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Dedicated to Professor Paul Eloe on his retirement

(Communicated by J. Henderson)

Abstract. In this paper we will characterize the interval of real parameters M in which the
Green’s function GM , related to the operator T2n[M]u(t) := u(2n)(t) + Mu(t) coupled to pe-
riodic, u(i)(0) = u(i)(T ) , i = 0, . . . ,2n − 1 , or Neumann, u(2 i+1)(0) = u(2 i+1)(T ) = 0 , i =
0, . . . ,n− 1 , boundary conditions, has constant sign on its square of definition. More concisely,
we will prove that the optimal values are given as the first zeros of GM(0,0) or GM(T/2,0) ,
depending both on the sign of GM and on the fact whether 2n is, or is not, a multiple of 4 . Such
values will be characterized as the eigenvalues of the operator u(2n) related to suitable boundary
conditions. This characterization allows us to obtain such values without calculating the exact
expression of the Green’s function.

1. Introduction

In the study of nonlinear boundary value problems, a classical and fruitful method
to ensure the existence of solutions consists on the construction of a related integral op-
erator, whose fixed points coincide with the solutions of the considered problem. The
kernel of the integral operator is known as the Green’s function related to the linear
part of the equation. To ensure the existence of solutions that have the same (or op-
posite) sign than the external force, we need to ensure that the Green’s function has
constant sign on its square of definition. Such property is equivalent to have compari-
son principles and allows to develop monotone iterative techniques (see [12, 14]), lower
and upper solutions method (see [1, 3, 10]) or to ensure the existence of solutions in
suitable cones (see [13, 17]).

The paper is organized as follows: in Section 2 it is presented a short survey of the
main properties satisfied by the Green’s functions and that allow us to study its constant
sign. We particularize such properties to the periodic case and compile the main known
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results till now that ensure the constant sign of the Green’s function related to opera-
tor Tn[M]u := u(n) +Mu defined on the space of periodic functions. In Section 3 the
optimal values of M , in which the Green’s function related to operator Tn[M] , with n
even, has constant sign, are obtained via spectral theory of related problems. Using an
equivalence with the periodic case, obtained in [8], of the sign of the Green’s function
related to the operator Tn[M] coupled to Neumann boundary conditions, such values
are also characterized for Neumann boundary conditions in Section 4. Moreover, in
the last section, we present a direct method to obtain explicitly such eigenvalues, via
the construction of suitable Wronskians, that allow us to get the exact values without
calculating the expression of the Green’s function. As a direct application, we calculate
the value of all of them for n � 12, n even.

2. A survey on constant sign Green’s functions

Consider the n -th order linear operator

Tn[M]u(t) := u(n)(t)+Mu(t), t ∈ I, (1)

with I ≡ [0,T ] and M ∈ R .
We will consider non homogeneous linear problems, for which the solutions that

we are looking for satisfy suitable boundary conditions and belong to the space

Wn,1(I) =
{

u ∈ C n−1(I) : u(n−1) ∈ A C (I)
}

,

where A C (I) denotes the set of absolutely continuous functions on I . In particular, we
will consider X ⊂Wn,1(I) a Banach space such that the following definition is satisfied.

DEFINITION 1. Given a Banach space X , an operator Tn[M] is said to be nonres-
onant in X if and only if the homogeneous equation

Tn[M]u(t) = 0 a. e. t ∈ I, u ∈ X ,

has only the trivial solution.

Let us now introduce the concept of eigenvalue of the corresponding linear equation.

DEFINITION 2. Given a Banach space X and a real value M , we say that λ ∈ R

is an eigenvalue of operator Tn[M] in X if and only if the homogeneous equation

Tn[M + λ ]u(t) = 0 a. e. t ∈ I, u ∈ X ,

has non trivial solutions.

