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Abstract. In this article we introduce the so called p -deformed algebra V . The notion of p -

deformation is connected to the well-known q -deformation by the simple relation p = q2+q−2

2 .
Thus the p -deformed algebra V will have representations in terms of q -difference operators.
There are isomorphisms of V to the q -deformed Weyl algebra W and to the well known algebra
U = Uq , the q -deformation of the universal enveloping algebra Uq(sl(2)) , extended by an
involution. It turns out that the presentation of the p -deformed algebra V is more symmetric
than the ones of its q counterparts. Especially the limit p →±1 can be performed in a direct
and quite consistent manner. For p2 = 1 the p -deformed algebra contains copies of the classical
Weyl algebra, the Lie superalgebra osp(1|2) and the Lie algebra sl(2) . Finally we will see that
the p -deformed algebra V contains a “squared copy” of itself.

1. Introduction

We start out with considering some q -difference operators, such as

X+ f (x) = x · f (x) Gf (x) = q2 f (q2x)+ f (q−2x)
q2+1

X− f (x) = f (q2x)− f (q−2x)
x(q2−q−2) H f (x) = q2 f (q2x)− f (q−2x)

q2−1
,

acting on a space F of functions defined on a discrete q2 -grid. q is a formal variable,
it may be interpreted as a fixed complex nonzero number.

For q → +1 or q → −1 some of the above operators become singular, so the
questions about an appropriate limit for q→±1 arises. A suitable approach to studying
this limit is passing to an algebraic context. Just consider the operators as elements of
an associative noncommutative algebra that fulfill certain relations, such as

X−X+−X+X− = G

X−X+ +X+X− = H

GH−HG = 0.
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Then the initial space F of functions becomes a representation of this algebra. It is
now possible to perform the above mentioned limit within the relations, the “limiting
algebra” has a corresponding representation on a space of continuous functions.

When further abstracting this approach one gets finally to an algebra V which is
– the other way round – the point of departure for our study. We give a short overview
of this study.

In Section 2 we introduce our main object, the so called p -deformed algebra V .
This algebra will prove to unfold a variety of special cases that are well known in
mathematical physics, especially quantum theory. Moreover, singularities that usually
appear in q -deformed versions of classical algebras will disappear by passing to the

above p -deformation. After introducing the variable q , related to p by q2+q−2

2 = p ,
and further elements S,S′,K,K′ ∈ V we will be able to establish isomorphisms of V
to the so called q -deformed Weyl algebra W and to the universal enveloping algebra
U = Uq(sl(2)) , also called a quantum group.

In Section 3 we investigate the quotient algebra V0 of V , defined by setting the
so called Casimir element to zero. Depending on certain values of p we are going to
present some special properties and then representations of this algebra V0 . It will turn
out that for the cases p =±1, after a certain transformation the defining relations of V0

reduce to the ones of the Lie superalgebra osp(1|2) , extended by an involution, that is
in the center (case p = +1) or in the so called supercenter (case p = −1) of V0 .

In the final Section 4 we establish an Embedding Theorem. The mapping η̃ : Ṽ →
V0 embeds a “squared” copy Ṽ of V into the algebra V0 . The other way round V0

can be considered as a “square root algebra” of Ṽ .

2. The algebra V

We call an associative algebra with a unit an algebra, for short. Recall [5, p. 3]
that a mapping between two algebras A → Ã is called an algebra morphism, if it is a
morphism of the underlying unital rings. The unit 1 has to be preserved.

We will use the standard notations for commutators and anticommutators

[A,B] := AB−BA, {A,B} := AB+BA.

Let C[p] denote the commutative C-algebra of polynomials in the variable p with
complex coefficients. The unital associative C[p]-algebra V is defined by a presenta-
tion with generating elements

X+,X−,C

and relations

(V0) [C,X+] = [C,X−] = 0
(V1) [X−X+,X+X−] = 0
(V2) (X+)2X− +X−(X+)2 = 2pX+X−X+ +X+C
(V3) (X−)2X+ +X+(X−)2 = 2pX−X+X− +X−C.

