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Abstract. In this article we introduce the so called p-deformed algebra ¥". The notion of p-
2, 2
a°+q

deformation is connected to the well-known g-deformation by the simple relation p =
Thus the p-deformed algebra ¥ will have representations in terms of g-difference operators.
There are isomorphisms of ¥ to the g-deformed Weyl algebra % and to the well known algebra
U = U, the g-deformation of the universal enveloping algebra U,(sl(2)), extended by an
involution. It turns out that the presentation of the p-deformed algebra ¥ is more symmetric
than the ones of its ¢ counterparts. Especially the limit p — £1 can be performed in a direct
and quite consistent manner. For p> = 1 the p-deformed algebra contains copies of the classical
Weyl algebra, the Lie superalgebra osp(1|2) and the Lie algebra s[(2). Finally we will see that
the p-deformed algebra ¥ contains a “squared copy” of itself.

1. Introduction

We start out with considering some ¢g-difference operators, such as

Xtfx) = x-flx) Gf(x) = W
20— Flo—2x 2 P a2y
X fx) = % Hf(x) = %_{(4)’

acting on a space .# of functions defined on a discrete ¢°-grid. ¢ is a formal variable,
it may be interpreted as a fixed complex nonzero number.

For g — +1 or ¢ — —1 some of the above operators become singular, so the
questions about an appropriate limit for ¢ — +1 arises. A suitable approach to studying
this limit is passing to an algebraic context. Just consider the operators as elements of
an associative noncommutative algebra that fulfill certain relations, such as

X XT—x'x" =G
X XT+X"X" = H
GH—HG = 0.

Mathematics subject classification (2020): 39A13, 17B37, 81R50, 16S30, 17B35.
Keywords and phrases: q-difference operators, deformation, quantum group, universal enveloping
algebras of Lie (super)algebras.
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Then the initial space .# of functions becomes a representation of this algebra. It is
now possible to perform the above mentioned limit within the relations, the “limiting
algebra” has a corresponding representation on a space of continuous functions.

When further abstracting this approach one gets finally to an algebra ¥* which is
— the other way round — the point of departure for our study. We give a short overview
of this study.

In Section 2 we introduce our main object, the so called p-deformed algebra 7.
This algebra will prove to unfold a variety of special cases that are well known in
mathematical physics, especially quantum theory. Moreover, singularities that usually
appear in g-deformed versions of classical algebras will disappear by passing to the

above p-deformation. After introducing the variable ¢, related to p by ‘IZJrT‘f =p,
and further elements S,S’, K, K’ € ¥ we will be able to establish isomorphisms of ¥
to the so called g-deformed Weyl algebra 7 and to the universal enveloping algebra
U = U,;(s1(2)), also called a quantum group.

In Section 3 we investigate the quotient algebra 7 of 7', defined by setting the
so called Casimir element to zero. Depending on certain values of p we are going to
present some special properties and then representations of this algebra % . It will turn
out that for the cases p = +1, after a certain transformation the defining relations of %
reduce to the ones of the Lie superalgebra osp(1]2), extended by an involution, that is
in the center (case p = +1) or in the so called supercenter (case p = —1) of %}.

In the final Section 4 we establish an Embedding Theorem. The mapping 7 : ¥ —
¥, embeds a “squared” copy ¥ of ¥ into the algebra %,. The other way round %
can be considered as a “square root algebra” of ¥ .

2. The algebra ¥

We call an associative algebra with a unit an algebra, for short. Recall [5, p. 3]
that a mapping between two algebras .o/’ — o is called an algebra morphism, if it is a
morphism of the underlying unital rings. The unit 1 has to be preserved.

We will use the standard notations for commutators and anticommutators

[A,B] := AB—BA, {A,B} := AB+BA.