It is very well known that if σ ∈ L1(I) and operator Tn[M] is nonresonant in X , then
the non homogeneous problem

Tn[M]u(t) = σ(t) a. e. t ∈ I, u ∈ X ,
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has a unique solution given by

u(t) =
∫ T

0
G[M,T ](t,s)σ(s)ds, ∀ t ∈ I,

where G[M,T ] denotes the, so-called, Green’s function related to operator Tn[M] on X
and it is uniquely determined. See [3] for details.

Now, by using the notation h � 0 for a function h ∈ L1(I) such that h(t) � 0 for
a. e. t ∈ I and

∫ T
0 h(t)dt > 0, we introduce the following definitions.

DEFINITION 3. Operator Tn[M] admits a maximum principle (MP) in X if and
only if every function u ∈ X such that Tn[M]u � 0 on I satisfies that u < 0 on (0,T ) .

DEFINITION 4. Operator Tn[M] admits an antimaximum principle (AMP) in X if
and only if every function u ∈ X such that Tn[M]u � 0 on I satisfies that u > 0 on
(0,T ) .

Clearly, we have that if Tn[M] satisfies either MP or AMP on X then it is nonres-
onant in X .

The previously defined comparison principles are equivalent to the constant sign
of the Green’s function. See [18, Theorem 4.1] for the case n = 2 and the Green’s
function related to the periodic problem and [7, Lemma 10] for n = 2 and arbitrary
boundary conditions. The proof for arbitrary n � 1 is analogous. The result is the
following one:

THEOREM 1. The following equivalences hold:

• Operator Tn[M] satisfies MP on X if and only if the related Green’s function is
nonpositive on I× I .

• Operator Tn[M] satisfies AMP on X if and only if the related Green’s function is
nonnegative on I× I .

The following results are a direct adaptation of [3, Theorems 1.8.5 and 1.8.9, Lem-
mas 1.8.25 and 1.8.33] to this operator.

LEMMA 1. Suppose that operator Tn[M] is nonresonant in a Banach space X , its
related Green’s function G[M,T ] is nonpositive on I× I , and satisfies condition

(Ng) There is a continuous function φ(t) > 0 for all t ∈ (0,T ) and k1, k2 ∈ L1(I) ,
such that k1(s) < k2(s) < 0 for a. e. s ∈ I , satisfying

φ(t)k1(s) � G[M,T ](t,s) � φ(t)k2(s), for a. e. (t,s) ∈ I× I.

Then G[M + λ ,T ] is nonpositive on I × I if and only if λ ∈ NT , where NT :=
(−∞,λ1(T )) or [−μ(T ),λ1(T )) , with λ1(T ) > 0 the first eigenvalue of operator Tn[M]
in X and μ(T ) � 0 such that Tn[−μ(T )] is nonresonant in X and its related nonposi-
tive Green’s function G[−μ(T ),T ] vanishes at some point of I× I .

Moreover, G[M + λ ,T ] is monotone decreasing in λ ∈ NT .
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LEMMA 2. Suppose that operator Tn[M] is nonresonant in a Banach space X , its
related Green’s function G[M,T ] is nonnegative on I× I , and satisfies condition

(Pg) There is a continuous function φ(t) > 0 for all t ∈ (0,T ) and k1, k2 ∈ L1(I) ,
such that 0 < k1(s) < k2(s) for a. e. s ∈ I , satisfying

φ(t)k1(s) � G[M,T ](t,s) � φ(t)k2(s), for a. e. (t,s) ∈ I× I.

Then G[M + λ ,T ] is nonnegative on I × I if and only if λ ∈ PT , where PT :=
(λ1(T ),∞) or (λ1(T ),μ(T )] , with λ1(T ) < 0 the first eigenvalue of operator Tn[M] in
X and μ(T ) � 0 such that Tn[μ(T )] is nonresonant in X and the related nonnegative
Green’s function G[μ(T ),T ] vanishes at some point of the square I× I .

Moreover, G[M + λ ,T ] is monotone decreasing in λ ∈ PT .

Now, if we fix as boundary conditions the periodic ones, the Banach space X is
denoted as

Xn
P,T =

{
u ∈Wn,1(I) : u(k)(0) = u(k)(T ), k = 0, . . . ,n−1

}
.