(1)
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Additionally we define

(V4) P := (X−X+)2 +(X+X−)2−2pX−(X+)2X−−C(X−X+ +X+X−).

2.1. Representation by q -difference operators

We make the abstract algebra V more concrete by stating a representation. Given
the variable p , considered as a complex nonzero number, choose a complex number
q �= 0 such that

q2+q−2

2 = p. (2)

For p2 = 1 there are two solutions for q , otherwise there are four.
In algebraic terms the relation (2) induces an injection of polynomial rings C[p] ↪→

C[q] . In order to have rational expressions in q available in V , we tacitly replace V
by the tensor product V ⊗C[p] C(q) , where C(q) is the field of rational functions with
variable q .

In the course of this paper the variable q will only appear within the following
Theorem 1 and in Subsection 2.4. The main properties of the algebras V and V0 in
Section 3 the embedding in Section 4 only involve the variable p , they are independent
of the choice for q in (2).

THEOREM 1. Let p2 �= 1 , that is q /∈ {1, i,−1,−i} . Then there is a representation
of V on a space F of functions defined on a q2 -grid, given by

X+ f (x) = x · f (x), X− f (x) = f (q2x)− f (q−2x)
x(q2−q−2) ,

C f (x) = 0, P f (x) = f (x).
(3)

The operator X− is the well known symmetric q2 difference operator, sometimes called
the Hahn operator or the Jackson operator. Note that it is invariant with respect to
replacing q by any other solution ±q±1 of equation (2). So the representation (3) only
depends on p , the choice of q according to (2) is irrelevant.

Proof. We check some of the defining relations (V1)–(V4) by computing some of
the composite operators appearing there.

X−X+ f (x) = X−x f (x) = q2 f (q2x)−q−1 f (q−2x)
q2−q−2

X+X− f (x) = X+ f (q2x)− f (q−2x)
x(q2−q−2) = f (q2x)− f (q−2x)

q2−q−2

X−(X+)2X− f (x) = X+(X−)2X+ f (x) = q2 f (q4x)−(q2+q−2) f (x)+q−2 f (q−4x)
(q2−q−2)2

(X+)2X− f (x) = x f (q2x)− f (q−2x)
q2−q−2

X−(X+)2 f (x) = X−x2 f (x) = q4x f (q2x)−q−4x f (q−2x)
q2−q−2
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[(X+)2X− +X−(X+)2] f (x) = (q4+1)x f (q2x)−(q−4+1)x f (q−2x)
q2−q−2

X+X−X+ f (x) = x q2 f (q2x)−q−1 f (q−2x)
q2−q−2

(q2 +q−2)X+X−X+ f (x) = (q4+1)x f (q2x)−(q−4+1)x f (q−2x)
q2−q−2 . �

REMARK 1. If p = cos 2π
n for some n = 3,4, . . . , then one of the solutions of (2)

fulfills q2 = e
2πi
n , a primitive n -th root of unity. This means that the above represen-

tation (3) acts on functions defined on the finite multiplicative group En = {e 2πik
n ∈ C |

k = 0, ...,n−1} The representation space is finite dimensional with dimension n .
As an example we choose n = 4, that is p = 0 and then q2 = +i or q2 = −i .

Representation (3) now acts on functions with domain {1, i,−1,−i} . It is given by
complex 4×4 matrices

X+ �→

⎛
⎜⎜⎝

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i

⎞
⎟⎟⎠ , G �→ 1

2

⎛
⎜⎜⎝

0 1+ i 0 1− i
1− i 0 1+ i 0

0 1− i 0 1+ i
1+ i 0 1− i 0

⎞
⎟⎟⎠ ,

X− �→ 1
2

⎛
⎜⎜⎝

0 −i 0 i
1 0 −1 0
0 −i 0 i
1 0 −1 0

⎞
⎟⎟⎠ , H �→ 1

2

⎛
⎜⎜⎝

0 1− i 0 1+ i
1+ i 0 1− i 0

0 1+ i 0 1− i
1− i 0 1+ i 0

⎞
⎟⎟⎠ .

