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ON THE STABILITY OF A VISCOELASTIC TIMOSHENKO

SYSTEM WITH MAXWELL–CATTANEO HEAT CONDUCTION

SOH EDWIN MUKIAWA

(Communicated by K. Cherednichenko)

Abstract. This paper discusses a thermoelastic Timoshenko system with viscoelastic damping
acting on the shear force, and heat conduction given via Maxwell-Cattaneo’s law (usually called
second sound) on the bending moment. We establish a general decay estimate for the solution
energy. The exponential and polynomial decay results are only special cases of the present work.
The obtained result shows that the viscoelastic damping on the shear force and the thermal damp-
ing on the bending moment are strong enough to stabilize the system without any additional re-
strictions like “the equal-wave of speed propagation” or “the stability number” conditions which
are usually associated with similar problems.

1. Introduction

The basic equations of motion describing a classical Timoshenko-beam system
[1, 2] are given by {

ρAϕtt −Sx = 0, in (0,L)×R+,

ρIψtt −Mx +S = 0, in (0,L)×R+,
(1.1)

where ϕ = ϕ(x, t) is the transverse displacement, ψ = ψ(x,t) is the rotation angle of
the beam, L,ρ ,A and I are respectively: length, mass density, cross-sectional area of
beam and inertial moment of the cross section. The constitutive laws for the Timo-
shenko system in (1.1) S and M (shear force and bending moment respectively) are
defined by

S = kGA(ϕx + ψ), M = EIψx, (1.2)

where the physical parameters E,G and k are respectively: the Young modulus, shear
modulus and shear correction coefficient. When viscoelastic damping is applied to M
(the bending moment), the constitutive laws are

S = kGA(ϕx + ψ), M = EIψx −
∫ t

0
g(t− s)ψx(s)ds, (1.3)
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and the resulting system is given by⎧⎨
⎩

ρAϕtt − kGA(ϕx + ψ)x = 0,

ρIψtt −EIψxx−
∫ t

0
g(t− s)ψxx(x,s)ds+ kGA(ϕx + ψ) = 0.

(1.4)

System (1.4) has been extensively studied in literature and results concerning well-
posedness and stability estimates have been established, see [6, 8, 9, 10, 11, 12] and the
references therein. Recently, Alves et al. [4] applied viscoelastic damping on the shear
force. This leads to the constitutive laws (1.2) being replaced by

S = kGA

(
(ϕx + ψ)−

∫ t

0
g(t− s)(ϕx + ψ)(s)ds

)
, M = EIψx. (1.5)

By substituting (1.5) into (1.1) and setting ρ1 = ρA , ρ2 = ρI , k1 = kGA and k2 = EI ,
the resulting system is⎧⎪⎪⎨

⎪⎪⎩
ρ1ϕtt − k1(ϕx + ψ)x + k1

∫ t

0
g(t− s)(ϕx + ψ)x(x,s)ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ)− k1

∫ t

0
g(t− s)(ϕx + ψ)(x,s)ds = 0.

(1.6)

The authors in [4] studied (1.6) and proved a uniform decay result provided the equal-
wave of speed propagation condition

k1

ρ1
=

k2

ρ2
(1.7)

holds. In literature, assumption (1.7) has been widely used by many authors as a
sufficient condition to establish uniform decay results for Timoshenko systems, see
[13, 14, 15] and the references therein. We note here that, although the results in
[4, 16, 17] are computationally correct with k1 being used as coefficient for the damp-
ing effect, however, to be consistence with the physics of the original Timoshenko
model (1.1) and others memory-type Timoshenko systems in literature (see [3, 5]), the
constitutive laws in (1.5) should be replaced by

S = kGA(ϕx + ψ)−
∫ t

0
g(t− s)(ϕx + ψ)(s)ds, M = EIψx. (1.8)

Now, when heat conduction governed by the Maxwell-Cattaneo’s law (see [18, 19, 20,
21]) is applied to the bending moment, we have{

ρ3θt +qx + γψxt = 0,

τqt + αq+ θx = 0,
(1.9)

where θ = θ (x, t) is the temperature difference, q = q(x,t) is the heat flux and γ,ρ3,τ,α
> 0 are positive constants. Thus, coupling (1.1) and (1.9), we arrive at⎧⎪⎪⎪⎨

⎪⎪⎪⎩
ρAϕtt −Sx = 0,

ρIψtt −Mx +S+ γθx = 0,

ρ3θt +qx + γψxt = 0,

τqt + αq+ θx = 0.

