1

Γ(1−ν)

[
(a+(2−ν)h−σ(a))(−ν)

h u(a)h

+(a+(2−ν)h−σ(a+h))(−ν)
h u(a+h)h

]
− 1

Γ(1−ν)
(a+(1−ν)h−σ(a))(−ν)

h u(a)h

=
h

Γ(1−ν)

[
((1−ν)h)(−ν)

h u(a)+ ((−ν)h)(−ν)
h u(a+h)− ((−ν)h)(−ν)

h u(a)
]
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=
h

Γ(1−ν)

[
h−ν Γ(2−ν)

Γ(2)
u(a)+h−ν Γ(1−ν)

Γ(1)
u(a+h)−h−ν Γ(1−ν)

Γ(1)
u(a)

]
= h1−ν [(1−ν)u(a)+u(a+h)−u(a)]

= h1−ν [u(a+h)−νu(a)] � 0.

Therefore, we have
u(a+h) � νu(a).

Now, let us assume that the induction hypothesis is valid up to n = k− 1. Hence, we
have

u(a+ kh) � νu(a+(k−1)h) � ν2u(a+(k−2)h)� · · · � νku(a) � 0. (3.1)

We want to prove that for n = k , the inequality

u(a+(k+1)h) � νu(a+ kh) (3.2)

is valid. To prove (3.2), we first consider

m(a+(k+2−ν)h)−m(a+(k+1−ν)h)

=
1

Γ(1−ν)

a/h+k+1

∑
s=a/h

(a+(k+2−ν)h−σ(sh))(−ν)
h u(sh)h

− 1
Γ(1−ν)

a/h+k

∑
s=a/h

(a+(k+1−ν)h−σ(sh))(−ν)
h u(sh)h

=
1

Γ(1−ν)
(a+(k+2−ν)h−σ(a+(k+1)h))(−ν)

h u(a+(k+1)h)h

+
1

Γ(1−ν)

a/h+k

∑
s=a/h

[
(a+(k+2−ν)h−σ(sh))(−ν)

h

− (a+(k+1−ν)h−σ(sh))(−ν)
h

]
u(sh)h

=
1

Γ(1−ν)
((−ν)h)(−ν)

h u(a+(k+1)h)h

+
1

Γ(1−ν)

a/h+k

∑
s=a/h

[
(a+(k+2−ν)h−σ(sh))(−ν)

h

− (a+(k+1−ν)h−σ(sh))(−ν)
h

]
u(sh)h

= S1 +S2, (3.3)

where

S1 =
1

Γ(1−ν)
((−ν)h)(−ν)

h u(a+(k+1)h)h,
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S2 =
1

Γ(1−ν)

a/h+k

∑
s=a/h

[
(a+(k+2−ν)h−σ(sh))(−ν)

h

− (a+(k+1−ν)h−σ(sh))(−ν)
h

]
u(sh)h.

Consider

S1 =
1

Γ(1−ν)
((−ν)h)(−ν)

h u(a+(k+1)h)h

=
1

Γ(1−ν)
h−ν Γ(1−ν)

Γ(1)
u(a+(k+1)h)h = h1−νu(a+(k+1)h). (3.4)

Consider

S2 =
1

Γ(1−ν)

a/h+k

∑
s=a/h

[
(a+(k+2−ν)h−σ(sh))(−ν)

h

− (a+(k+1−ν)h−σ(sh))(−ν)
h

]
u(sh)h

=
1

Γ(1−ν)

a/h+k

∑
s=a/h

[
h−ν Γ(a/h+ k+2−ν− s−1+1)

Γ(a/h+ k+2−ν− s−1+1+ ν)

−h−ν Γ(a/h+ k+1−ν− s−1+1)
Γ(a/h+ k+1−ν− s−1+1+ ν)

]
u(sh)h

=
1

Γ(1−ν)

a/h+k

∑
s=a/h

[
Γ(a/h+ k+2−ν− s)

Γ(a/h+ k+2− s)
− Γ(a/h+ k+1−ν− s)

Γ(a/h+ k+1− s)

]
u(sh)h1−ν

=
1

Γ(1−ν)

a/h+k

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+1− s)

[
(a/h+ k+1−ν− s)

(a/h+ k+1− s)
−1

]
u(sh)h1−ν

=
1

Γ(1−ν)

a/h+k

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+1− s)