Note that (X−)2 = 0, (X+)4 = 1 and P = G2 = H2 = 1.

2.2. Properties of V

We are going to examine some properties of V in a purely algebraic fashion.

1. (V0) shows that the so called Casimir element C is in the center of V . The three
elements C,X−X+,X+X− generate a commutative subalgebra.

2. The element P defined in (V4) is another element in the center, in fact we have

[P,X+]
= [(X−X+)2 +(X+X−)2 −2pX−(X+)2X−−C(X−X+ +X+X−)]X+

−X+[(X−X+)2 +(X+X−)2 −2pX−(X+)2X−−C(X−X+ +X+X−)]
= X−X+[X−(X+)2 −2pX+X−X+−CX+]

− [(X+)2X−−2pX+X−X+−CX+]X+X−

= X−X+[−(X+)2X−]− [−X−(X+)2]X+X− = 0

and similarly [P,X−] = 0. Then (V4) implies [P,C] = 0.
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3. The notation with the superscripts + and − is a reminiscence to ladder theory,
see [4]. X+ and X− act as raising (or creation) and lowering (or annihilation)
operators in a ladder. Ladder theory provides a mean to systematically compute
finite dimensional representations of the algebra V . We won’t consider this
direction in this article.

2.3. G-H transformation

In this section we specify the commutator G and anticommutator H of the ladder
operators X+ an X− . They will later serve to identify further algebraic properties of
the algebras V and V0 .

THEOREM 2. (G-H transformation) We additionally define the commutator and
anticommutator of X−,X+ ∈ V

G := X−X+−X+X−, H := X−X+ +X+X−.

Then we can rewrite and supplement the relations (V0)–(V4) in the following way.

(T0) [C,X+] = [C,X−] = 0
(T1) [G,H] = 0
(T2) GX+ = X+[pG+(p−1)H+C]

HX+ = X+[pH +(p+1)G+C]
(T3) GX− = X−[pG− (p−1)H−C]

HX− = X−[pH− (p+1)G+C]
(T4) P = p+1

2 G2− p−1
2 H2−CH

(T5) G = [X−,X+]
(T6) H = {X−,X+}.

(4)

Within the representation (3) the elements G and H act as

G f (x) = q2 f (q2x)+ f (q−2x)
q2+1

, H f (x) = q2 f (q2x)− f (q−2x)
q2−1

.

Only exemplarily we prove that the first relation in (T2) follows from (V2) .

GX+ = X−(X+)2−X+X−X+

(V2)= −(X+)2X− +2pX+X−X+ +X+C−X+X−X+

= X+[p(X−X+−X+X−)+ (p−1)(X−X+ +X+X−)+C]
= X+[pG+(p−1)H +C].

When taking account of (V2) , the relation (T4) is a reformulation of (V4) as follows

P
(V4)= (X−X+)2 +(X+X−)2−2pX−(X+)2X−−C(X−X+ +X+X−)

= p+1
2 (X−X+−X+X−)2 − p−1

2 (X−X+ +X+X−)2 −C(X−X+ +X+X−)

= p+1
2 G2− p−1

2 H2−CH.
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2.4. Connecting p -deformation to q -deformation

In order to establish the connection of the p -deformed algebra to the classical
well-known q -deformed universal enveloping algebra U of sl2(C) , we define the ad-
ditional elements S,S−1 and K,K−1 . With respect to representations these are shift
operators that are decisive in the literature about q -deformation, see especially [5, p.
122].

THEOREM 3. (S transformation) If q2 �= 1 or C = 0 we are able to define the
following two elements in V

S := qX−X+−q−1X+X− + C
q−q−1 (5)

S′ := q−1X−X+−qX+X−− C
q−q−1 .

Then the relations (V0)–(V4) transform into

(W0) [C,X+] = [C,X−] = 0
(W1) [S,S′] = 0
(W2) SX+ = q2X+S S′X+ = q−2X+S′
(W3) SX− = q−2X−S S′X− = q2X−S′
(W4) (q−q−1)2P = (q−q−1)2SS′+C2

(W5) (q+q−1)[X−,X+] = S+S′
(W6) (q−q−1)2{X−,X+} = (q−q−1)(S−S′)−2C.