(1.10)



Differ. Equ. Appl. 14, No. 3 (2022), 393–415. 395

For simplicity, we set L = 1, ρ1 = ρA , ρ2 = ρI , k1 = kGA and k2 = EI. Then, sub-
stituting (1.8) into (1.10), we have the following thermoelastic-Timoshenko system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ1ϕtt − k1(ϕx + ψ)x +
∫ t

0
g(t− s)(ϕx + ψ)x(x,s)ds = 0,

ρ2ψtt − k2ψxx + k1(ϕx + ψ)−
∫ t

0
g(t− s)(ϕx + ψ)(x,s)ds+ γθx = 0,

ρ3θt +qx + γψxt = 0,

τqt + αq+ θx = 0,

(1.11)

where (x, t) ∈ (0,1)× [0,∞) , the physical parameters ρ1,ρ2,ρ3,γ,k1,k2 and α are
positive and the memory g is a given function to be specified later. To study system
(1.11), we supplement it with the boundary conditions

ϕx(0, t) = ϕx(1,t) = ψ(0,t) = ψ(1,t) = q(0,t) = θ (1,t) = 0 t > 0 (1.12)

and the initial data{
ϕ(x,0) = ϕ0(x), ψ(x,0) = ψ0(x), θ (x,0) = θ0(x), x ∈ (0,1),
ϕt(x,0) = ϕ1(x),ψt (x,0) = ψ1(x), x ∈ (0,1).

(1.13)

The main focus of this paper is to study the asymptotic stability of system (1.12)–(1.13)
with minimal conditions on the memory term g . The present result is obtained without
any condition on the physical parameters such as the assumption that χ = 0, where χ
is a stability number given by

χ =
(

τ − ρ1

k1ρ3

)(
ρ2− k2ρ1

k1

)
− τρ1γ2

k1ρ3
. (1.14)

The assumption (1.14) is widely used by many authors to establish decay results for
similar systems with Maxwell-Cattaneo’s law (commonly known as second sound), see
for example, the results in [22, 23, 24, 25] and the references in them. The result of this
paper would be of great interest to scientists and engineers when choosing materials for
the Timoshenko beam.

This work is organized as follows. In Section 2, we give assumptions on g and
some needed materials. In Section 3, we establish essential lemmas. Finally, in Section
4, we state and prove the main decay result of problem (1.11)–(1.13) .

2. Problem setting and assumptions

Here and thereafter, we denote by (., .) and ‖.‖2 the usual inner product and norm
in L2(0,1) respectively. Also, for calculation purposes throughout the paper, c is a
generic positive constant that may change within or between lines. For the memory
function g , we assume the following conditions:

(C1) g : [0,+∞) −→ (0,+∞) is a decreasing C1 -function such that

l := k1−
∫ ∞

0
g(s)ds > 0. (2.1)



396 S. E. MUKIAWA

(C2) There exists a C1 function U : [0,+∞) → [0,+∞) which is a linear or strictly
convex C2 function on (0,r], r � g(t0) for any t0 > 0 fixed such that U(0) =
U ′(0) = 0, and a positive decreasing differentiable function

ω : [0,+∞) → (0,+∞),

such that
g′(t) � −ω(t)U (g(t)) , t � 0. (2.2)

REMARK 1.

1. Using ideas similar to [28], we infer that since U is a strictly increasing and con-
vex C2 -function on (0,r] with U(0) = U ′(0) = 0, it has an extension U which
is strictly increasing and strictly convex C2 -function on (0,+∞). For example,
suppose U(r) = d1, U ′(r) = d2 and U ′′(r) = d3 , then U can be defined by

U(s) =
d3

2
s2 +(d2−d3r)s+d1−d2r+

d3

2
r2 ∀ s > r. (2.3)

2. Also, for any t0 > 0 fixed, using the fact that g is continuous, positive and g(0) >
0, one has ∫ t

0
g(s)ds �

∫ t0

0
g(s)ds = g0 > 0, t � t0, (2.4)

where g0 is a constant.

Notations and preliminary results

Let us start by introducing the following standard functional spaces:

L2
∗(0,1) =

{
w ∈ L2(0,1) :

∫ 1

0
w(x)dx = 0

}
, H1

∗ (0,1) = H1(0,1)∩L2
∗(0,1),

H2
∗ (0,1) =

{
w ∈ H2(0,1) : wx(0) = wx(1) = 0

}
,

H1
a (0,1) =

{
w ∈ H1(0,1) : w(0) = 0

}
, H1

b (0,1) =
{
w ∈ H1(0,1) : w(1) = 0

}
.

Now, integrating (1.11)1 over (0,1) and using the boundary conditions (1.12), we ob-
tain

d2

dt2

∫ 1

0
ϕ(x,t)dx = 0. (2.5)

Integrating (2.5) and using the initial data (1.13) for ϕ yields

∫ 1

0
ϕ(x,t)dx = t

∫ 1

0
ϕ1(x)dx+

∫ 1

0
ϕ0(x)dx. (2.6)

Letting

ϕ(x,t) = ϕ(x,t)− t
∫ 1

0
ϕ1(x)dx−

∫ 1

0
ϕ0(x)dx, (2.7)
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we get ∫ 1

0
ϕ(x,t)dx = 0, ∀ t � 0. (2.8)

Thus, we can apply Poincaré’s inequality for ϕ throughout this work. That is,

‖ϕ‖ � ‖ϕ‖H1∗ = ‖ϕx‖.