[
(−ν)

(a/h+ k+1− s)

]
u(sh)h1−ν

= − ν
Γ(1−ν)

a/h+k

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh)h1−ν . (3.5)

Using (3.4) and (3.5) in (3.3), we obtain

m(a+(k+2−ν)h)−m(a+(k+1−ν)h)

= h1−νu(a+(k+1)h)− ν
Γ(1−ν)

a/h+k

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh)h1−ν
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= h1−ν

[
u(a+(k+1)h)− ν

Γ(1−ν)

a/h+k−1

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh)

− ν
Γ(1−ν)

Γ(a/h+ k+1−ν− (a/h+ k))
Γ(a/h+ k+2− (a/h+ k))

u(a+ kh)

]

= h1−ν

[
u(a+(k+1)h)− ν

Γ(1−ν)

a/h+k−1

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh)

− ν
Γ(1−ν)

Γ(1−ν)
Γ(2)

u(a+ kh)

]
. (3.6)

Since m(t) is an increasing function on hNa+(1−ν)h , from (3.6), we have

m(a+(k+2−ν)h)−m(a+(k+1−ν)h)� 0,

implying that

u(a+(k+1)h)− ν
Γ(1−ν)

a/h+k−1

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh)

− ν
Γ(1−ν)

Γ(1−ν)
Γ(2)

u(a+ kh) � 0.

That is,

u(a+(k+1)h)−νu(a+ kh)

� ν
Γ(1−ν)

a/h+k−1

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh). (3.7)

Observe that a/h+ k+1−ν− s > 0 and a/h+ k+2− s> 0 for each s ∈ {a/h,a/h+
1,a/h+2, · · · ,a/h+k−1} . By the induction assumption (3.1), we have u(sh) � 0 for
each s ∈ {a/h,a/h+1,a/h+2, · · · ,a/h+ k} . Thus, from (3.7), we have

u(a+(k+1)h)−νu(a+kh)� ν
Γ(1−ν)

a/h+k−1

∑
s=a/h

Γ(a/h+ k+1−ν− s)
Γ(a/h+ k+2− s)

u(sh)� 0,

implying that u(a+(k+1)h) � νu(a+ kh) . Hence, we conclude that for each k ∈ N1 ,

u(a+(k+1)h) � νu(a+ kh).

The proof is complete. �
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4. ν -convexity

DEFINITION 4.1. Let 1 < ν � 2. We say that a function f : hNa →R is ν -convex
if

f (a+(k+2)h)−ν f (a+(k+1)h)+(ν−1) f (a+ kh) � 0, (4.1)

for all k ∈ N0 . Since

f (a+(k+2)h)−ν f (a+(k+1)h)+(ν−1) f (a+ kh)
= Δh f (a+(k+1)h)− (ν−1)Δh f (a+ kh),

we observe that if a function f is ν -convex on hNa then Δh f is (ν − 1)-increasing
function on hNa .

THEOREM 4.2. Let u : hNa → R be a function satisfying Δhu(a) � 0 and u(a) �
0 . Fix ν ∈ (1,2) and suppose that

Δν
h,au(t) � 0, t ∈ hNa+(2−ν)h.

Then, u is ν -convex on hNa .

Proof. For t ∈ hNa+(2−ν)h , consider

Δν
h,au(t) = Δ2

hΔ−(2−ν)
h,a u(t) = Δh

[
ΔhΔ−(2−ν)

h,a u(t)
]

(By Definition 2.4). (4.2)

Now, consider

ΔhΔ−(2−ν)
h,a u(t)

= Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h u(sh)h

]
(By Definition 2.3)

=
1

hΓ(2−ν)

[
t/h+1−(2−ν)

∑
s=a/h

(t +h−σ(sh))(1−ν)
h u(sh)h

−
t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h u(sh)h

]

=
1

Γ(2−ν)
(t −a)(1−ν)

h u(a)+
1

Γ(2−ν)

[
t/h+1−(2−ν)

∑
s=a/h+1

(t +h−σ(sh))(1−ν)
h u(sh)

−
t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h u(sh)

]

=
1

Γ(2−ν)
(t −a)(1−ν)

h u(a)+
1

Γ(2−ν)

[
t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h u(sh+h)

−
t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h u(sh)

]
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=
1

Γ(2−ν)
(t −a)(1−ν)

h u(a)