(6)

Within the representation (3) the elements S and S′ act as

S f (x) = q f (q2x), S′ f (x) = q−1 f (q−2x).

Proof. (W5) and (W6) only repeat the definitions (5). The computations

SX+−q2X+S

= [qX−X+−q−1X+X− + 1
q−q−1C]X+−q2X+[qX−X+−q−1X+X− + 1

q−q−1C]

= q
[
(X+)2X− +X−(X+)2− (q2 +q−2)X+X−X+ + 1−q2

q(q−q−1)C
]

and similarly for the differences S′X+ − q−2X+S′ , SX−− q−2X−S , S′X− − q2X−S′ ,
show that (V2),(V3) are equivalent to (W2),(W3) . Also we check the equivalence of
the definition (V4) and the relation (W4) as follows.

(q−q−1)2SS′+C2

= [(q2−1)X−X+− (1−q−2)X+X− +C] · [(1−q−2)X−X+− (q2−1)X+X−−C]+C2

= (q−q−1)2[(X−X+)2 +(X+X−)2]− (q2−1)2X−(X+)2X−− (1−q−2)X+(X−)2X+

+C[−(q2−1)X−X+ +(1−q−2)X+X− +(1−q−2)X−X+− (q2−1)X+X−]
= (q−q−1)2[(X−X+)2 +(X+X−)2 − (q2 +q−2)X−(X+)2X−−C(X−X+ +X+X−)]
= (q−q−1)2P. �
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REMARK 2. When we add the relations q = S = S′ = 1, then we end up with the
classical Weyl algebra with generators X+,X− and the canonical commutation relation
(W5) , that is [X−,X+] = 1. So we will denote the presentation (6) of the algebra V as
the q -deformed Weyl algebra W . This algebra was studied in the article [3].

REMARK 3. In [7, p. 134] the authors introduce the so called symmetric q -oscillator
algebra Aq . We remark that there is an isomorphism W /(SS′ = 1) → Aq given by

q �→ q
1
2 , X+ �→ a+, X− �→ a,

S �→ q
1
2 qN , S′ �→ q−

1
2 q−N .

THEOREM 4. (K transformation) If q4 �= 1 we can introduce the elements

K := q−q−1

q+q−1 S = q2−1
q+q−1 X−X+ + q−2−1

q+q−1 X+X− + C
q+q−1 (7)

K′ := q−q−1

q+q−1 S′ = q−2−1
q+q−1 X−X+ + q2−1

q+q−1 X+X−+ C
q+q−1 .

Then the relations (V0)–(V4) transform into

(U0) [C,X+] = [C,X−] = 0
(U1) [K,K′] = 0
(U2) KX+ = q2X+K K′X+ = q−2X+K′
(U3) KX− = q−2X−K K′X− = q2X−K′
(U4) (q−q−1)2P = C2− (q+q−1)2KK′
(U5) (q−q−1)[X−,X+] = K−K′
(U6) (q−q−1)2{X−,X+} = (q+q−1)(K +K′)−2C.

Within the representation (3) the elements K and K′ act as

K f (x) = q2−1
q+q−1 f (q2x), K′ f (x) = q−2−1

q+q−1 f (q−2x).

Proof. For the proof just replace S = q+q−1

q−q−1 K and S′ = q+q−1

q−q−1 K′ within the rela-

tions (W1)–(W6) in (6). �

REMARK 4. When renaming the elements E =−X+ , F = X− , L = G = [X−,X+] ,
it turns out that this algebra with the additional relation KK′ = 1 coincides with the
algebra U = Uq . This ist the q -deformation of the universal enveloping algebra
U(sl(2)) of the Lie algebra sl(2) , extended by a central involution. Uq is also called
a quantum group, see [5, p. 125] or [7, p. 53]. Thus we have established a morphism of
algebras V /(KK′ = 1) → Uq . In this context the element Cq = C

(q−q−1)2 in the center

of U is called the quantum Casimir element.
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3. The algebra V0

Within the algebra V we now set C = 0. In other words we pass to the algebra
V0 := V /(C = 0) that is defined as the quotient algebra of V by the two sided ideal
(C = 0) .

