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RANDOM NEUTRAL SEMILINEAR

DIFFERENTIAL EQUATIONS WITH DELAY

O. K. BELLAOUI, A. BALIKI AND A. OUAHAB ∗

(Communicated by J. Lyons)

Abstract. In this paper, we present the existence and uniqueness of a random mild solution of
a system of neutral semilinear random differential equations with delay. Also the Lipschitz
regularity of the solution is presented. The results are based on random versions of Perov’s fixed
point theorem. Finally, some examples are given to illustrate our main result.

1. Introduction

The theory of differential equations with state-dependent delay appears frequently
in applications as a model of equations. In recent years, this type of equation has
received great attention by researchers, for instance, concerning ordinary differential
equations, we cite the early work of Aiello et al. [1], the survey of Hartung et al. [10],
the papers of Hartung et al. [11], Walther [32] and the references therein. We also cite
the recent and interesting articles of Li and Wu [19, 20].

Neutral differential equations are widely studied in the fields of applied mathe-
matics. As a result, they have received great attention in recent decades. We refer to
Driver [6, 7] and Hartung [12, 13] for ordinary differential equations and as well as the
recent papers Barbarossa et al. [2] and Hernandez et al. [17] for partial differential
equations and abstract neutral equations, respectively. In some works, the case where
state dependent delay appears in the neutral part, was not taken into consideration, such
as in [5, 15, 16, 29]. Differential equations with random coefficients are used as mod-
els for a discussion in many different applications such as control theory, statistics,
biological sciences, etc. For more information on such applications, see the books of
Bharucha-Reid [4] and Skorohod [27]. Due to different applications, various studies of
differential equations with random coefficients have been considered recently, see for
instance [3, 9, 14, 21, 25, 26] and their references.
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In this paper we consider the following system of random neutral semilinear dif-
ferential equations with delay⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x(t,ω)+g1(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)]′

= A1(ω)[x(ω ,t)+g1(t,xσ(t,xt)(·,ω),yσ(t,yt )(·,ω))]

+ f1(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)

[y(ω , t)+g2(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)]′

= A2(ω)[x(t,ω)+g2(t,xσ(t,xt)(·,ω),yσ(t,yt )(·,ω))]

+ f2(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)

x(ω , t) = ϕ1(ω ,t), t ∈ [−p,0], ω ∈ Ω
y(ω , t) = ϕ2(ω ,t), t ∈ [−p,0], ω ∈ Ω,

(1.1)

where Ai : Ω → L (D(Ai),X) , D(Ai) ⊂ X , i = 1,2, generates two random analytic
semigroups of bounded linear operators on X , ϕ1 ; ϕ2 are two random maps, fi(·) ,
gi(·) , i = 1,2, σ(·) are functions to be specified later, and X is a separable Banach
space induced by a norm ‖ · ‖ .

This paper is organized as follows. In Section 2, we recall some definitions and
facts about random fixed point theorems in generalized Banach spaces. In Section 3,
we give the existence and uniqueness of mild solutions to the problem (1.1). In Section
4, as an application, we present an example to illustrate our main result.

2. Preliminaries

In this section, we will review some notations, definitions, and auxiliary findings
from the literature that will be used in the paper.

Let (Ω,F ) be a measurable space, X be a real separable generalized Banach
space. We equip a Banach space X with a σ -algebra B(X) of Borel subsets of X so
that (X ,B(X)) becomes a measurable space.

DEFINITION 1. A square matrix of real numbers is said to be convergent to zero
if and only if its spectral radius ρ(M) is strictly less than 1. In other words, this means
that all the eigenvalues of M are in the open unit disc i.e. |λ | < 1, for every λ ∈ C

with det(M−λ I) = 0, where I denotes the unit matrix of Mn×n(R).

THEOREM 1. ([30], p. 12, p. 88) Let M∗ ∈ Mn×n(R+) . The following assertions
are equivalent:

(i) M∗ is convergent towards zero;

(ii) Mm∗ → 0 as m → ∞;

(iii) The matrix (I−M∗) is nonsingular and

(I−M)−1 =
∞

∑
i=0

Mi
∗,
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(iv) The matrix (I−M∗) is nonsingular and (I−M∗)−1 has nonnegative elements.

REMARK 1. Some examples of matrices convergent to zero are

1. Any matrix M∗ =
(

a a
b b

)
, where a, b ∈ R+ and a + b < 1.

2. Any matrix M∗ =

(
a b
a b

)
, where a, b ∈ R+ and a + b < 1.

3. Any matrix M∗ =
(

a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1.