It is immediate to verify that operator Tn[0] is resonant on Xn
P,T for all n∈N . Since

the associated eigenfunctions are the constants and, obviously, they have constant sign,
we have that λ = 0 is the main eigenvalue related to operator u(n) on the space Xn

P,T .
As a consequence, from Lemmas 1 and 2, we deduce that, if they are non empty, 0 is
the supremum of the interval NT and the infimum of PT .

There are many works in which maximum and antimaximum principles have been
studied for different operators coupled to this kind of boundary conditions. As a conse-
quence, it is very well known [14] that T1[M] is inverse positive on X1

P,T if and only if
M > 0 and inverse negative if and only if M < 0. Moreover, T2[M] is inverse negative
on X2

P,T if and only if M < 0. In [1], it is showed that T2[M] is inverse positive on X2
P,T

if and only if M ∈ (0,(π/T )2] . We note that (π/T )2 is the first eigenvalue of operator
u′′ coupled to Dirichlet boundary conditions. Similar spectral characterization could be
extended to a more general operators with non constant coefficients, see for instance
[4, 7, 8, 16, 19], and relies on the idea of this paper in order to consider an eigenvalue
characterization of the regular extremes μ(T ) of the intervals NT and PT . We also
mention that in [1] the set NT for operator T4[M] on T 4

P,T and the sets NT and PT for
operator T3[M] on the space X3

P,T are also characterized. Finally, we point out that
the sets PT for T4[M] and NT for the operator T6[M] , for the corresponding periodic
spaces, are characterized in [6]. It is important to mention that, as far as the authors
know, at any of the previous works (except for the case n = 2 and M > 0), the optimal
extremes of the intervals NT and PT , for which the Green’s function has constant sign
on I × I , haven’t been characterized as an eigenvalue of the same operator related to
different boundary conditions.

For higher order equations, the optimal values that describe the sets NT and PT

are not known. In this situation, for arbitrary n , only non optimal estimations were
given up to date. In [15], by using the disconjugacy theory [9], the authors obtained the
following result.
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LEMMA 3. Let M > 0 (M < 0 ) be such that

| M |< nnn![
n
2

]n
Tn(n−1)n−1

,

with [x] the greatest integer smaller than or equal to the real number x .
Then operator Tn[M] is inverse positive (inverse negative) on Xn

P,T .

By using the decomposition of the n -th order operator Tn[M] as a composition of
first and second order operators, better estimations on the values of the parameter M
for which the operator Tn[M] is either inverse positive or inverse negative in Xn

P,T are
obtained in [2]. The results are the following ones.

LEMMA 4. [2, Lemma 2.4] Operator Tn[M] is inverse positive on Xn
P,T if one of

the following properties is fulfilled

1. n = 4k , k ∈ {1,2, . . .} and 0 < M �
[

π
T sin

(
n+2
2n π

)
]n

.

2. n = 2+4k , k ∈ {1,2, . . .} and 0 < M �
[π
T

]n
.

3. n is odd and 0 < M �
[

π
T sin

(
n+1
2n π

)
]n

.

LEMMA 5. [2, Lemma 2.5] Operator Tn[M] is inverse negative on Xn
P,T if one of

the following properties is fulfilled

1. n = 4k , k ∈ {1,2, . . .} and −
[π
T

]n
� M < 0 .

2. n = 2+4k , k ∈ {1,2, . . .} and −
[

π
T sin

(
n+2
2n π

)
]n

� M < 0 .

3. n is odd and −
[

π
T sin

(
n+1
2n π

)
]n

� M < 0 .

Obviously, previous results ensure that for any n ∈ N , the sets NT and PT are non
empty.

