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Abstract. A Volterra type integral equation with a finite delay is considered on a discrete non-
additive time scale domain qN0 = {qn : n ∈ N0} , where k ∈ N , q > 1 . The existence of periodic
solutions of this equation, which we call a q -integral equation, are shown employing the con-
traction mapping principle and a fixed point theorem due to Krasnosel’skii.

1. Introduction

Functional differential equations with finite as well as infinite delays arise in many
applications. For the last fifty years or so, researchers have been studying various qual-
itative properties, such as the existence of solutions, of these equations. To study these
equations, researchers normally convert them into integral equations and then apply
suitable mathematical tools such as fixed point theorems in the analysis. For example,
the functional differential equation defined on R with finite delay h > 0 given by

x′(t) = ax(t)−b(x(t),x(t−h))+ r(t), a �= 0, (1)

becomes a Volterra type integral equation

x(t) = x(t−h)eah−
∫ t

t−h
b(x(s),x(s−h))ea(t−s)ds+ p(t), (2)

where the integration is carried out from t−h to t . We refer to [6] and the references
therein for examples of delay functional differential equations and their applications.

Various generalizations of equation (2) are considered by the researches for study-
ing the existence of continuous periodic solutions on the real line R , which is an ad-
ditively periodic time scale (cf. [5, 7]). Definition and examples of additively periodic
time scales can be found in, for example, [9]. Kaufmann and Raffoul [10] were the
first to study periodic solutions on additively periodic time scales when they studied a
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neutral nonlinear equation. It has been found that the notion of periodicity in so called
non-additively periodic time scales is important. Non-additively periodic time scales
are used in the study of the periodicity of q -difference equations, which occur in the
field of quantum calculus. We refer the interested readers to [8], in which the authors
studied the existence of periodic solutions of a quantum Volterra integral equation on
non-additively periodic time scales. We also refer to [1] in which the authors provide a
comprehensive study of periodicity on time scales.

In the present paper we study the periodicity of a generalized form of (2) on a
non-additively periodic time scale qN0 defined below. In particular, we consider the
integral equation

x(t) = f (t,x(t),x(q−kt))−
∫ t

q−kt
C(t,s)g(s,x(s),x(q−ks))dqs, t ∈ qN0 , (3)

where k ∈ N , q > 1, T = {qn : n ∈ {−k,−k+ 1, . . . ,0,1, . . .}} , qN0 = {qn : n ∈ N0} ,
C : qN0 ×T , f : qN0 ×R×R , g : T×R×R , and q−k is the finite delay. We assume f
and g are continuous in their second and third variables. Here

∫ qn

qm
f (s)dqs := (q−1)

n−1

∑
k=m

qk f (qk),

where m = −∞ if the lower limit of integration is 0, and n = ∞ if the upper limit of
integration is ∞ .

2. P-periodicity

The first periodicity notion on qN0 was given by Bohner and Chieochan in [4].

DEFINITION 1. ([4]) Let P∈N . A function f : qN0 →R is said to be P-periodic
if

f (t) = qP f (qPt) for all t ∈ qN0 . (4)

Afterwards, Adivar [2] (see also [3]) introduced a more general periodicity notion
on time scales that are not necessarily additively periodic. On qN0 , this is defined as
follows.

DEFINITION 2. ([2]) Let P ∈ N . A function f : qN0 → R is said to be P-periodic
if

f (qPt) = f (t) for all t ∈ qN0 .

Notice each of these definitions can easily be extended to the time scale T .
In [8], it was shown that f is periodic with respect to Definition 1 if and only

if f̃ (t) = t f (t) is periodic with respect to Definition 2. Other relationships between
these definitions involving periodic solutions of q -difference and q -integral equations
are also established in [8]. Therefore, the results we obtain in this paper with respect to
Definition 2 can easily be extended to an appropriate integral equation with respect to
Definition 1.
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3. Existence of P-periodic solutions

In this section, we show the existence of a P-periodic solution of (3) in Theorem
2 by employing the fixed point theorem of Krasnosel’skii. We then employ the contrac-
tion principle in Theorem 3 to show the existence of a unique P-periodic solution of
(3). We also present examples where the assumptions of Theorems 2 and 3 hold.

We make use of the following assumptions.

(A1) There exists a P ∈ N such that for all t ∈ qN0 , s ∈ T and x,y ∈ R ,

f (qPt,x,y) = f (t,x,y),

g(qPs,x,y) = g(s,x,y),

and
qPC(qPt,qPs) = C(t,s).

(A2) There exists a,b > 0 such that for all t ∈ qN0 and x1,x2,y1,y2 ∈ R ,

| f (t,x1,y1)− f (t,x2,y2)| � a|x1− x2|+b|y1− y2|,
where a+b < 1.

(A3) There exists c,d > 0 such that for all t ∈ T and x1,x2,y1,y2 ∈ R ,

|g(t,x1,y1)−g(t,x2,y2)| � c|x1− x2|+d|y1− y2|.

(A4) There exists an L > 0 such that

sup
t∈qN0

∫ t

q−k
|C(t,s)|dqs < L.