For more information on matrices that converge to zero, see Precup [23], Rus [24]
and Turinici [28].

DEFINITION 2. Let X ,Y be two real separable Banach spaces, a mapping A :
Ω×X → Y is called a random operator if ω → A(ω ,z) is measurable for all z ∈ X .

DEFINITION 3. A random fixed point of A is a measurable function z : Ω → X
such that

z(ω) = A(ω ,z(ω)) for all ω ∈ Ω.

THEOREM 2. [18] Let X , be a separable Banach space. Let A : Ω×X → X be a
closed linear random operator such that for each ω ∈ Ω , A(ω) is one to one and onto.
Then the operator S : Ω×X → X defined by S(ω)x = A−1(ω)x is random.

THEOREM 3. [9, 26] Let (Ω,F ,μ) be a probability space, X be a real separable
generalized Banach space and F : Ω×X → X be a continuous random operator, and
let M(ω) ∈ Mn×n(R+) be a random variable matrix such that M(ω) converges to 0
a.s. and

d(F(ω ,x1),F(ω ,x2)) � M(ω)d(x1,x2) for each x1,x2 ∈ X , ω ∈ Ω.

Then there exists a random variable x : Ω → X which is the unique random fixed point
of F.

LEMMA 1. [9] Let X be a separable generalized metric space and G : Ω×X →X
be a mapping such that G(·,x) is measurable for all x ∈ X and G(ω , .) is continuous
for all ω ∈ Ω . Then the map (ω ,x) → G(ω ,x) is jointly measurable.

Let (X ,‖ · ‖X) be a Banach spaces. Let the spaces C([b,c];X) and CLip([b,c];X)
be endowed with their norms

‖u‖C([b,c];X) = sup
t∈[b,c]

‖u(t)‖X
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and
‖u‖CLip([b,c];X) = ‖u‖C([b,c],X) +‖u‖CLip([b,c],X)

where

[u]CLip([b,c];X) = sup
t,s∈[b,c],t �=s

‖u(s)−u(t)‖X

|t− s| .

We use the symbol BX for the space C([−p,0];X) endowed with the uniform norm
‖ ·‖BX . In addition, for σ ∈C([0,a]×BX ;R+) and u ∈C([−p,b];X) with 0 < b � a ,
we use the notation u(·) and uσ(·,u(·)) for the functions u(·),uσ(·,u(·)) : [0,b] → BX

given by u(·)(t) = ut and uσ(·,u(·))(t) = uσ(t,ut) .
From [17, Lemma 1] and [17, Lemma 3], we present the following lemma which

is very useful in our future arguments.

LEMMA 2. Assume u,v ∈ CLip([−p,b];X) , 0 < b � a, σ ∈ CLip([0,a],BX ;R+) ,
u0 = v0 = ϕ and σ(t,ht) � b for h = u,v and all t ∈ [0,b] . Then u(·),uσ(·,u(·)) ∈
CLip([0,b];BX) ,

[u(·)]CLip([0,b];BX ) � max{[u]CLip([0,b];V), [ϕ ]CLip([−p,0];V)},[
uσ(·,u(·))

]
CLip([0,b];BX )

� [u(·)]CLip([0,b];BX ) [σ ]CLip(([0,b]×BX ;R+)

×
(
1+[u(·)]CLip([0,b];BX )

)
.∥∥∥uσ(·,u(·))− vσ(·,v(·))

∥∥∥
C([0,b];BX )

�
(
1+[v(·)]CLip([0,b];BX ) [σ ]CLip([0,b]×BX ;R+)

)
×‖u− v‖C([0,b];X).

THEOREM 4. [31] Let A : D(A) ⊆ X → X be a C-linear operator generating a
C0 -semigroup of contractions {T (t);t � 0} . Then {T (t); t � 0} is analytic if and only
if for each α ∈ (0,1) there exists

lim
n→∞

(
I− t

n
A
)−n

x = T (t)x, x ∈ X ,

in the usual sup-norm topology of C([α, 1
α ];L (X)) .

3. Existence of solution

In this section, we seek a random solution for (1.1). To start, we offer the definition
of random mild solution.