By checking the proofs of the two previous results, given in [2], it is immediate
to verify that the Green’s function GP[M,T ] is bounded and strictly positive for any
M > 0 on the interior of the intervals given in Lemma 4 and bounded and strictly
negative for M < 0 on the interior of the intervals given in Lemma 5. Thus, it is
obvious that Lemmas 1 and 2 hold in these cases. So, we are interested in obtaining the
values of μ(T ) introduced in Lemmas 1 and 2 that characterize the interval in M of
the constant sign of the Green’s function. Such values will be given as the first M for
which GP[M,T ] vanishes at some point on I× I (or they are +∞ or −∞).
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To this end, we will use the following result [1] (see also [3, Section 1.4]), that
ensures us that in the particular case of a constant’s coefficient operator, the Green’s
function related to the periodic problem is constant over the straight lines of slope
equals to 1. The result, particularized to this situation, is the following.

LEMMA 6. [1, Lemma 2.1] The Green’s function GP[M,T ] related to the opera-
tor Tn[M] on the space of T -periodic functions Xn

P,T is given by the following expres-
sion:

GP[M,T ](t,s) =

{
GP[M,T ](t − s,0), 0 � s � t � T,

GP[M,T ](T + t− s,0), 0 � t < s � T.

Moreover, the function GP[M,T ](t,0) is the unique solution of the following prob-
lem: ⎧⎪⎪⎨

⎪⎪⎩
Tn[M]rM(t) = 0, t ∈ I,

r(i)
M (0)− r(i)

M (T ) = 0, i = 0, . . . ,n−2,

r(n−1)
M (0)− r(n−1)

M (T ) = 1.

(2)

As it is stated on the proof of [3, Corollary 1.4.12] for a more general situation,
it is immediate to verify that if n = 2k is even, then rM(t) = rM(T − t) for all t ∈ I .
Notice that, as a direct consequence,

r( j)
M (t) = (−1) j r( j)

M (T − t) for all t ∈ I and j ∈ {0,1, , . . . ,2k}. (3)

In particular,

r(2 j+1)
M (T/2) = 0 for all j ∈ {0,1, , . . . ,k−1}. (4)

Moreover, we have that for all odd number i � 2k−3, it is satisfied that

r(i)
M (0) = r(i)

M (T ) = −r(i)
M (0),

which implies that

r(2 j+1)
M (0) = r(2 j+1)

M (T ) = 0, j ∈ {0,1, , . . . ,k−2}. (5)

On the other hand, −r(2k−1)
M (T ) = r(2k−1)

M (0) = r(2k−1)
M (T )+ 1, so we conclude

that
r(2k−1)
M (0) = 1/2 and r(2k−1)

M (T ) = −1/2. (6)

3. Periodic problem

In this section we will obtain an spectral characterization of the constant sign of
the Green’s function related to the operator Tn[M] on the space of T -periodic functions
Xn

P,T when n is even. To avoid possible confusions, along the section we will denote
n = 2k , with k = 1,2, . . . .

The obtained result is the following.
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THEOREM 2. Let n = 2k with k ∈ N . Then

1. The Green’s function related to operator Tn[M] on the space of T -periodic func-
tions Xn

P,T is nonnegative on I × I (and strictly positive on I × I if M is on the
interior of the intervals) if and only if the following conditions are fulfilled:

(a) k = 2 l +1 for some l ∈ {0,1, . . .} , and M ∈ (0,Mn] , where Mn is the least
positive eigenvalue of the following two-point boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
r(n)(t) = 0, t ∈ [0,T/2],

r(0) = 0,

r(2 j+1)(0) = 0, j ∈ {0,1, , . . . ,k−2},
r(2 j+1)(T/2) = 0, j ∈ {0,1, , . . . ,k−1}.

(7)

(b) k = 2 l for some l ∈ {1, . . .} , and M ∈ (0,Mn] , where Mn is the least posi-
tive eigenvalue of the following two-point boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
r(n)(t) = 0, t ∈ [0,T/2],

r(T/2) = 0,

r(2 j+1)(0) = 0, j ∈ {0,1, , . . . ,k−2},
r(2 j+1)(T/2) = 0, j ∈ {0,1, , . . . ,k−1}.