We have already seen a representation of this algebra V0 for p2 �= 1 in Theorem 1.
We will now investigate the algebra V0 and give representations for p = 1 and p =−1.

3.1. The algebra V0 , where p = 1

Here the relations (T1)–(T6) , see (4), have the following form

(T1) [G,H] = 0
(T2) [G,X+] = 0 [H,X+] = 2X+G
(T3) [G,X−] = 0 [H,X−] = −2X−G
(T4) P = G2

(T5) G = [X−,X+]
(T6) H = {X−,X+}.

We see that G commutes with all elements of V0 , it is in the center.

THEOREM 5. We add to V0 with p = 1 the relation G2 = 1 and perform a “G-
transformation”. That means we define additional elements in V according to

F := GH, Z+ := X+, Z− := GX−,
Z̃+ := (Z+)2 = (X+)2, Z̃− := (Z−)2 = (X−)2.

Then one can thoroughly derive from the above set of relations (T1)–(T6) the equiva-
lent set (O1)–(O6) and additionally the “tilde” set (Õ2),(Õ3),(Õ5)–(Õ9)

(O1) [G,F] = 0
(O2) [G,Z+] = 0 [F,Z+] = 2Z+

(O3) [G,Z−] = 0 [F,Z−] = −2Z−
(O4) P = G2 = 1
(O5) [Z−,Z+] = 1
(O6) {Z−,Z+} = F

(Õ2) [G, Z̃+] = 0 [F, Z̃+] = 4Z̃+

(Õ3) [G, Z̃−] = 0 [F, Z̃−] = −4Z̃−
(Õ5) [Z̃−, Z̃+] = 2F
(Õ6) {Z̃−, Z̃+} = 1

2F2 + 3
2

(Õ7) {Z+,Z+} = 2Z̃+

{Z−,Z−} = 2Z̃−
(Õ8) [Z̃−,Z+] = 2Z−

[Z̃+,Z+] = 0
(Õ9) [Z̃+,Z−] = −2Z+

[Z̃−,Z−] = 0.

(8)
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Proof. We only show the right side of (O2) and (Õ5),(Õ6) . Here we have

[F,Z+] = GHX+−X+GH = G[H,X+] = 2G2X+ = 2Z+,

then

[Z̃−, Z̃+] = [(X−)2,(X+)2] = X−[X−,(X+)2]+ [X−,(X+)2]X−

= X−X+[X−,X+]+X−[X−,X+]X+ +X+[X−,X+]X− +X+[X−,X+]X+X−

= 2(X−X+ +X+X−)G = 2HG = 2F

and finally

1
2F2 + 3

2 = 1
2H2 + 3

2G2

= 1
2(X−X+−X+X−)2 + 3

2(X−X+ +X+X−)2

= 2(X−X+)2 +2(X+X−)2−X−(X+)2X−−−X+(X−)2X+

= X−(2X+X−X−− (X+)2X−)+X+(X−X+X−− (X−)2X+)
(V2),(V3)= (X−)2(X+)2 +(X+)2(X−)2 = {Z̃−, Z̃+}. �

REMARK 5. There is a representation of V0 for p = 1 and G2 = 1 on a space of
single variable smooth functions, given by

Z+ f (x) = x · f (x) F f (x) = f (x)+2x f ′(x)
Z− f (x) = f ′(x) Gf (x) = f (x).

We see that the subalgebra generated by the two elements Z+,Z− and relation (O5) is
again the Weyl algebra of Remark 2.

3.2. The Lie superalgebra osp(1|2)

V has the structure of a Z2 -graded algebra, i.e. there exists a decomposition of
the underlying vector space that is compatible with the algebra structure as follows

V = V [0]⊕V [1] and V [a] ·V [b] ⊆ V [(a+b)mod 2].

The elements in V [0] ∪V [1] are called homogeneous. The elements in V [0] are called
even, they have degree 0, whereas the elements in V [1] are odd and have degree 1.