DEFINITION 4. A pair of random variables x,y : Ω →C([−p,b],X) is a random
mild solution of system (1.1) on [−p,b] , if (x(t,ω) , y(t,ω)) = (ϕ1(t,ω) , ϕ2(t,ω)) ,
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t ∈ [−p,0] and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(t,ω) = T1(t,ω)(ϕ1(0,ω)+g1(0,xσ(0,ϕ1(0,ω)),yσ(0,ϕ2(0,ω)),ω))

−g1(t,xσ(t,xt ),yσ(t,yt),ω)

+
∫ t

0
T1(t − s,ω) f1(s,xσ(s,xs),yσ(s,ys),ω)ds t ∈ [0,b]

y(t,ω) = T2(t,ω)(ϕ2(0,ω)+g2(0,xσ(0,ϕ1(0,ω)),yσ(0,ϕ2(0,ω)),ω))

−g2(t,xσ(t,xt ),yσ(t,yt),ω)

+
∫ t

0
T2(t − s,ω) f2(s,xσ(s,xs),yσ(s,ys),ω)ds t ∈ [0,b].

We add the following conditions in order to prove our next results.

(H1 ) (a) There exist random variables K1,K2 : Ω → (0,+∞) such that

‖T1(t,ω)‖X � K1(ω), ‖T2(t,ω)‖X � K2(ω) for each ω ∈ Ω,

(b) For all ω ∈Ω , Ti(·,ω)(ϕi(0,ω)+gi(0,ϕ1(0,ω),ϕ2(0,ω)))∈CLip([0,a],X).

(H2 ) Let f1, f2 : [0,a]×BX ×BX ×Ω → X be two Carathédory functions satisfying
the following conditions.

(a) There exist random variables p1, p2, p3, p4 : Ω → L1([0,a],R+) and posi-
tive constants L1(ω),L2(ω) such that

‖ f1(t,x,y,ω)− f1(s, x̃, ỹ,ω)‖X � L1(ω)|t− s|+ p1(ω ,t)‖x− x̃‖BX

+ p2(ω , t)‖y− ỹ‖|BX ,

‖ f2(t,x,y,ω)− f2(s, x̃, ỹ,ω)‖X � L2(ω)|t− s|+ p3(ω ,t)‖x− x̃‖BX

+ p4(ω , t)‖y− ỹ‖|BX ,

for all for all t,s ∈ [0,a],x, x̃ ∈ Br (ϕ1;BX ) ,y, ỹ ∈ Br (ϕ2;BX ) and r > 0,

(b) For each ω ∈ Ω , Ti(·,ω) f1(t,ϕ1(0,ω),ϕ2(0,ω),ω) ∈ L∞([0,a];X) , i =
1,2.

(H3 ) Let g1,g2 : [0,a]×BX ×BX ×Ω → X be two Carathédory functions. We sup-
pose the following conditions.

(a) There exist random variables q1,q2,q3,q4 : Ω→ L∞([0,a],R+) and positive
constants M1(ω),M2(ω) such that

‖g1(t,x,y,ω)−g1(s, x̃, ỹ,ω)‖X � M1(ω)|t − s|+q1(ω ,t)‖x− x̃‖BX

+q2(ω , t)‖y− ỹ‖|BX ,

‖g2(t,x,y,ω)−g2(s, x̃, ỹ,ω)‖X � M2(ω)|t − s|+q3(ω ,t)‖x− x̃‖BX

+q4(ω , t)‖y− ỹ‖|BX ,

for all t,s ∈ [0,a] , x , x̃ ∈ Br (ϕ1;BX ) , y , ỹ ∈ Br (ϕ2;BX ) and r > 0.
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(H4 ) The functions σ : [0,a]×BX → R+ and ϕi : [−p,0]×Ω → X satisfy:

(a) σ ∈CLip([0,a]×BX ;R+),σ(0,ϕ) = 0 and there is r∗ > 0 and 0 < b∗ � a
such that 0 � σ(t,ψ) � t for all t ∈ [0,b∗] and ψ ∈ Br∗(ϕi,BX ) , i = 1,2.

(b) ∀ω ∈ Ω , ϕi(·,ω) ∈ CLip([−p,0],X) and ∀t ∈ [−p,0], ϕi(t, ·) is measur-
able.

THEOREM 5. Assume that conditions (H1 )− (H4 ) are satisfied and there is 0 <
δ � min{a,b∗,r∗} such that

2λi(ω)
(
1+[σ ]CLip([0,δ ]×BX ;R+)(1+2Θi(δ ,ω))

)
< 1, i = 1,2, ∀ω ∈ Ω, (3.1)

where

λ1(ω) =‖q1(·,ω)‖L∞([0,δ ],R+) +‖q2(·,ω)‖L∞([0,δ ],R+)

+2K1(ω)(‖p1(·,ω)‖L1([0,δ ],R+) +‖p2(·,ω)‖L1([0,δ ],R+)),

λ2(ω) =‖q3(·,ω)‖L∞([0,δ ],R+) +‖q4(·,ω)‖L∞([0,δ ],R+)