(8)

2. The Green’s function related to operator Tn[M] on the space of T -periodic func-
tions Xn

P,T is nonpositive on I × I (and strictly negative on I× I if M is on the
interior of the intervals) if and only if the following conditions are fulfilled:

(a) n = 2 and M ∈ (−∞,0) .

(b) k = 2 l +1 for some l ∈ {1, . . .} , and M ∈ [M̃n,0) , where M̃n is the biggest
negative eigenvalue of Problem (8).

(c) k = 2 l for some l ∈ {1, . . .} , and M ∈ [M̃n,0) , where M̃n is the biggest
negative eigenvalue of Problem (7).

Proof. As a direct consequence of Lemma 6, we have that the sign of the Green’s
function on I × I is given by the one of function rM(t) := GP[M,T ](t,0) , defined in
(2), on I . Moreover, from Lemmas 4 and 5 we have that there is M0 > 0 such that
rM > 0 on I for all M ∈ (0,M0) and rM < 0 on I for all M ∈ (−M0,0) . Finally, using
Lemmas 1 and 2, we have that our problem is reduced to find the unique negative and
positive values of M for which rM has constant sign and vanishes at some point in I .

It is important to point out that if M is not an eigenvalue of operator u(n) on the
space of periodic functions Xn

P,T (which always holds when either M ∈ PT or M ∈
NT ), then identities (4) and (5) warrant that rM satisfies the two last sets of boundary
conditions imposed in Problems (7) and (8).

Thus, take M 	= 0 for which rM > 0 or rM < 0 on I . It is clear, from Lemmas 1
and 2, that MrM(t) > 0 for all t ∈ I .
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Then, we have r(2k)
M (t) = −MrM(t) < 0 for all t ∈ I . This implies that r(2k−1)

M is
strictly decreasing on I . As a consequence, from (4) and (6), we deduce that

r(2k−1)
M (t) > 0 for all t ∈ [0,T/2) and r(2k−1)

M (t) < 0 for all t ∈ (T/2,T ] .

Thus, we have that r(2k−2)
M is strictly increasing on (0,T/2) and strictly decreasing in

(T/2,T ) . In particular, from (3), we deduce that

max
t∈I

{r(2k−2)
M (t)} = r(2k−2)

M (T/2) and min
t∈I

{r(2k−2)
M (t)} = r(2k−2)

M (0) = r(2k−2)
M (T ).

In case of k = 1, we have that the unique M2 > 0 for which rM2
� 0 on I and

rM2
takes the value zero at some point of I is given as the least positive eigenvalue of

the following mixed problem

r′′(t) = 0, t ∈ [0,T/2], r(0) = r′(T/2) = 0.

It is very well known that such value is (π/T )2 and coincides with the least eigenvalue
of the Dirichlet problem in I : r′′(t) = 0, t ∈ I, r(0) = r(T ) = 0 (see [7, 16, 19]).

On the other hand, in this case (k = 1), we have that the unique M̃2 < 0 for which
rM̃2

� 0 on I and rM̃2
takes the value zero at some point of I would be given as the

biggest negative eigenvalue of the following problem

r′′(t) = 0, t ∈ [0,T/2], r(T/2) = r′(T/2) = 0.

However, since terminal conditions are considered, the problem

r′′(t)+ λ r(t) = 0, t ∈ [0,T/2], r(T/2) = r′(T/2) = 0,

has only the trivial solution for any real value of λ . This property ensures us that the
Green’s function is negative for all M < 0, which is, also, a very well known result (see
[1, 3, 14]).

Now, if k > 1, from (5) we deduce that function r(2k−2)
M cannot have constant sign

on I . As a consequence, we have that there is t0 ∈ (0,T/2) such that

r(2k−2)
M (t) > 0 for all t ∈ (t0,T − t0) and r(2k−2)

M (t) < 0 for all t ∈ [0, t0)∪ (T − t0,T ] .