Let C[p] denote the commutative C-algebra of polynomials in the variable p with
complex coefficients. The unital associative C[p]-algebra ¥ is defined by a presenta-
tion with generating elements

XX ,C
and relations

) [CxT]=1[Cx"] = 0
) XX+ XtX7] 0
) (X)X 4HX(XT)? 2pXTXXT+XTC
) (X)X 4HXT(X)? 2pX XTX"+X C.

ey

(
(
(
(
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Additionally we define

(Vo) P == (X XT)P+(XTX)?—2pX (XT)2X~ —C(X XT+XTX").

2.1. Representation by ¢-difference operators

We make the abstract algebra ¥” more concrete by stating a representation. Given
the variable p, considered as a complex nonzero number, choose a complex number
q # 0 such that

e @)

For p? =1 there are two solutions for g, otherwise there are four.

In algebraic terms the relation (2) induces an injection of polynomial rings C[p] —
C|g]. In order to have rational expressions in g available in ¥, we tacitly replace ¥’
by the tensor product 7 @, C(g), where C(g) is the field of rational functions with
variable q.

In the course of this paper the variable g will only appear within the following
Theorem 1 and in Subsection 2.4. The main properties of the algebras ¥ and % in
Section 3 the embedding in Section 4 only involve the variable p, they are independent
of the choice for ¢ in (2).

THEOREM 1. Let p* # 1, thatis q ¢ {1,i,—1,—i}. Then there is a representation
of ¥ onaspace F of functions defined on a q>-grid, given by

XTflx) = x f(x), X~ fx) = % o
Cf(x) = 0, Pf(x) = f(x).

The operator X ~ is the well known symmetric ¢° difference operator, sometimes called
the Hahn operator or the Jackson operator. Note that it is invariant with respect to
replacing g by any other solution ¢! of equation (2). So the representation (3) only
depends on p, the choice of g according to (2) is irrelevant.

Proof. We check some of the defining relations (V;)—(Vs) by computing some of
the composite operators appearing there.

XXTf) = X xf(x) = TN 02
2x_ 72X 2)(— ,zx
XTX flx) = X+f(ti(q)2_1;(gz) ) _ f(qqg_gng )
X (XT)Xf(x) = XT (X)X f(x) = qu(‘14x)—(qz&ziz)fz(;cz)ﬁ-quf(q%x)

20— (g~ 2x
(XX 70) = oLl

—v\2 _oy-a2 _ @)= *xf (g7
X RA) = X () = Ll
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4 D F (020 — (0= 4+ D F(g—2x
(X)X + X (X)) = R e

2 0020 —a— £(a2x
XX XTf(x) = xf flq q)quiif(q )

(P +qgHXTX XTf(x) = (514+1)xf(fiz););_(Z::Jrl)xf(qux). 0

REMARK 1. If p =cos 27” for some n = 3,4,..., then one of the solutions of (2)

2mi e . .
fulfills ¢ = e, a primitive n-th root of unity. This means that the above represen-
2mik

tation (3) acts on functions defined on the finite multiplicative group E,, = {e"» € C|
k=0,...,n— 1} The representation space is finite dimensional Wlth dimension n

As an example we choose n = 4, that is p = 0 and then ¢*> = +i or ¢°> = —i.
Representation (3) now acts on functions with domain {1,i,—1,—i}. It is given by
complex 4 x 4 matrices

100 0 0 14i 0 1—i
0i 0 0 1—i 0 14i 0
+ 1
X"=1o00-10 |’ G3l 0 127 0 141 |
00 0 —i 14i 0 1—i 0
0—i 0 i 0 1—i 0 14i
_ 10 -10 14i 0 1—i 0
1 1
X“=3lozioil H72| 0 14i 0 1-i
10 -10 1—i 0 14i 0

Note that (X7)2 =0, (X*)*=1and P=G*=H?=1.

2.2. Properties of 7

We are going to examine some properties of ¥ in a purely algebraic fashion.

1. (Vo) shows that the so called Casimir element C is in the center of ¥ . The three
elements C,X X+, X1tX~ generate a commutative subalgebra.