+2K2(ω)(‖p3(·,ω)‖L1([0,δ ],R+) +‖p4(·,ω)‖L1([0,δ ],R+)),

and

Θi(s,ω) = [ϕi]CLip([−p,0];X) + [Ti(·,ω)(ϕi(0,ω)+gi(0,ϕ1(0,ω),ϕ2(0,ω),ω)]CLip([0,s];X)

+‖Ti(·,ω) fi(0,ϕ1(0,ω),ϕ2(0,ω),ω)‖L∞([0,s];X) +Mi(ω)+Li(ω),

and the matrix

M(ω) = α
( ‖q1(·,ω)‖L∞ +K1(ω)‖p1(·,ω)‖L1 ‖q2(·,ω)‖L∞ +K1(ω)‖p2(·,ω)‖L1

‖q3(·,ω)‖L∞ +K2(ω)‖p3(·,ω)‖L1 ‖q4(·,ω)‖L∞ +K2(ω)‖p4(·,ω)‖L1

)
,

where α = 1+R[σ ]CLip([0,b]), and R is positive constant. If M(ω) converges to zero,
then there exists a unique mild random solution x,y : Ω →CLip([−p,b];X) of the prob-
lem (1.1).

Proof. Let Pi : R → R be the function defined by

Pi(x) = λi(ω)[σ ]CLip([0,δ ]×BX ;R+)x
2 +
(

λi(ω)
(
[σ ]CLip([0,δ ]) +1

)
−1
)

x+ Θi(δ ,ω),

where, we write [σ ]CLip([0,δ ]) in place of [σ ]CLip([0,δ ]×BX ;R+) for convenience. From

condition (3.1) and noting that λi(ω)
(
1+[σ ]CLip([0,b]×BX ;R+)

)
− 1 < 0, we infer that

P1,P2 have a positive root and there exist R1,R2 such that P1(R1) < 0,P2(R2) < 0.
Moreover, from the definition of Pi(·) we find

Θi(δ ,ω)+ λi(ω)
(
1+[σ ]CLip([0,b])

)
Ri + λi(ω)R2

i < Ri, i = 1,2 ∀ω ∈ Ω, (3.2)
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We put R = max{R1,R2} . Let Y (b,R) be the space defined by:

Y (b,R) ={(x1,x2) ∈C([−p,b];X)×C([−p,b];X) : xi(0,ω) = ϕi(0,ω),

[xi(ω)]CLip([−p,b]) � R, i = 1,2
}

,

where, we write [x(ω)]CLip([−p,b]) in place of [x(·,ω)]CLip([−p,b];X) for convenience. Let
the space Y (b,R) be endowed with the metric

d((x, x̃),(y, ỹ)) =
( ‖x− x̃‖C([0,b];X)
‖y− ỹ‖C([0,b];X)

)
.

Consider the operator N : Y (b,R)×Y (b,R)×Ω �→C([−p,b];X)×C([−p,b];X),

(x,y,Ω) �→ (N1(x,y,ω),N2(x,y,ω)) ,

where

N1(x,y,ω) = T1(t,ω)(ϕ1(0,ω)+g1(0,ϕ1(0,ω)),ϕ2(0,ω)),ω))
−g1(t,xσ(t,xt),yσ(t,yt ),ω)

+
∫ t

0
T1(t− s,ω) f1(s,xσ(s,xs),yσ(s,xs),ω)ds, t ∈ [0,b],

and
N2(x,y,ω) = T2(t,ω)(ϕ2(0,ω)+g2(0,ϕ1(0,ω)),ϕ2(0,ω)),ω))

−g2(t,xσ(t,xt),yσ(t,yt ),ω)

+
∫ t

0
T2(t− s,ω) f2(s,xσ(s,xs),yσ(s,xs),ω)ds t ∈ [0,b].

Next we always assume that x,y, x̃, ỹ ∈ Y (b,R) .

Step 1. First we show that N is a random operator on Y (b,R)×Y (b,R) .
Since f1 , f2 , g1 and g2 are Carathédory functions, then ω �−→ f1(t,x,y,ω) and

ω �−→ f2(t,x,y,ω) , ω �−→ g1(t,x,y,ω) and ω �−→ g2(t,x,y,ω) are measurable maps
in view of Lemma 1. From Theorem 4, we have

Ti(t,ω) = lim
n→∞

(
I− t

n
Ai(ω)

)−n
x, i = 1,2.