From this, (3) and (5), we deduce that

r(2k−3)
M (t) < 0 for all t ∈ (0,T/2) and r(2k−3)

M (t) > 0 for all t ∈ (T/2,T ) ,

which implies that r(2k−4)
M is strictly decreasing on (0,T/2) and strictly increasing in

(T/2,T ) . In particular,

min
t∈I

{r(2k−4)
M (t)} = r(2k−4)

M (T/2) and max
t∈I

{r(2k−4)
M (t)} = r(2k−4)

M (0) = r(2k−4)
M (T ).

So, if k = 2 we have that the unique M4 > 0 for which rM4
� 0 on I and rM4

takes the
value zero at some point of I is given as the least positive eigenvalue of the following
problem

r(4)(t) = 0, t ∈ [0,T/2], r(T/2) = r′(0) = r′(T/2) = r′′′(T/2) = 0.
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Moreover, the unique M̃4 < 0 for which rM̃4
� 0 on I and rM̃4

takes the value zero
at some point of I would be given as the biggest negative eigenvalue of the following
problem

r(4)(t) = 0, t ∈ [0,T/2], r(0) = r′(0) = r′(T/2) = r′′′(T/2) = 0.

For k > 2, using (5) again, we deduce that function r(2k−4)
M cannot have constant

sign on I . As a consequence, we have that there is t1 ∈ (0,T/2) such that

r(2k−4)
M (t) < 0 for all t ∈ (t1,T − t1) and r(2k−4)

M (t) > 0 for all t ∈ [0, t1)∪ (T − t1,T ] ,

which, arguing as in the previous situations, ensures us that

r(2k−5)
M (t) > 0 for all t ∈ (0,T/2) and r(2k−5)

M (t) < 0 for all t ∈ (T/2,T ) .

Thus, we are in the same situation as r(2k−1)
M and the result holds by recurrence. �

4. Neumann problem

Now, for any even natural number n = 2k , we deal with the constant sign of
the Green’s function, that we will denote as GN [M,T ] , related to the operator Tn[M]
coupled to the so-called Neumann boundary conditions:

Xn
N,T =

{
u ∈Wn,1(I) : u(2 j+1)(0) = u(2 j+1)(T ) = 0, j = 0, . . . ,k−1

}
.

We will use a particular case of [8, Theorem 3], where it has been proved an equiv-
alence on the sign of the Green’s functions (for operators with constant coefficients)
related to periodic and Neumann boundary conditions on different intervals.

THEOREM 3. The following properties hold:

1. GP[M,2T ] � 0 on [0,2T ]× [0,2T ] if and only if GN [M,T ] � 0 on I× I .

2. GP[M,2T ] � 0 on [0,2T ]× [0,2T ] if and only if GN [M,T ] � 0 on I× I .

So, as a direct application of previous result and Theorem 2, we characterize the
intervals of constant sign of the Green’s function related to the Neumann boundary
conditions as follows.

THEOREM 4. Let n = 2k with k ∈ N . Then

1. The Green’s function related to operator Tn[M] on the space Xn
N,T , of functions

satisfying T –Neumann boundary conditions, is nonnegative on I× I (and strictly
positive on I× I if M is on the interior of the intervals) if and only if the following
conditions are fulfilled:
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(a) k = 2 l +1 for some l ∈ {0,1, . . .} , and M ∈ (0,Nn] , where Nn is the least
positive eigenvalue of the following two-point boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
r(n)(t) = 0, t ∈ I,

r(0) = 0,

r(2 j+1)(0) = 0, j ∈ {0,1, , . . . ,k−2},
r(2 j+1)(T ) = 0, j ∈ {0,1, , . . . ,k−1}.

(9)

(b) k = 2 l for some l ∈ {1, . . .} , and M ∈ (0,Nn] , where Nn is the least positive
eigenvalue of the following two-point boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
r(n)(t) = 0, t ∈ I,
r(T ) = 0,

r(2 j+1)(0) = 0, j ∈ {0,1, , . . . ,k−2},
r(2 j+1)(T ) = 0, j ∈ {0,1, , . . . ,k−1}.