2. The element P defined in (Vj) is another element in the center, in fact we have

[PX"]
= [(X X"+ (XTX )P —2pX (X)X —C(X XT4+XTX)x*
XXX (XX ) —2pX (X)X T —C(X Xt +XTXT))
= X XX (X")?—2pXTX X" -CX"]
— (X)X —2pXTX Xt —CXT)XTX™
= X XT[-(X)XX |- [-X (X)) xtX" =0

and similarly [P,X ] =0. Then (Vj4) implies [P,C] =0.
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3. The notation with the superscripts + and — is a reminiscence to ladder theory,
see [4]. XT and X~ act as raising (or creation) and lowering (or annihilation)
operators in a ladder. Ladder theory provides a mean to systematically compute
finite dimensional representations of the algebra ¥ . We won’t consider this
direction in this article.

2.3. G-H transformation

In this section we specify the commutator G and anticommutator H of the ladder
operators X an X~ . They will later serve to identify further algebraic properties of

the algebras ¥ and ;.

THEOREM 2. (G-H transformation) We additionally define the commutator and
anticommutator of X~ , Xt €V

G = X X" -X"x",

H =X X"+XTX".

Then we can rewrite and supplement the relations (Vo)—(V4) in the following way.

(To)
(T1)
(T2)

(T3)

)
)

(
(
(Ts)

S5 S

[C,x7]
G, H]
GX*
HX*
GX~
HX ™
P

G

H

C.X] =0

0

X*[pG+(p—1)H+C]
X*[pH+(p+1)G+C]
X"[pG—(p—1)H-C| )
X~ [pH—(p+1)G+C]

elG? -y’ cH

(X~ x7]

{x=.x7}

Within the representation (3) the elements G and H act as

Gf(x) =

q*+1

P f () +f(g%x)

: Hf(x) = qu(qzngil‘(qux).

Only exemplarily we prove that the first relation in (75) follows from (V5).

GXT = X (Xx")?—xtxx*

(V2)

2 (X)X 42pXTX Xt XxTO—xtXTXT

= XTpX X" —X"X)+(p- D)X XT+X"X")+C]
= X*[pG+(p—1)H+C].

When taking account of (V5), the relation (7}) is a reformulation of (Vs) as follows

p )

(X X2 (XTX )2 —2pX (X)X —C(X Xt 4+Xx1X7)

= 2l XXX ) - (XX XX ) - C(X X HXTXT)

= g2 lyg?ch.
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2.4. Connecting p-deformation to g-deformation

In order to establish the connection of the p-deformed algebra to the classical
well-known ¢g-deformed universal enveloping algebra % of sl(C), we define the ad-
ditional elements S,S~! and K,K~!. With respect to representations these are shift
operators that are decisive in the literature about g-deformation, see especially [5, p.
122].

THEOREM 3. (S transformation) If ¢> # 1 or C =0 we are able to define the
following two elements in V'

S = qX_X+—q_1X+X_+q51,1 (5)
S = g XXt —gxTXx - £
q9—q
Then the relations (Vo)—(V4) transform into
(Wo) Ccxt] = [cX] =0
(W1) 5,8 = 0
(W) SXt = XS S'’Xt = g7 2x+¢
(W3) SX— = ¢ XS S'X— = ¢#X°§ ()
(Wa) (g—q')’P = (q—q ')*SS'+C?
Ws)  (g+q HiX X" = S+
We) (g—q ") {X . X"} = (¢—q ")(S-5)-2C

Within the representation (3) the elements S and S' act as
Sf(x) = af(q*x), S'fx) = q ' flg ).

Proof. (Ws) and (W) only repeat the definitions (5). The computations

SXt—g’Xts

= [gx Xt —¢ 'XTX + ; 2,1 CXT—?XT[gX X" —qg'XTX + q_lq,l C]

= g[(XPXT X (X - (g XXX e

and similarly for the differences S'’X+ — ¢ 2X*S', SX~ —q2X~S, X~ —¢’X~ S,
show that (V3),(V3) are equivalent to (W), (Ws). Also we check the equivalence of
the definition (V) and the relation (Wy) as follows.