The Z2 -grading in V is defined by the affiliations

P,C,G,H ∈ V [0], X+,X− ∈ V [1].

The relations (V0)–(V4) , see (1), preserve this Z2 -grading.
We recall from [6] that a Lie superalgebra is a Z2 -graded vector space V =V [0]⊕

V [1] , equipped with a bilinear product [· , · ]s : V ×V →V , such that

[A,B]s +(−1)ab[B,A]s = 0

(−1)ac[A, [B,C]s]s +(−1)cb[C, [A,B]s]s +(−1)ba[B, [C,A]s]s = 0,
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whenever A,B,C ∈ V [0]∪V [1] with degA = a , degB = b and degC = c .
As with any Z2 -graded algebra, the algebra V bears in a natural way the structure

of a Lie superalgebra. One has to define the bilinear product by

[A,B]s :=
{

[A,B], if A or B is even,
{A,B}, if A and B are odd.

To be more concrete, the 12 commutator and anticommutator relations in the right
column of (8) constitute the structure of the classical Lie superalgebra osp(1|2) . Its
basis consists of two odd elements Z+ , Z− and three even elements F , Z̃+ , Z̃− .

The even elements Z̃−, Z̃+,F in the p -deformed algebra V together with the
relations on the right side of (Õ2),(Õ3),(Õ5) generate the Lie algebra sl(2) . The three
elements Z+,Z−,F with the relations on the right side of (O2),(O3),(O6) constitute
the so called parabosonic algebra, see [2, Section 6.2].

There is a representation of osp(1|2) by 3× 3 matrices, see [6, p. 15]. By some
easy computations one can check that the 12 relations in the right column of (8) are
fulfilled, if the representation is defined by the assignments

Z− �→
⎛
⎝ 0

√
2 0

0 0 0
−√

2 0 0

⎞
⎠ , Z+ �→

⎛
⎝ 0 0

√
2√

2 0 0
0 0 0

⎞
⎠ ,

Z̃− �→
⎛
⎝0 0 0

0 0 0
0 −2 0

⎞
⎠ , Z̃+ �→

⎛
⎝0 0 0

0 0 2
0 0 0

⎞
⎠ , F �→

⎛
⎝0 0 0

0 2 0
0 0 −2

⎞
⎠ .

Altogether we see that the algebra V0 with additional relations p = 1 and G2 = 1
is isomorphic to the Lie superalgebra osp(1|2) , extended by a central involution G .
The other way round we can state that the p -deformed algebra V0 is a reasonable p -
deformation, henceforward q -deformation, of the Lie superalgebra osp(1|2) .

3.3. The algebra V0 , where p = −1

The relations (T1)–(T6) from (4), now have the following form

(T1) [G,H] = 0
(T2) {H,X+} = 0 {G,X+} = −2X+H
(T3) {H,X−} = 0 {G,X−} = 2X−H
(T4) P = H2 = 1
(T5) G = [X−,X+]
(T6) H = {X−,X+}.

So H is in the supercenter, i.e. commutes with all even elements and anticommutes
with all odd elements.
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THEOREM 6. We add to V0 with p = −1 the relation H2 = 1 and perform an
“H -transformation”.

F := HG, Z+ := X+, Z− := HX−,
Z̃+ := (Z+)2 = (X+)2, Z̃− := (Z−)2 = −(X−)2.

Then one can thoroughly derive from the above set of relations (T1)–(T6) the equiva-
lent set (O1)–(O6) and additionally the “tilde” set (Õ2),(Õ3),(Õ5)–(Õ9)

(O1) [H,F] = 0
(O2) {H,Z+} = 0 [F,Z+] = 2Z+

(O3) {H,Z−} = 0 [F,Z−] = −2Z−
(O4) P = H2 = 1
(O5) [Z−,Z+] = 1
(O6) {Z−,Z+} = F

(Õ2) [H, Z̃+] = 0 [F, Z̃+] = 4Z̃+

(Õ3) [H, Z̃−] = 0 [F, Z̃−] = −4Z̃−
(Õ5) [Z̃−, Z̃+] = 2F
(Õ6) {Z̃−, Z̃+} = 1

2F2 + 3
2

(Õ7) {Z+,Z+} = 2Z̃+

{Z−,Z−} = 2Z̃−
(Õ8) [Z̃−,Z+] = 2Z−

[Z̃+,Z+] = 0
(Õ9) [Z̃+,Z−] = −2Z+

[Z̃−,Z−] = 0.