(10)

2. The Green’s function related to operator Tn[M] on the space Xn
N,T , of functions

satisfying T –Neumann boundary conditions, is nonpositive on I× I (and strictly
negative on I× I if M is on the interior of the intervals) if and only if the follow-
ing conditions are fulfilled:

(a) n = 2 and M ∈ (−∞,0) .

(b) k = 2 l +1 for some l ∈ {1, . . .} , and M ∈ [Ñn,0) , where Ñn is the biggest
negative eigenvalue of Problem (10).

(c) k = 2 l for some l ∈ {1, . . .} , and M ∈ [Ñn,0) , where Ñn is the biggest
negative eigenvalue of Problem (9).

Now, it is immediate to verify that u : [0,T/2] → R is an eigenfuction related to
an eigenvalue λ of problem (7) (respectively (8)) if and only if v : I → R , defined
as v(t) := u(t/2) , is an eigenfuction related to the eigenvalue λ/2n of problem (9)
(respectively (10)).

As a consequence, with the notation of Theorems 2 and 4, we have that

Nn =
Mn

2n and Ñn =
M̃n

2n .

5. Numerical computation of eigenvalues

Following the same line as in [5] and denoting by yi , with i ∈ {1, . . . ,n} , the
unique solution of the following initial value problem

y(n)(t)+λ y(t)= 0, t ∈ [0,T/2], y(i−1)(0)= 1, y( j)(0)= 0, j ∈{0,1, . . . ,n−1}\{i−1},

it can be proved that the eigenvalues of Problem (7), with n = 2k , correspond with the
zeros of the following Wronskian
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W [λ ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(0) y2(0) y3(0) . . . yn(0)

y′1(0) y′2(0) y′3(0) . . . y′n(0)

y′1(
T
2 ) y′2(

T
2 ) y′3(

T
2 ) . . . y′n(T

2 )
...

...
... . . .

...

y(2 j+1)
1 (0) y(2 j+1)

2 (0) y(2 j+1)
3 (0) . . . y(2 j+1)

n (0)

y(2 j+1)
1 (T

2 ) y(2 j+1)
2 (T

2 ) y(2 j+1)
3 (T

2 ) . . . y(2 j+1)
n (T

2 )
...

...
... . . .

...

y(2k−3)
1 (0) y(2k−3)

2 (0) y(2k−3)
3 (0) . . . y(2k−3)

n (0)

y(2k−3)
1 (T

2 ) y(2k−3)
2 (T

2 ) y(2k−3)
3 (T

2 ) . . . y(2k−3)
n (T

2 )

y(n−1)
1 (T

2 ) y(n−1)
2 (T

2 ) y(n−1)
3 (T

2 ) . . . y(n−1)
n (T

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y′3(
T
2 ) y′5(

T
2 ) . . . y′n−3(

T
2 ) y′n−1(

T
2 ) y′n(T

2 )
...

... . . .
...

...
...

y(2 j+1)
3 (T

2 ) y(2 j+1)
5 (T

2 ) . . . y(2 j+1)
n−3 (T

2 ) y(2 j+1)
n−1 (T

2 ) y(2 j+1)
n (T

2 )
...

... . . .
...

...
...

y(2k−3)
3 (T

2 ) y(2k−3)
5 (T

2 ) . . . y(2k−3)
n−3 (T

2 ) y(2k−3)
n−1 (T

2 ) y(2k−3)
n (T

2 )

y(n−1)
3 (T

2 ) y(n−1)
5 (T

2 ) . . . y(n−1)
n−3 (T

2 ) y(n−1)
n−1 (T

2 ) y(n−1)
n (T

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

On the other hand, the eigenvalues of Problem (8), with n = 2k , correspond with
the zeros of the following Wronskian

W [λ ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(T
2 ) y2(T

2 ) y3(T
2 ) . . . yn(T

2 )

y′1(0) y′2(0) y′3(0) . . . y′n(0)

y′1(
T
2 ) y′2(

T
2 ) y′3(

T
2 ) . . . y′n(

T
2 )

...
...