Define the set Q = {q0,q1, . . . ,qP} . Define the Banach space

B = {x : T → R : x(qPt) = x(t)},
with the norm

‖x‖ = max
t∈Q

|x(t)|.
Define the operator

Tx(t) = f (t,x(t),x(q−kt))−
∫ t

q−kt
C(t,s)g(s,x(s),x(q−ks))dqs, t ∈ qN0 ,

and for t ∈ T\ qN0 with, for m ∈ N , qmPt ∈ qN0 and q(m−1)Pt /∈ qN0 , define

Tx(t) = f (qmPt,x(qmPt),x(q−kqmPt))−
∫ qmPt

q−kqmPt
C(qmPt,s)g(s,x(s),x(q−ks))dqs

= Tx(qmPt).
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Defining T in this manner allows us to define T on all of B while not extending the
domains of f or C . Notice if x is a fixed point of T , then for t ∈ qN0 ,

Tx(t) = x(t) = f (t,x(t),x(q−kt))−
∫ t

q−kt
C(t,s)g(s,x(s),x(q−ks))dqs,

and so x is a solution of (3).

EXAMPLE 1. If q = 2, P = 3, and k = 4, then Tx(2−1) := Tx(22) , Tx(2−2) :=
Tx(21) , Tx(2−3) := Tx(20) , and Tx(2−4) := Tx(22) .

LEMMA 1. Assume (A1) is satisfied. Then the operator T : B → B .

Proof. Let x ∈ B . For t ∈ qN0 , assumption (A1) gives that

Tx(qPt) = f (qPt,x(qPt),x(q−kqPt))−
∫ qPt

q−kqPt
C(qPt,s)g(s,x(s),x(q−ks))dqs

= f (qPt,x(qPt),x(q−kqPt))−
∫ t

q−kt
qPC(qPt,qPs)g(qPs,x(qPs),x(q−kqPs))dqs

= f (t,x(t),x(q−kt))−
∫ t

q−kt
C(t,s)g(s,x(s),x(q−ks))dqs

= Tx(t).

For t ∈ T\ qN0 with, for m ∈ N , qmPt ∈ qN0 and q(m−1)Pt /∈ qN0 , notice

Tx(qPt) = Tx(q(m−1)PqPt)

= Tx(qmPt)
= Tx(t).

Therefore Tx ∈ B . �

THEOREM 1. (Krasnosel’skii, [11]) Let M be a closed convex nonempty subset
of a Banach space B. Suppose that A and B map M into B such that

(i) x,y ∈ M implies Ax+By∈ M ,

(ii) A is a contraction mapping, and

(iii) B is a compact and continuous mapping.

Then there exists a z ∈ M with z = Az+Bz.

Let m > 0 and define

M (m) = {x ∈ B : ‖x‖ � m}.
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THEOREM 2. Assume (A1) and (A2) are satisfied. If there exists a positive con-
stant m0 such that

F +CG(m0)(qP −q−k)
1− (a+b)

� m0, (5)

where
C = max

(t,s)∈Q×T

|C(t,s)|,

F = max
t∈Q

| f (t,0,0)|,

and
G(m) = max

(t,x,y)∈Q×[−m,m]×[−m,m]
|g(t,x,y)|.

then equation (3) has a P-periodic solution x ∈ B in the sense that x(t) = x(qPt) .

Proof. Define the mapping A : B → B by

Ax(t) = f (t,x(t),x(q−kt)), t ∈ qN0 ,

and for t ∈ T\ qN0 with, for m ∈ N , qmPt ∈ qN0 and q(m−1)Pt /∈ qN0 ,

Ax(t) = f (qmPt,x(qmPt),x(q−kqmPt)) = Ax(qmPt).

Define the mapping B : B → B by

Bx(t) = −
∫ t

q−kt
C(t,s)g(s,x(s),x(q−ks))dqs, t ∈ qN

0 ,

and for t ∈ T\ qN0 with, for m ∈ N , qmPt ∈ qN0 and q(m−1)Pt /∈ qN0 ,

Bx(t) = −
∫ qmPt

q−kqmPt
C(qmPt,s)g(s,x(s),x(q−ks))dqs = Bx(qmPt).

Notice Tx(t) = (Ax+Bx)(t) for all t ∈ T .
First, we show A is a contraction mapping. For x,y ∈ B with t ∈ qN0 , by (A1),

|Ax−Ay|(t) = | f (t,x(t),x(q−kt))− f (t,y(t),y(q−kt))|
� a|x(t)− y(t)|+b|x(q−kt)− y(q−kt)|
� (a+b)‖x− y‖.