From Theorem 2, we recognize that ω → (
I− t

nAi(ω)
)−n

x are measurable operators,
thus ω → Ti(t,ω) are measurable, Using the continuity properties of the semigroups
T1(·,ω),T2(·,ω) , we get

ω → Ti(t,ω)(ϕi(0,ω)+gi(0,ϕ1(0,ω),ϕ2(0,ω),ω)),

(ω ,s) → Ti(t− s,ω) fi(s,x(ω ,s),y(ω ,s),ω),

are measurable. As, the integral is a limit of a finite sum of measurable functions, thus,
the maps

ω �−→ N1(x(t,ω),y(t,ω),ω), ω �−→ N2(x(t,ω),y(t,ω),ω)
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are measurable. As a result, N is a random operator on Y (b,R)×Y (b,R)×Ω into
C([0,b],X)×C([0,b],X).

Step 2. ‖ut −ϕ‖BX � δ � r∗ , σ (t,ut) � t and uσ(t,ut) ∈ Bδ (ϕ ;BX ) , u = x,y ,
ϕ = ϕ1 , ϕ2 for every t ∈ [0,b] , fi(·,xσ(·,x(·)),yσ(·,y(·)),ω) ∈CLip([0,b];X) , i = 1,2 and[

f1(·,xσ(·,x(·)),yσ(·,y(·)),ω)
]
CLip([0,b];X)

� (p1(ω , ·)+p2(ω , ·)) (1+R[σ ]CLip([0,δ ]))+L1(ω)[
f2(·,xσ(·,x(·)),yσ(·,y(·)),ω)

]
CLip([0,b];X)

� (p3(ω , ·)+p4(ω , ·)) (1+R[σ ]CLip([0,δ ]))+L2(ω).

(3.3)
From Lemma 2, ‖ut −ϕ‖BX

�
[
u(·)
]
CLip([0,b];BX ) b � Rb � δ � r∗, which implies that

0 � σ (t,ut) � t for all t ∈ [0,b] , the function t → uσ(t,ut ) is well defined and uσ(t,ut) ∈
Bδ (ϕ ;BX ) for every t ∈ [0,b] , u = x , y , ϕ = ϕ1 , ϕ2 . In addition, from Lemma 2, for
t ∈ [0,b) and h > 0 such that t +h ∈ [0,b] we have that

‖ f1
(
t +h,xσ(t+h,xt+h),yσ(t+h,yt+h),ω

)
− f1

(
t,xσ(t,xt ),yσ(t,yt ),ω

)‖X

� p1(ω , t +h)‖xσ(t+h,xt )− xσ(t,xt )‖BX + p2(ω ,t +h)‖yσ(t+h,yt) − yσ(t,yt )‖BX +L1(ω)h

� (p1(ω , t +h)+ p2(ω ,t +h))(1+R[σ ]CLip([0,δ ]))h+L1(ω)h,

and
‖ f1
(
t +h,xσ(t+h,xt+h),yσ(t+h,yt+h),ω

)
− f1

(
t,xσ(t,xt ),yσ(t,yt ),ω

)‖X

� (p3(ω , t +h)+ p4(ω ,t +h))(1+R[σ ]CLip([0,δ ]))h+L2(ω)h,

hence fi(·,xσ(·,x(·)),yσ(·,y(·)),ω)) ∈CLip([0,b];X) , i = 1,2, which establishes (3.3).

Step 3. N is a Y (b,R)×Y (b,R)-valued function. Using (3.3), for t ∈ [0,b) and
h > 0 with t +h ∈ [0,b] , we can estimate

‖N1(x(t +h,ω),y(t +h,ω),ω)−N1(x(t,ω),y(t,ω),ω)‖X

� [T1(·,ω)(ϕ1(0,ω)+g1(0,ϕ1(0,ω),ϕ1(0,ω)))]CLip([0,b];X)h

+‖q1(ω , ·)‖L∞([0,b];R+)

∥∥∥xσ(t+h,xt+h)− xσ(t,xt )

∥∥∥
BX

+‖q2(ω , ·)‖L∞([0,b];R+)

∥∥∥yσ(t+h,yt+h)− yσ(t,yt )