(g—q 1288 +C?
=[(P-DX X" —(1—g XX +C- [(1—-g DX XT— (- 1DXTX —C|]+C?
=(g—q VIX X+ XX )P (@ - 1)’X (XT)PX - (1-g X" (X )’Xx"
+C—(P-DX X" +(1—gHXX +(1—qgHX X" —(FF—1)X X
=(q—q VX X +XX )= (+q )X (XT)P’X —C(X X" +XTX7)]
=(g-q')P O
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REMARK 2. When we add the relations ¢ = S = 8’ = 1, then we end up with the
classical Weyl algebra with generators X, X~ and the canonical commutation relation
(Ws), thatis [X~,X "] = 1. So we will denote the presentation (6) of the algebra ¥ as
the g-deformed Weyl algebra 7. This algebra was studied in the article [3].

REMARK 3. In[7, p. 134] the authors introduce the so called symmetric g-oscillator
algebra .o7;. We remark that there is an isomorphism #//(SS’ = 1) — 47, given by

g qt, X*—at X" +—a,
S qig¥, S qigV.

THEOREM 4. (K transformation) If g* # 1 we can introduce the elements

—1 2 —2
. 9=9q _ 4l vyt Tty C
K = quq,lS = q+q*1X X +q+q,1X X +q+q,1 (7)

1 -2 2
o 9=q ¢ — g —ly—yt+ | gl yty— c
K : q+q,1S q+q,1X X +q+q,1X X +q+q,1.

Then the relations (Vo)—(Va) transform into

(Uo) [C,XJT = [cx7]=0
(th) [K7Kq =0
(Uy) KXt = ¢X'K K'Xt = ¢ 2X*K
(U3) KX~ = ¢ XK K'X~ = ¢XK
(Us) (g—q ')?’P = C—(q+q ') KK
Us)  (g—q¢ HIX.Xx7] = K-K
Us) (g—q ) {X X"} = (¢+q )(K+K')-2C.
Within the representation (3) the elements K and K' act as
Kf() = Lhf(g™),  Kf() = Sif(q ),

Proof. For the proof just replace S = ZJ_’ZjK and §' = %K’ within the rela-
tions (W))—(Ws) in (6). O

REMARK 4. When renaming the elements E=—X*, F=X",L=G=[X",X"],
it turns out that this algebra with the additional relation KK’ = 1 coincides with the
algebra % = %,. This ist the g-deformation of the universal enveloping algebra
U(sl(2)) of the Lie algebra s[(2), extended by a central involution. % is also called
a quantum group, see [5, p. 125] or [7, p. 53]. Thus we have established a morphism of
algebras ¥ /(KK' = 1) — %,. In this context the element C, = (q*q%l)z in the center

of % 1is called the quantum Casimir element.
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3. The algebra 7

Within the algebra 7 we now set C = 0. In other words we pass to the algebra
¥ =¥ /(C = 0) that is defined as the quotient algebra of ¥ by the two sided ideal
(C=0).

We have already seen a representation of this algebra % for p*> # 1 in Theorem 1.
We will now investigate the algebra % and give representations for p=1and p=—1.

3.1. The algebra 7;, where p =1

Here the relations (71)—(7s), see (4), have the following form

(T1) GH] = 0

(B) [G.XT] = 0 HXT] = 2X'G
(1) [GX] = 0 HX] = —2XG
() P = G

) G o= XX

(o) H = XX}

We see that G commutes with all elements of ¥, it is in the center.