For t ∈ T\ qN0 with, for m ∈ N , qmPt ∈ qN0 and q(m−1)Pt /∈ qN0 ,

|Ax−Ay|(t) = | f (qmPt,x(qmPt),x(q−kqmPt))− f (qmPt,y(qmPt),y(q−kqmPt))|
� a|x(qmPt)− y(qmPt)|+b|x(q−kqmPt)− y(q−kqmPt)|
� (a+b)‖x− y‖.
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Thus
‖Ax−Ay‖� (a+b)‖x+ y‖,

and since a+b < 1, A is a contraction mapping.
Next, we show B is continuous and compact. Since g is continuous in its second

and third variables, given ε > 0, there exists a δ > 0 such that ‖x− y‖< δ implies

|g(t,x(t),x(q−kt)−g(t,y(t),y(q−kt)| < ε
C(qP −q−k)

for all t ∈ Q . Thus for ‖x− y‖< δ and for t ∈ Q ,

|Bx−By|(t) �
∫ t

q−kt
|C(t,s)||g(t,x(s),x(q−ks))−g(t,y(s),y(q−ks))|dqs

<
ε

C(qP −q−k)
C

∫ t

q−kt
dqs

< ε.

Thus for ‖x− y‖ < δ , ‖Bx−By‖ < ε . Therefore B is continuous. Since B is defined
on a discrete domain, a diagonalization argument similar to the one found in [8] can be
used to show B is compact.

Finally, we show for x,y ∈ M (m0) , Ax + By ∈ M (m0) . First, notice that for
t ∈ Q ,

| f (t,x(t),x(q−kt))| � | f (t,x(t),x(q−kt))− f (t,0,0)|+ | f (t,0,0)|
� (a+b)‖x‖+F.

Then for x,y ∈ M (m0) and t ∈ Q ,

|Ax+By|(t) =
∣∣∣∣ f (t,x(t),x(q−kt))−

∫ t

q−kt
C(t,s)g(s,y(s),y(q−ks))dqs

∣∣∣∣
� am0 +F +CG(m0)(qP −q−k) � m0.

So Ax + By ∈ M (m0) . Therefore, by Theorem 1, there exists a z ∈ M (m0) with
Az+Bz = z . This z is a P-periodic solution of (3). �

EXAMPLE 2. Let q = 2 and k = 3. Define

f (2n,x,y) = (−1)n
(

1
8

cosx+
1
16

cosy

)
,

g(2n,x,y) = (−1)n(x+ y),

and

C(t,s) =
9

80(t + s)
.
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Then (A1) is satisfied with P = 2 and (A2) is satisfied with a =
1
8

and b =
1
16

. Choose

m0 = 100. Then,

F = f (1,0,0) =
3
16

,

C = C(1,2−3) =
1
10

,

and
G(100) = g(1,100,100) = 200.

Thus
F +CG(m0)(22−2−3)

1− (a+b)
=

1243
13

< 100.

Therefore by Theorem 2, (3) has a 2-periodic solution x ∈ B .

THEOREM 3. Assume (A1)-(A4) hold. If (a + b)+ L(c + d) < 1 , then (3) has a
unique P-periodic solution.

Proof. By Theorem 1, we know T : B → B . Let x,y ∈ B . Assumptions (A2)-
(A4) give that if t ∈ qN0 ,

|Tx(t)−Ty(t)|� | f (t,x(t),x(q−kt))− f (t,y(t),y(q−kt))|
+

∫ t

q−kt
|C(t,s)||g(s,x(s),x(q−ks))−g(s,y(s),y(q−ks))|dqs

� (a+b)‖x− y‖+(c+d)‖x− y‖ sup
t∈qN0

∫ t

q−k
|C(t,s)|dqs

� [(a+b)+L(c+d)]‖x− y‖.

If t ∈ T\ qN0 with, for m ∈ N , qmPt ∈ qN0 and q(m−1)Pt /∈ qN0 , then

|Tx(t)−Ty(t)|= |Tx(qmPt)−Ty(qmPt)|.
A similar argument can then be used to show

|Tx(t)−Ty(t)|� [(a+b)+L(c+d)]‖x− y‖.
Since (a+b)+L(c+d) < 1, T is a contraction mapping. Therefore, T has a unique
fixed point x∗ which is a unique solution of (3). �

EXAMPLE 3. Let q = 2 and k = 3. Define

f (2n,x,y) = (−1)n
(

1
8

cosx+
1
16

cosy

)
,

g(2n,x,y) = (−1)n
(

1
8

cosx+
1
16

cosy

)
,
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and

C(t,s) =
t

(t + s)2 .

Then (A1) is satisfied with P = 2, and (A2) and (A3) are satisfied with a = c =
1
8

and

b = d =
1
16

. Notice that if f is a positive deceasing function, then

∫ qn

qm+1
f (s)dqs = (q−1)

n−1

∑
k=m+1

qk f (qk)

< (q−1)
∫ n−1

m
qt f (qt)dt

=
q−1
lnq

∫ qn−1

qm
f (s)ds

<
q−1
lnq

∫ qn

qm
f (s)ds.

So
∫ t

1/8

t
(t + s)2 dqs <

t
8(t +1/8)2 +

1
ln2

∫ t

1/8

t
(t + s)2 ds

<
1

ln2
64t2 +16t−1

2(8t +1)2 .

So

sup
t∈qN0

∫ t

1/8
|C(t,s)|dqs < sup

t∈[1/8,∞)

1
ln2

64t2 +16t−1
2(8t +1)2

< 0.8.

Therefore,
(a+b)+L(c+d)< 0.3375 < 1.

So by Theorem 3, (3) has a unique 2-periodic solution.
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