∥∥∥
BX

+M1(ω)h

+
∫ h

0
K1(ω)

∥∥ f1
(
s,xσ(s,xs),yσ(s,ys),ω

)− f1(0,ϕ1(0,ω),ϕ2(0,ω),ω)
∥∥

X
ds

+
∫ h

0
‖T1(t +h− s,ω) f1(0,ϕ1(0,ω),ϕ2(0,ω),ω)‖Xds

+
∫ t

0
K1(ω)

∥∥∥ f1
(
s+h,xσ(s+h,xs+h),yσ(s+h,ys+h),ω

)
− f1

(
s,xσ(s,xs),yσ(s,ys),ω

)∥∥∥
X

ds

� [T1(·,ω)(ϕ1(0,ω)+g1(0,ϕ1(0,ω),ϕ1(0,ω)))]CLip([0,b];X)h

+‖T1(·,ω) f1(0,ϕ1(0,ω),ϕ2(0,ω),ω)‖L∞([0,b];X)h+M1(ω)h
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+(‖q1(ω , ·)‖L∞([0,b];R+) +‖q2(ω , ·)‖L∞([0,b];R+))R[σ ]CLip([0,b])(1+R)h

+2K1(ω)(‖p1(ω , ·)‖L1([0,b];R+) +‖p2(ω , ·)‖L1([0,b];R+))
(
R[σ ]CLip([0,b]×)(1+R)

)
h

+2K1(ω)L1(ω)h

�
(

Θ1(b,ω)+ λ1(ω)
(
1+[σ ]CLip([0,b])

)
R+ λ1(ω)R2

)
h.

Similarly, we obtain

‖N2(x(t +h,ω),y(t +h,ω),ω)−N2(x(t,ω),y(t,ω),ω)‖X

�
(

Θ2(b,ω)+ λ2(ω)
(
1+[σ ]CLip([0,b])

)
R+ λ2(ω)R2

)
h.

from (3.2) which implies that

(N(x,y,ω)) |[0,b]
∈CLip([0,b];X)

and
[N(x,y,ω)]CLip([0,b];X) � R.

Furthermore, as

ϕi(·,ω) ∈CLip([−p,0];X), [ϕi(·,ω)]CLip([−p,0];X) � R, i = 1,2,

we obtain that
N(x,y,ω) ∈CLip([−p,b];X)

and
[N(x,y,ω)]CLip([−p,b];X) � R.

Hence N has values in Y (b,R)×Y (b,R) .

Step 4. We show that N is Lipschitz continuous. From Lemma 2, for t ∈ [0,b] we
get

‖N1(x(t,ω),y(t,ω),ω)−N1(x̃(t,ω), ỹ(t,ω),ω)‖X

� ‖q1(ω , ·)‖L∞([0,b];R+)
∥∥xσ(t,xt )−x̃σ(t,x̃t )

∥∥
BX

+‖q2(ω , ·)‖L∞([0,b];R+)
∥∥yσ(t,yt )−ỹσ(t,ỹt )

∥∥
BX

+
∫ t

0
K1(ω)p1(ω ,s)

∥∥xσ(s,xs)−x̃σ(s,x̃s)
∥∥

BX
ds

+
∫ t

0
K1(ω)p2(ω ,s)

∥∥yσ(s,ys)−ỹσ(s,ỹs)
∥∥

BX
ds

� ‖q1(ω , ·)‖L∞([0,b];R+)

(
1+
[
x̃(·)(ω)

]
CLip([0,b];BX ) [σ ]CLip([0,b])

)
‖x−x̃‖C([0,b];X)

+‖q2(ω , ·)‖L∞([0,b];R+)

(
1+
[
ỹ(·)(ω)

]
CLip([0,b];BX ) [σ ]CLip([0,b])

)
‖y−ỹ‖C([0,b];X)

+K1(ω)‖p1(ω , ·)‖L1([0,b];R+)

(
1+
[
x̃(·)(ω)

]
CLip([0,b];BX ) [σ ]CLip([0,b])

)
‖x−x̃‖C([0,b];X)

+K1(ω)‖p1(ω , ·)‖L1([0,b];R+)

(
1+
[
ỹ(·)(ω)

]
CLip([0,b];BX ) [σ ]CLip([0,b])

)
‖y−ỹ‖C([0,b];X)

� (1+R[σ ]CLip([0,b]))(‖q1(ω , ·)‖L∞([0,b];R+)+K1(ω)‖p1(ω , ·)‖L1([0,b];R+))‖x−x̃‖C([0,b];X)

+(1+R[σ ]CLip([0,b]))(‖q2(ω , ·)‖L∞([0,b];R+)+K1(ω)‖p2(ω , ·)‖L1([0,b];R+))‖y−ỹ‖C([0,b];X).
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Similarly, we obtain

‖N2(x(t,ω),y(t,ω),ω)−N2(x̃(t,ω), ỹ(t,ω),ω)‖X

� (1+R[σ ]CLip([0,b]))(‖q3(ω , ·)‖L∞([0,b];R+)+K2(ω)‖p3(ω , ·)‖L1([0,b];R+))‖x−x̃‖C([0,b];X)

+(1+R[σ ]CLip([0,b]))(‖q4(ω , ·)‖L∞([0,b];R+)+K2(ω)‖p4(ω , ·)‖L1([0,b];R+))‖y−ỹ‖C([0,b];X).