(9)

Proof. The proof is analogous to the one of Theorem 5. One has to appropriately
swap signs. �

REMARK 6. As in the case p = 1, the algebra V0 , with additional relations p =
−1 and H2 = 1 contains the Lie superalgebra osp(1|2) with the relations presented on
the right had side of (9). Altogether this algebra with relations (V1)–(V6) is isomorphic
to the Lie superalgebra osp(1|2) , extended by a supercentral involution H .

This algebra is sometimes denoted by osp−1(1|2) or sl−1(2) . Within this algebra
it is possible to define further interesting elements or algebras, such as Dunkl operators,
the Bannai-Ito algebra or Racah algebra, that evoke a lot of research activities, see [1]
or [8].

REMARK 7. There is a representation of V0 for p = −1 and H2 = 1 on a space
of single variable smooth functions

Z+ f (x) = x · f (x) F f (x) = f (x)+2x f ′(x)
Z− f (x) = f ′(x) Gf (x) = f (−x).
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4. An Embedding Theorem

THEOREM 7. (Embedding η̃ : Ṽ → V0 ) Let Ṽ be a copy of V that fulfills the
relations (Ṽ0)–(Ṽ3) . There is an embedding, i.e. an injective algebra morphism

η̃ : Ṽ ↪→ V0

p̃ �→ 8p4−8p2 +1 C̃ �→ 8p3P
X̃+ �→ (X+)2 G̃ �→ 2pGH
X̃− �→ (X−)2 H̃ �→ (p+ 1

2 )G2 +(p− 1
2 )H2

(10)

This algebra morphism is — up to a multiplicative factor — the one presented in
Prop. 3 (ii) in [7, p. 137], raised to the p -deformation setting.

Proof. We have to check that the relations (Ṽ0)–(Ṽ3) are preserved under the
embedding. As usual, we adopt the convention to identify the elements of V with their
respective images in V0 .

The relation (Ṽ0) is trivial, since P is central in V0 . For the remaining proof note
that we again and again use the identity in V0

(V1) X−X+X+X− = X+X−X−X+.

Then, also with (V2),(V3) , we derive

[X̃−X̃+, X̃+X̃−]

= X−X−X+X+X+X+X−X−−X+X+X−X−X−X−X+X+

= (2pX−X+X−−X+X−X−) X+X+ (2pX−X+X−−X−X−X+)−
(2pX+X−X+−X−X+X+) X−X− (2pX+X−X+−X+X+X−)

= 4p2 (X−X+X−X+X+X−X+X−−X+X−X+X−X−X+X−X+)+
2pX−X+(X+X−X−X+−X−X+X+X−)X−X+ +
2p X+X−(X−X+X+X−−X+X−X−X+)X+X− +

(X−X+X+X−X−X+X+X−−X+X−X−X+X+X−X−X+)

= 4p2 (X−X+X+X−X−X+X+X−−X+X−X−X+X+X−X−X+) = 0.

Further note that

(X−)2(X+)2 − (X+)2(X−)2

= [2pX−X+X−−X+(X−)2]X+−X+[2pX−X+X−−X+(X−)2]
= 2p[(X−X+)2− (X+X−)2] (11)

(X−)2(X+)2 +(X+)2(X−)2 +2X+(X−)2X+

= [2pX−X+X−−X+(X−)2]X+

+X+[2pX−X+X−−X+(X−)2]+2X+(X−)2X+

= 2p[(X−X+)2 +(X+X−)2]. (12)
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Then with a rather tricky decomposition of the expression

8p3(X+)2P = (8p3−4p)X+PX+ +2p(X+)2P+2pP(X+)2

we prove (Ṽ2)