THEOREM 5. We add to ¥, with p =1 the relation G* =1 and perform a “G-
transformation”. That means we define additional elements in V' according to

F := GH, Zt = X7, Z- = GX,
It = (2 = (R 7= (R = ()R

Then one can thoroughly derive from the above set of relations (T)—(Ts) the equiva-
lent set (01)—(0g) and additionally the “tilde” set (0,),(03),(0s)—(0y)

(01) [G,F] = 0

(07) [G,Zz"] = 0 [F,zt] = 2zt

(03) [G,Z7] = O [F,.Z7] = =27~

(04) P=G*> = 1

(0s) [z7,zF] = 1

(06) (z,z*} = F

(0) [G,Zf] = 0 [F,Z'] = 47+

(03) [G,Z7] = 0 [F,Z7] = —4Z~ Q)

(0s) [Z=,Zf] = 2F

(0s) {Z7.2"} = 3F>+3

(07) {zt,zty = 27*
{z=,27} = 27~

(~8) [Zi7z+] = 27"
[Zt,z*] = 0

(O9) Zt,z7] = -2z*
Z-,z7] = o.
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Proof. We only show the right side of (0,) and (Os),(Og). Here we have
[F,Z"] = GHX" —XTGH = G[H,X"] = 2G’X* = 27",
then
27,2 = (X% (X)) = XX, (X)X, (X)X
=X XTXO XTI HXT XXX T XXX XTI TX T
=2(X"X"+X"X")G = 2HG = 2F
and finally
IFr+3 = lp*4 36
X XT—XTX" )P +3( Xt +XxtX)?
= 22X XN 42(x X)X (X)X ——XxFT(x7)’x*
= X 2XTX X (XXX ) +XT(XXTXT - (X)X
V), (V- _ B .
VI PP (PP = {2024 O

REMARK 5. There is a representation of % for p =1 and G*> =1 on a space of
single variable smooth functions, given by

Z"f(x) x-f(x) Ff(x) = f(x)+2xf'(x)
Zfx) = ) Gflx) = [

We see that the subalgebra generated by the two elements Z,Z~ and relation (Os) is
again the Weyl algebra of Remark 2.

3.2. The Lie superalgebra osp(1/2)

¥ has the structure of a 7Z;-graded algebra, i.e. there exists a decomposition of
the underlying vector space that is compatible with the algebra structure as follows

¥ =y Ogyll  ang  yld.ybl c yllarbmd],

[0] [0]

The elements in ¥ U1 are called homogeneous. The elements in #'°! are called
even, they have degree 0, whereas the elements in 7! are odd and have degree 1.
The Z,-grading in ¥ is defined by the affiliations

P.C,G,H € vl xtx— e vyl

The relations (Vp)—(V4), see (1), preserve this Z,-grading.
We recall from [6] that a Lie superalgebra is a Z, -graded vector space V = VI @
v equipped with a bilinear product [,-]s:V xV — V, such that

Il
o

[A7B]S + (_l)ab[B7A]S
(—1)*[A, [B,ClsJs + (—1)”[C. A, BlS]s + (= 1)*[B,[C,AL]; = O,
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whenever A,B,C € ¥ Uy 1l with degA = a, degB = b and degC = c.
As with any Z, -graded algebra, the algebra 7 bears in a natural way the structure
of a Lie superalgebra. One has to define the bilinear product by

A,B], = [A,B], ifAorBiseven,
~ 1 {A,B}, ifAand B are odd.

To be more concrete, the 12 commutator and anticommutator relations in the right
column of (8) constitute the structure of the classical Lie superalgebra osp(l|2) Its
basis consists of two odd elements Z*, Z~ and three even elements F, Z*, Z~.

The even elements Z—,Z" F in the p-deformed algebra ¥ together with the
relations on the right side of (0,),(03),(0s) generate the Lie algebra s[(2). The three
elements Z*,Z~ F with the relations on the right side of (0,),(03),(O¢) constitute
the so called parabosonic algebra, see [2, Section 6.2].

There is a representation of 0sp(1]2) by 3 x 3 matrices, see [6, p. 15]. By some
easy computations one can check that the 12 relations in the right column of (8) are
fulfilled, if the representation is defined by the assignments

0 V20 0 0v2
7 — 0o 00], Zt—+v20 0 |,
-2 00 000
000 000 00 0
Z —|1000], Zt—[002], F— 1020
0-20 000 002

Altogether we see that the algebra %, with additional relations p = 1 and G* =1
is isomorphic to the Lie superalgebra osp(1|2), extended by a central involution G.
The other way round we can state that the p-deformed algebra 7 is a reasonable p-
deformation, henceforward ¢-deformation, of the Lie superalgebra osp(1]2).