Hence
d (N(x,y,ω),N(x̃, ỹ,ω)) � M(ω)d((x,y),(x̃, ỹ)),

and

M(ω) = α
( ‖q1(·,ω)‖L∞ +K1(ω)‖p1(·,ω)‖L1 ‖q2(·,ω)‖L∞ +K1(ω)‖p2(·,ω)‖L1

‖q3(·,ω)‖L∞ +K2(ω)‖p3(·,ω)‖L1 ‖q4(·,ω)‖L∞ +K2(ω)‖p4(·,ω)‖L1

)
where

α = 1+R[σ ]CLip([0,b]).

Therefore there exists a unique random solution of the system of random neutral semi-
linear differential equations with delay given in (1.1) by Theorem 3. �

4. Applications

In this section we give two applications of our abstract result of this paper.

EXAMPLE 1. Let X = C([0;π ],R),(Ω,Σ,P) be a compete probability space and
α∗ : Ω → R+ . Define the operator A : X → X by A(ω)v = α∗(ω)v′′ with domain

D(A(ω)) = {v ∈ X ,v′′ ∈ X ;v(0) = v(π) = 0}.
From [22] we know that A is the generator of an analytic semigroup (T (t))t�0 of
bounded linear operators on X . We note that (T (t))t�0 is not a C0 -semigroup. Con-
sider the following system of neutral problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[u(t,ξ ,ω)+ α1(ω)a1(t)(1+uμ(t,u(t))(·,ξ ,ω)vμ(t,v(t))(·,ξ ,ω))]′

= α∗(ω)
d2

dξ 2 [u(t,ξ ,ω)+ α1(ω)a1(t)(1+uμ(t,u(t))(·,ξ ,ω)vμ(t,v(t))(·,ξ ,ω))]

+ β1(ω)b1(t)(1+uμ(t,u(t))(·,ξ ,ω)vμ(t,v(t))(·,ξ ,ω))

[v(t,ξ ,ω)+ α2(ω)a2(t)(1+uμ(t,u(t))(·,ξ ,ω)vμ(t,v(t))(·,ξ ,ω)))]′

= α∗(ω)
d2

dξ 2 [u(t,ξ ,ω)+ α2(ω)a2(t)(1+uμ(t,u(t))(·,ξ ,ω)vμ(t,v(t))(·,ξ ,ω))]

+ β2(ω)b2(t)(1+uμ(t,u(t))(·,ξ ,ω)vμ(t,v(t))(·,ξ ,ω))

u(t,0,ω) = u(t,0,ω) ∀t ∈ [0,π ], ω ∈ Ω,

v(t,0,ω) = v(t,0,ω) ∀t ∈ [0,π ], ω ∈ Ω,

u(s,ξ ,ω) = ϕ1(s,ξ ,ω), s ∈ [−p,0],ξ ∈ [0,π ], ω ∈ Ω,

v(s,ξ ,ω) = ϕ2(s,ξ ,ω), s ∈ [−p,0],ξ ∈ [0,π ], ω ∈ Ω,

(4.1)
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where μ ∈ CLip([0,a]× X ,R),μ(0,ϕi(0)) = 0, ϕi ∈ CLip([−p,0],X) , i = 1,2. , αi ,
βi , i = 1,2 are a positive real-valued random variable, ai,bi ∈ CLip([0,a];R+) and
increasing functions. In addition, in the interest of brevity, we assume that

0 � ϕ(s,x) � s, for s ∈ [0,a], x ∈ X .

To represent this problem in the form (1.1), we define the functions gi : [0,a]×BX ×
BX ×Ω → X , fi : [0,a]×BX ×BX ×Ω → X , i = 1,2 and σ : [0,a]×BX → R by

gi(t,x,y,ω) = αi(ω)ai(t)(1+ xy), fi(t,x,y,ω) = βi(ω)bi(t)(1+ xy),

and
σ(s,ψs) = μ(s,ψ(s)).