+
1

Γ(2−ν)

[
t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h [u(sh+h)−u(sh)]

]

=
1

Γ(2−ν)
(t −a)(1−ν)

h u(a)+
1

Γ(2−ν)

[
t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h Δhu(sh)h

]
. (4.3)

Using (4.3) in (4.2), we get

Δν
h,au(t) = Δh

[
1

Γ(2−ν)
(t−a)(1−ν)

h u(a)

+
1

Γ(2−ν)

[
t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h Δhu(sh)h

]]

=
u(a)

Γ(2−ν)
Δh

[
(t−a)(1−ν)

h

]

+ Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h Δhu(sh)h

]

=
(1−ν)u(a)

Γ(2−ν)
(t−a)(1−ν−1)

h

+ Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h Δhu(sh)h

]
(By (2.1))

=
(1−ν)u(a)

Γ(2−ν)
(t−a)(−ν)

h

+ Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h Δhu(sh)h

]
. (4.4)

Since u(a) � 0, t ∈ hNa and 1 < ν < 2, we have (1−ν) < 0, Γ(2−ν) > 0, and

(t−a)(−ν)
h = h−ν Γ(t/h−a/h+1)

Γ(t/h−a/h+ ν +1)
> 0,

implying that
(1−ν)u(a)

Γ(2−ν)
(t−a)(−ν)

h � 0, t ∈ hNa. (4.5)

It follows from (4.4) that

Δν
h,au(t) � 0, t ∈ hNa+(2−ν)h,

implying that

(1−ν)u(a)
Γ(2−ν)

(t−a)(−ν)
h + Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h Δhu(sh)h

]
� 0,



Differ. Equ. Appl. 14, No. 2 (2022), 313–324. 321

that is

Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h Δhu(sh)h

]
� − (1−ν)u(a)

Γ(2−ν)
(t−a)(−ν)

h .

Then, from (4.5), we obtain that

Δh

[
1

Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t −σ(sh))(1−ν)
h Δhu(sh)h

]
� 0, t ∈ hNa+(2−ν)h. (4.6)

Take μ = ν −1 and Δhu(t) = y(t) for t ∈ hNa . Then, from (4.6), we have

Δh

[
1

Γ(1− μ)

t/h−(1−μ)

∑
s=a/h

(t−σ(sh))(−μ)y(sh)h

]
� 0, t ∈ hNa+(1−μ)h. (4.7)

Denote by

w(t) =
1

Γ(1− μ)

t/h−(1−μ)

∑
s=a/h

(t−σ(sh))(−μ)y(sh)h.

Since Δhw(t) � 0, w(t) is an increasing function on hNa+(1−μ)h . Proceeding as in the
proof of Theorem 3.2, we obtain that y is μ -increasing function on hNa . That is, Δhu
is (ν −1)-increasing function on hNa implying that u is ν -convex on hNa . �

THEOREM 4.3. Let u : hNa → R be a function satisfying u(a+ h) � νu(a) and
u(a) � 0 . Fix ν ∈ (1,2) . If u is ν -convex on hNa , then Δν−1

h,a u is (ν −1)-increasing
function on hNa+(2−ν)h .

Proof. Denote by

p(t) = Δ−(2−ν)
h,a u(t) =

1
Γ(2−ν)

t/h−(2−ν)

∑
s=a/h

(t−σ(sh))(1−ν)
h u(sh)h, t ∈ hNa+(2−ν)h.

(4.8)
From Definition 2.4, we have

Δν
h,au(t) = Δ2

hΔ−(2−ν)
h,a u(t) = Δ2

hp(t), t ∈ hNa+(2−ν)h. (4.9)

We show that if u is ν -convex on hNa , then p is ν -convex on hNa+(2−ν)h . That is, if

u(a+(k+2)h)−νu(a+(k+1)h)+(ν−1)u(a+ kh) � 0,

for all k ∈ N0 , then

p(a+(k+4−ν)h)−ν p(a+(k+3−ν)h)+(ν−1)p(a+(k+2−ν)h)� 0,
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for all k ∈ N0 . Take k ∈ N0 and consider

p(a+(k+4−ν)h)−ν p(a+(k+3−ν)h)+(ν−1)p(a+(k+2−ν)h)