3.3. The algebra 7, where p = —1

The relations (77)—(Ts) from (4), now have the following form

() [GH] = 0

() {H,X*} = 0 {G,XT} = -2X*H
(l;) {H, X"} = 0 {G,X"} = 2XH
(Ty) P = H> =1

(T5) G = [X_7X+]

(Ts) H = {X,X*}.

So H is in the supercenter, i.e. commutes with all even elements and anticommutes
with all odd elements.
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THEOREM 6. We add to ¥, with p = —1 the relation H> = 1 and perform an
“H -transformation”.

F = HG, 7% = X, Z- = HX",
Zt = (27 = (XN, Z = (Z7) = —(X)A

Then one can thoroughly derive from the above set of relations (T1)~(Ts) the equiva-
lent set (01)—(0g) and additionally the “tilde” set (O2),(03),(05)—(Oy)

(01) [H7F} =0

(0) {H,Z*} = 0 [F,z*] = 2z*

(03) {H,Z7} = 0 [F,Z7] = —27-

(04) P=H? = 1

(05) [Ziﬁer} = 1

(Os) {z-,z*} = F

(05) H,Z] = 0 [F,Z*] = 4Z*

(03) [H,Z_} = 0 [F,Z_] = 47" 9)

(0~5) [Zf,ZJr] = 2F

(0s) {27,2%} = P+

(07) {z+,z"} = 27*
{(z=,27} = 27

(08) Z-,z"] = 227
Zt,z] = 0

(09) Zt,z7] = -2zt
Z-.z7] = o.

Proof. The proof is analogous to the one of Theorem 5. One has to appropriately
swap signs. [

REMARK 6. As in the case p = 1, the algebra ¥, with additional relations p =
—1 and H? = 1 contains the Lie superalgebra osp(1|2) with the relations presented on
the right had side of (9). Altogether this algebra with relations (V;)—(Vs) is isomorphic
to the Lie superalgebra osp(1]2), extended by a supercentral involution H .

This algebra is sometimes denoted by osp_;(1]2) or s{_;(2). Within this algebra
it is possible to define further interesting elements or algebras, such as Dunkl operators,
the Bannai-Ito algebra or Racah algebra, that evoke a lot of research activities, see [1]
or [8].

REMARK 7. There is a representation of % for p = —1 and H> = 1 on a space
of single variable smooth functions

Z"f(x)
Z f(x)

f(x) +2xf(x)
f(=x).

x- f(x) Ff(x)
f'(x) Gf(x)
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4. An Embedding Theorem

THEOREM 7. (Embedding 7j : ¥ — %) Let ¥ be a copy of ¥ that fulfills the
relations (Vo)—(V3). There is an embedding, i.e. an injective algebra morphism

n: 7 = %

p — 8pt—8p’+1 C:' —  8pP (10)
Xt = (Xh)? G — 2pGH
X~ = x) H — (p+3)G+(p—3)H

This algebra morphism is — up to a multiplicative factor — the one presented in
Prop. 3 (ii) in [7, p. 137], raised to the p-deformation setting.

Proof. We have to check that the relations (Vy)—(V3) are preserved under the
embedding. As usual, we adopt the convention to identify the elements of ¥ with their
respective images in 7§ .