Under these definitions, we note that the conditions (H1 ), (H4 ) are satisfied. It is
trivial to see that fi,gi, i = 1,2 are Carathéodory functions, and

‖ fi(t,x1,y1,ω)− fi(s,x2,y2,ω)‖ � βi(ω)[bi]CLip([0,a];R+)|t− s|
+ βi(ω)bi(t)(r+‖ϕ2‖C([−p,0],X))‖y1− y2‖
+ βi(ω)bi(t)(r+‖ϕ1‖C([−p,0],X))‖x1− x2‖,

‖gi(t,x1,y1,ω)−gi(s,x2,y2,ω)‖ � αi(ω)[ai]CLip([0,a];R+)|t− s|
+ αi(ω)ai(t)(r+‖ϕ2‖C([−p,0],X))‖y1− y2‖
+ αi(ω)ai(t)(r+‖ϕ1‖C([−p,0],X))‖x1− x2‖,

for all t,s ∈ [0,a], t � s,x1,x2 ∈ Br(ϕ1,X),y1,y2 ∈ Br(ϕ2,X).
Let

x(t,ω)(ξ ) = u(t,ξ ,ξ ),y(t,ω)(ξ ) = v(t,ξ ,ω), t ∈ [−p,a],ξ ∈ [0,π ],

x(θ ,ω)(ξ ) = ϕ1(θ ,ω),y(θ ,ω)(ξ ) = ϕ2(θ ,ω), θ ∈ [−p,0].

Consequently, problem (4.1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x(t,ω)+g1(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)]′

= A(ω)[x(ω ,t)+g1(t,xσ(t,xt)(·,ω),yσ(t,yt )(·,ω))]

+ f1(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)

[y(ω ,t)+g2(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)]′

= A(ω)[x(t,ω)+g2(t,xσ(t,xt)(·,ω),yσ(t,yt )(·,ω))]

+ f2(t,xσ(t,xt )(·,ω),yσ(t,yt )(·,ω),ω)

x(ω ,t) = ϕ1(ω ,t), t ∈ [−p,0], ω ∈ Ω
y(ω ,t) = ϕ2(ω ,t), t ∈ [−p,0], ω ∈ Ω,

Theorem 5 implies that the random problem (4.1) has at least one random mild solution.
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EXAMPLE 2. Let

ũ(·,ω) = u(·)+g1(·,xσ(·,u(·,ω)),vσ(·,v(·))), ṽ(·,ω) = v(·,ω)+g2(·,uσ(·,u(·)),vσ(·,v(·))).

For the second application of our result of this work, we consider the following random
semilinear parabolic problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂t ũ(x, t,ω)+A∗(x,D)ũ(x,t,ω) = f2(t,uσ(t,xt )(·,ω),uσ(t,vt)(·,ω),ω),
(x,t) ∈ G× (0,b],

Dνu(x, t) = 0 Γ× (0,b],
∂t ṽ(x, t,ω)+A∗(x,D)ṽ(x,t) = f2(t,uσ(t,xt )(·,ω),uσ(t,vt)(·,ω),ω),

(x,t) ∈ G× (0,b],
Dνv(x, t,ω) = 0 Γ× (0,b],
u0(x, t,ω), v0(x,t,ω), (x,t) ∈ G× [−p,0]
v(x, t,ω) = v0(t,ω), t ∈ [−p,0],

(4.2)

where G ⊂ Rd is a bounded domain with smooth boundary ∂G = Γ,

A∗(x,D,ω) = α∗(ω) ∑
|ν|<2m

aν(x)Dνu,

is a strong elliptic operator with coefficients aν ∈C2m(G), fi,gi : [0,b]×C([−p,0],L2(G))
×C([−p,0],L2(G))×Ω → L2(G) , is a given function and α∗ : Ω → R+ is random
variable.

THEOREM 6. [8, 22] Under the assumption that A∗ is strong elliptic operator
with smooth coefficients, then for any ω ∈ Ω the operator A(ω) generates an analytic
semigroup on L2 . Moreover the semigroups (S(t,ω))t�0 associted to A(ω) is equicon-
tinuous.

For every t ∈ R+ , we define u(t) = u(·,t). Hence the problem (4.2) can be rewrit-
ten as follows:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ũ′(t,ω)−A(ω)ũ(t,ω) = f1(t,uσ(t,ut)(·,ω),vσ(t,vt )(·,ω),ω), t ∈ [0,b],

ṽ′(t,ω)−A(ω)ṽ(t,ω) = f2(t,uσ(t,xt )(·,ω),uσ(t,vt)(·,ω),ω), t ∈ [0,b],

u(x, t,ω) = u0(x,t,ω), (x,t) ∈ G× [−p,0]

v(x, t,ω) = v0(x,t,ω), (x,t) ∈ G× [−p,0].

(4.3)

If we assume that all the conditions of Theorem 4 hold, then the problem (4.3) has
unique random mild solution.
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