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p–DEFORMATION

STEFAN HILGER

Abstract. In this article we introduce the so called p -deformed algebra V . The notion of p -

deformation is connected to the well-known q -deformation by the simple relation p = q2+q−2

2 .
Thus the p -deformed algebra V will have representations in terms of q -difference operators.
There are isomorphisms of V to the q -deformed Weyl algebra W and to the well known algebra
U = Uq , the q -deformation of the universal enveloping algebra Uq(sl(2)) , extended by an
involution. It turns out that the presentation of the p -deformed algebra V is more symmetric
than the ones of its q counterparts. Especially the limit p →±1 can be performed in a direct
and quite consistent manner. For p2 = 1 the p -deformed algebra contains copies of the classical
Weyl algebra, the Lie superalgebra osp(1|2) and the Lie algebra sl(2) . Finally we will see that
the p -deformed algebra V contains a “squared copy” of itself.
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