= Δ−(2−ν)
h,a u(a+(k+4−ν)h)−νΔ−(2−ν)

h,a u(a+(k+3−ν)h)

+ (ν −1)Δ−(2−ν)
h,a u(a+(k+2−ν)h)

=
1

Γ(2−ν)

[
a/h+(k+4−ν)−(2−ν)

∑
s=a/h

(a+(k+4−ν)h−σ(sh))(1−ν)
h u(sh)h

−ν
a/h+(k+3−ν)−(2−ν)

∑
s=a/h

(a+(k+3−ν)h−σ(sh))(1−ν)
h u(sh)h

+(ν −1)
a/h+(k+2−ν)−(2−ν)

∑
s=a/h

(a+(k+2−ν)h−σ(sh))(1−ν)
h u(sh)h

]

=
h

Γ(2−ν)

[
((k+3−ν)h)(1−ν)

h u(a)

+ ((k+2−ν)h)(1−ν)
h u(a+h)−ν((k+2−ν)h)(1−ν)

h u(a)

]

+
1

Γ(2−ν)

[
a/h+(k+4−ν)−(2−ν)

∑
s=a/h+2

(a+(k+4−ν)h−σ(sh))(1−ν)
h u(sh)h

−ν
a/h+(k+3−ν)−(2−ν)

∑
s=a/h+1

(a+(k+3−ν)h−σ(sh))(1−ν)
h u(sh)h

+(ν −1)
a/h+(k+2−ν)−(2−ν)

∑
s=a/h

(a+(k+2−ν)h−σ(sh))(1−ν)
h u(sh)h

]

=
h

Γ(2−ν)

[
((k+3−ν)h)(1−ν)

h u(a)+ ((k+2−ν)h)(1−ν)
h [u(a+h)−νu(a)]

]

+
1

Γ(2−ν)

k

∑
s=0

((k+2−ν)h−σ(sh))(1−ν)
h

×
[
u(a+(s+2)h)−νu(a+(s+1)h)+(ν−1)u(a+ sh)

]
h. (4.10)

Clearly Γ(2− ν) > 0. We know that u(a+ h) � νu(a) and u(a) � 0. Since t ∈ hNa

and 1 < ν < 2, we have

((k+3−ν)h)(1−ν)
h = h1−ν Γ(k+4−ν)

Γ(k+3)
> 0,

((k+2−ν)h)(1−ν)
h = h1−ν Γ(k+3−ν)

Γ(k+2)
> 0.
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Also, for s ∈ N
k
0 ,

((k+2−ν)h−σ(sh))(1−ν)
h = h1−ν Γ(k+2−ν − s)

Γ(k+1− s)
> 0.

Then, it follows from (4.10) that if

u(a+(k+2)h)−νu(a+(k+1)h)+(ν−1)u(a+ kh) � 0,

for all k ∈ N0 , then

p(a+(k+4−ν)h)−ν p(a+(k+3−ν)h)+(ν−1)p(a+(k+2−ν)h)� 0,

for all k ∈ N0 . That is,

u is ν-convex on hNa

⇒p is ν-convex on hNa+(2−ν)h

⇒Δhp is (ν −1)-increasing on hNa+(2−ν)h

⇒ΔhΔ−(2−ν)
h,a u is (ν −1)-increasing on hNa+(2−ν)h

⇒Δ1−(2−ν)
h,a u is (ν −1)-increasing on hNa+(2−ν)h

⇒Δν−1
h,a u is (ν −1)-increasing on hNa+(2−ν)h.

The proof is complete. �

THEOREM 4.4. Let u : hNa → R be a function satisfying Δhu(a) � 0 and u(a) �
0 . Fix ν ∈ (1,2) and suppose that

Δν
h,au(t) � 0, t ∈ hNa+(2−ν)h.

Then, u is monotone increasing and positive on hNa .

Proof. It follows from Theorem 4.2 that u is convex on hNa . Then, by Definition
4.1, Δhu is (ν −1)-increasing function on hNa . So, we have

Δhu(a+(k+1)h) � (ν −1)Δhu(a+ kh), k ∈ N0. (4.11)

Since Δhu(a) � 0, it follows from (4.11) that

Δhu(t) � 0, t ∈ hNa, (4.12)

implying that u is monotone increasing on hNa . Since u(a) � 0, it follows from (4.12)
that u is positive on hNa . The proof is complete. �
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