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p-DEFORMATION

STEFAN HILGER

Abstract. In this article we introduce the so called p-deformed algebra ¥". The notion of p-
deformation is connected to the well-known ¢-deformation by the simple relation p = # .
Thus the p-deformed algebra ¥ will have representations in terms of g-difference operators.
There are isomorphisms of ¥ to the ¢-deformed Weyl algebra % and to the well known algebra
U = U, the g-deformation of the universal enveloping algebra U,(sl(2)), extended by an
involution. It turns out that the presentation of the p-deformed algebra 7 is more symmetric
than the ones of its ¢ counterparts. Especially the limit p — %1 can be performed in a direct
and quite consistent manner. For p*> = I the p-deformed algebra contains copies of the classical
Weyl algebra, the Lie superalgebra osp(1]2) and the Lie algebra s[(2). Finally we will see that
the p-deformed algebra ¥ contains a “squared copy” of itself.
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