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SPECTRAL CHARACTERIZATION OF THE CONSTANT SIGN

GREEN’S FUNCTIONS FOR PERIODIC AND NEUMANN

BOUNDARY VALUE PROBLEMS OF EVEN ORDER

ALBERTO CABADA ∗ AND LUCÍA LÓPEZ-SOMOZA

Abstract. In this paper we will characterize the interval of real parameters M in which the
Green’s function GM , related to the operator T2n[M]u(t) := u(2n)(t) + Mu(t) coupled to pe-
riodic, u(i)(0) = u(i)(T ) , i = 0, . . . ,2n − 1 , or Neumann, u(2 i+1)(0) = u(2 i+1)(T ) = 0 , i =
0, . . . ,n− 1 , boundary conditions, has constant sign on its square of definition. More concisely,
we will prove that the optimal values are given as the first zeros of GM(0,0) or GM(T/2,0) ,
depending both on the sign of GM and on the fact whether 2n is, or is not, a multiple of 4 . Such
values will be characterized as the eigenvalues of the operator u(2n) related to suitable boundary
conditions. This characterization allows us to obtain such values without calculating the exact
expression of the Green’s function.
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