The relation (Vp) is trivial, since P is central in %;. For the remaining proof note
that we again and again use the identity in %{

W) X XXX =XxtX"X"Xx".
Then, also with (V;), (V3), we derive
XX+ X%
= X X XTXTXTXTX X XXX X X X XtXx*

= 2pX XTX XX X )XTXT2pX XX —X X X")—
RpXtTX XT X" XTXT) X X 2pXTX X" —-XTXTX")

4P (X" XTX XTXTX XX —XTX XTX X XTX X))+
2pX XT(XTX X XT X" XTXTX )X X'+
2pXTX (X XTXTX —XTX X XDXTX +

X XTXTX X XTXTX —X"X X XTxTx x x")

= 4P (X XXX X XXX XXX XXX X OXY) = 0.
Further note that
(XX = (X (x7)
= 2pX XTX —XT(X )] XT-XT[2pX XTX —XT(X)?
= 2p[(X XT)—(XTX )] (11)
XX+ (X (X )P +2X (X)X "
= 2pX XTX - XT(X)AXT
+XT2pX XX T Xt (X ) +2xt(x )Xt
= 2p[(X X))+ (XTX ). (12)
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Then with a rather tricky decomposition of the expression
8P (XT)PP = (8p° —4p)XTPXT +2p(XT)*P+2pP(XT)?
we prove (V3)
(XT)PX +X"(X1)* - 2pX+X Xt -X*+C

= (XX H X)X —2(8p* =87+ 1)(XT)P(XT)H(XT)? —8p (X T)?P
= CPR[XPR — 2p[(X X2 - (X))

+ [P+ 2 (XX — (XX ()2

—(16p* —16p* +2)(XT)*(X 7 )* (X ")?

— (8P —4p)X T (X XT)2 4+ (XTX )2 —2pX (X )°XF] X+

—2p (X [(XXT)P + (XTX7)? —2pX (X 7)°X"]

—2p [(X"XT)?+ (XTX )2 —2pXF(X7)’X ] (XF)?

—4p(X)3 (X~ X+)2 4pX+(X Xt)?

—(16p —16p )(X ) (X ) (x*)?
—(@p*-2)X" (X ) (X ) +(X+)2(X’)2+2x+(X*)2XﬂX+
(16p —8p*)(X +) (X~)2(x*)?

HAPHX TP (X)X +4p’X (X T)P (X )
= 2(X T XT(XT)2 4+ (X)X T —2pX XTX )X
F2XFIXT(X )2+ (XT)2X T —2pX X TX ] (XT)?
= 0.

Finally the expressions for G and A can be directly checked by using the relations (11)
and (12). O

REMARK 8. When we put p = 1 and G> = 1 in the above theorem and incorpo-
rate the transformation (8), then the embedding (10) gets the form

i: 7 = %
p — 1 cC — 8
Xt — Zt G — 2F
X - Z H — %Fz—i-%.

The relations (V3), (V3) and (Vs), (V) imply the corresponding relations in ¥, where
p=1,G? =1, that appear in (8). Hence the embedding of the theorem generalizes the
embedding U (0sp(1]2)) — U(sl(2)) to the p-deformed or g-deformed setting.

REMARK 9. When we put p = —1 and H> = 1 in Theorem 7 and incorporate the
transformation (9), then the embedding (10) gets the form

i 7 = %
p — 1 C — -8
Xt — Z7 G — -2F
X - -Z H — -—ip2_3

2 2°



376 S. HILGER

Again the relations (V3), (V3), (Vs), (V) in %/(p = —1,H? = 1) imply the corre-
sponding relations appearing in (9).

REMARK 10. We only mention without any proof that there is another embed-
ding, called the Jordan-Schwinger homomorphism, given by

A 7V = 952
p — 2p7—1
Xt = Xty G %HxGy—%GxHy
X~ — Xxrf A — 3G.Gy— 3H.H,
C — —(p+1)GGy— (p—1)HH, — C.Hy — C\H,.

Here the algebra #®2 is the tensor product of two algebras 7, it has a presentation
with generators

Xt X",C, YHY .G

and the relations (Vy)—(V3), separately for the x- and y-elements. Any x-element
commutes with any y-element.
When we invoke the definitions (5) and (7), then we have the additional assignment

: K S8, K +— S.S,.

So we have an embedding of the universal enveloping algebra % — 7/0®2 , cf. the
presentations of ¥ in (8) or (6), respectively. This was the topic in the article [3].
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