(X̃+)2X̃− + X̃−(X̃+)2 −2 p̃X̃+X̃−X̃+− X̃+C̃
= (X+)4(X−)2 +(X−)2(X+)4−2(8p4−8p2 +1)(X+)2(X−)2(X+)2 −8p3(X+)2P

= (X+)2
[
(X−)2(X+)2−2p[(X−X+)2− (X+X−)2]

]
+

[
(X+)2(X−)2 +2p[(X−X+)2− (X+X−)2]

]
(X+)2

− (16p4−16p2 +2)(X+)2(X−)2(X+)2

− (8p3−4p)X+ [(X−X+)2 +(X+X−)2 −2pX+(X−)2X+] X+

−2p (X+)2 [(X−X+)2 +(X+X−)2−2pX+(X−)2X+]
−2p [(X−X+)2 +(X+X−)2 −2pX+(X−)2X+] (X+)2

= −4p(X+)2(X−X+)2 −4pX+(X−X+)2

− (16p4−16p2)(X+)2(X−)2(X+)2

− (4p2−2)X+ [(X−)2(X+)2 +(X+)2(X−)2 +2X+(X−)2X+] X+

+(16p4−8p2)(X+)2(X−)2(X+)2

+4p2(X+)3(X−)2X+ +4p2X+(X−)2(X+)3

= 2(X+)2[X+(X−)2 +(X−)2X+−2pX−X+X−]X+

+2X+[X+(X−)2 +(X−)2X+−2pX−X+X−](X+)2

= 0.

Finally the expressions for G̃ and H̃ can be directly checked by using the relations (11)
and (12). �

REMARK 8. When we put p = 1 and G2 = 1 in the above theorem and incorpo-
rate the transformation (8), then the embedding (10) gets the form

η̃ : Ṽ ↪→ V0

p̃ �→ 1 C̃ �→ 8
X̃+ �→ Z̃+ G̃ �→ 2F
X̃− �→ Z̃− H̃ �→ 1

2F2 + 3
2 .

The relations (Ṽ2) , (Ṽ3) and (Ṽ5) , (Ṽ6) imply the corresponding relations in V0 , where
p = 1,G2 = 1, that appear in (8). Hence the embedding of the theorem generalizes the
embedding U(osp(1|2)) ↪→U(sl(2)) to the p -deformed or q -deformed setting.

REMARK 9. When we put p =−1 and H2 = 1 in Theorem 7 and incorporate the
transformation (9), then the embedding (10) gets the form

η̃ : Ṽ ↪→ V0

p̃ �→ 1 C̃ �→ −8
X̃+ �→ Z̃+ G̃ �→ −2F
X̃− �→ −Z̃− H̃ �→ − 1

2F2− 3
2 .
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Again the relations (Ṽ2) , (Ṽ3) , (Ṽ5) , (Ṽ6) in V0/(p = −1,H2 = 1) imply the corre-
sponding relations appearing in (9).

REMARK 10. We only mention without any proof that there is another embed-
ding, called the Jordan-Schwinger homomorphism, given by

η̂ : V̂ ↪→ V ⊗2
0

p̂ �→ 2p2−1
X̂+ �→ X+Y− Ĝ �→ 1

2HxGy − 1
2GxHy

X̂− �→ X−Y+ Ĥ �→ 1
2GxGy − 1

2HxHy

Ĉ �→ −(p+1)GxGy − (p−1)HxHy −CxHy −CyHx.

Here the algebra V ⊗2 is the tensor product of two algebras V , it has a presentation
with generators

X+,X−,Cx, Y+,Y−,Cy

and the relations (V0)–(V3) , separately for the x - and y-elements. Any x -element
commutes with any y-element.

When we invoke the definitions (5) and (7), then we have the additional assignment

η̂ : K̂ �→ SxS
′
y, K̂′ �→ S′xSy.

So we have an embedding of the universal enveloping algebra Û ↪→ W ⊗2
0 , cf. the

presentations of V in (8) or (6), respectively. This was the topic in the article [3].
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