... . . .
...

y(2 j+1)
1 (0) y(2 j+1)

2 (0) y(2 j+1)
3 (0) . . . y(2 j+1)

n (0)

y(2 j+1)
1 (T

2 ) y(2 j+1)
2 (T

2 ) y(2 j+1)
3 (T

2 ) . . . y(2 j+1)
n (T

2 )
...

...
... . . .

...

y(2k−3)
1 (0) y(2k−3)

2 (0) y(2k−3)
3 (0) . . . y(2k−3)

n (0)

y(2k−3)
1 (T

2 ) y(2k−3)
2 (T

2 ) y(2k−3)
3 (T

2 ) . . . y(2k−3)
n (T

2 )

y(n−1)
1 (T

2 ) y(n−1)
2 (T

2 ) y(n−1)
3 (T

2 ) . . . y(n−1)
n (T

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

y1(T
2 ) y3(T

2 ) . . . yn−3(T
2 ) yn−1(T

2 ) yn(T
2 )

y′1(
T
2 ) y′3(

T
2 ) . . . y′n−3(

T
2 ) y′n−1(

T
2 ) y′n(T

2 )
...

... . . .
...

...
...

y(2 j+1)
1 (T

2 ) y(2 j+1)
3 (T

2 ) . . . y(2 j+1)
n−3 (T

2 ) y(2 j+1)
n−1 (T

2 ) y(2 j+1)
n (T

2 )
...

... . . .
...

...
...

y(2k−3)
1 (T

2 ) y(2k−3)
3 (T

2 ) . . . y(2k−3)
n−3 (T

2 ) y(2k−3)
n−1 (T

2 ) y(2k−3)
n (T

2 )

y(n−1)
1 (T

2 ) y(n−1)
3 (T

2 ) . . . y(n−1)
n−3 (T

2 ) y(n−1)
n−1 (T

2 ) y(n−1)
n (T

2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Using these Wronskians it is easy to compute numerically the first eigenvalues
of the problems (7) and (8) without needing to calculate the exact expression of the
Green’s function.

On Table 1 we show the optimal values for the periodic problem of the correspond-
ing related problems with T = 1. It is immediate to verify that at any arbitrary interval
[a,b] the optimal value given on the table is obtained by dividing the expression by
(b− a)n . If we consider the Neumann boundary conditions on any interval [a,b] , we
must divide the expression by (2(b−a))n .

n Positive Negative

2 M2 = λ 2, with λ = π M̃2 = −∞
4 M4 = λ 4, with λ ≈ 6.68929 M̃4 = −λ 4, with λ ≈ 4.73004

6 M6 = λ 6, with λ ≈ 5.22515 M̃6 = −λ 6, with λ ≈ 6.34668

8 M8 = λ 8, with λ ≈ 6.29516 M̃8 = −λ 8, with λ ≈ 5.47572

10 M10 = λ 10, with λ ≈ 5.62922 M̃10 = −λ 10, with λ ≈ 6.28561

12 M12 = λ 12, with λ ≈ 6.28369 M̃12 = −λ 12, with λ ≈ 5.73345

Table 1: Optimal values of the periodic problem for T = 1 .

RE F ER EN C ES

[1] A. CABADA, The method of lower and upper solutions for second, third, fourth, and higher order
boundary value problems, J. Math. Anal. Appl. 185 (1994) 302–320.

[2] A. CABADA, The method of lower and upper solutions for nth-order periodic boundary value prob-
lems, J. Appl. Math. Stoch. Anal. 7 (1994) 33–47.

[3] A. CABADA, Green’s functions in the theory of ordinary differential equations, Springer Briefs in
Mathematics, Springer, New York, 2014.

[4] A. CABADA AND J. A. CID, On comparison principles for the periodic Hill’s equation, J. Lond.
Math. Soc. 2 86 (2012), 1, 272–290.
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