Furthermore, (ϕ ,ψ ,θ ,q) satisfies (1.11) with the initial data for ϕ given as

ϕ0(x) = ϕ0(x)−
∫ 1

0
ϕ0(x)dx, ϕ1(x) = ϕ1(x)−

∫ 1

0
ϕ1(x)dx. (2.9)

From now on, we work with ϕ instead of ϕ and write ϕ for simplicity. The existence
and uniqueness result of problem (1.11)–(1.13) is given below. The proof follows the
argument of the Galerkin approximation method as in Hassan et al. [26, 27].

THEOREM 1. Let (ϕ0,ψ0,θ0,q0) ∈ H1∗ (0,1)×H1
0 (0,1)×L2(0,1)×L2(0,1) and

(ϕ1,ψ1) ∈ L2∗(0,1)× L2(0,1) be given. Assume (C1) and (C2) hold. Then, problem
(1.11)– (1.13) has a weak unique solution (ϕ ,ψ ,θ ,q) such that

ϕ ∈C
(
R+,H1

∗ (0,1)
)∩C1 (

R+,L2
∗(0,1)

)
,

ψ ∈C
(
R+,H1

0 (0,1)
)∩C1 (

R+,L2(0,1)
)
,

θ ∈C
(
R+,L2(0,1)

)
, q ∈C

(
R+,L2(0,1)

)
.

(2.10)

Moreover, if

(ϕ0,ψ0,θ0,q0) ∈ H2
∗ (0,1)∩H1

∗ (0,1)×H2(0,1)∩H1
0 (0,1)×H1

b (0,1)×H1
a (0,1)

and
(ϕ1,ψ1) ∈ H1

∗ (0,1)×H1
0 (0,1),

then the solution in (2.10) has additional regularity, namely, it is of the class

ϕ ∈C
(
R+,H2

∗ (0,1)∩H1
∗ (0,1)

)∩C1 (
R+,H1

∗ (0,1)
)∩C2 (

R+,L2
∗(0,1)

)
,

ψ ∈C
(
R+,H2(0,1)∩H1

0 (0,1)
)∩C1 (

R+,H1
0 (0,1)

)∩C2 (
R+,L2(0,1)

)
,

θ ∈C
(
R+,H1

b (0,1)
)∩C1 ([0,+∞),L2(0,1)

)
,

q ∈C
(
R+,H1

a (0,1)
)∩C1 ([0,+∞),L2(0,1)

)
.

We shall apply repeatedly the following lemmas in this paper.

LEMMA 1. Let w ∈ L2
loc([0,+∞),L2(0,1)). Then the following inequalities hold:

∫ 1

0

(∫ t

0
g(t− s)(w(t)−w(s))ds

)2

dx � (1− l)(g 	w)(t), t � 0, (2.11)
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∫ 1

0

(∫ x

0
w(y,t)dy

)2

dx � ‖w‖2
2, t � 0, (2.12)

where

(g 	w)(t) =
∫ t

0
g(t− s)‖w(t)−w(s)‖2

2ds.

Proof. Using the Cauchy-Schwarz and Poincaré’s inequalities, we easily obtain
the result. �

For 0 < ε < 1 (see [29]), we define

h(t) = εg(t)−g′(t) and Aε =
∫ +∞

0

g2(s)
εg(s)−g′(s)

ds.

We have the following.

LEMMA 2. Suppose (ϕ ,ψ ,θ ,q) is the solution of the problem (1.11)– (1.13) .
Then, for any 0 < ε < 1 , we have

∫ 1

0

(∫ t

0
g(t− s)((ϕx + ψ)(t)− (ϕx + ψ)(s))ds

)2

dx � Aε (h 	 (ϕx + ψ))(t), t � 0.

(2.13)

Proof. Using the Cauchy-Schwarz inequality, we get

∫ 1

0

(∫ t

0
g(t− s)((ϕx + ψ)(t)− (ϕx + ψ)(s))ds

)2

dx

=
∫ 1

0

(∫ t

0

g(t− s)√
h(t− s)

√
h(t− s)((ϕx + ψ)(t)− (ϕx + ψ)(s))ds

)2

dx

�
(∫ +∞

0

g2(s)
h(s)

ds

)∫ 1

0

∫ t

0
h(t− s)((ϕx + ψ)(t)− (ϕx + ψ)(s))2 dsdx

=
(∫ +∞

0

g2(s)
εg(s)−g′(s)

ds

)
(h 	 (ϕx + ψ))(t). �

(2.14)

LEMMA 3. [30] Let G be a convex function on the interval [a,b] , f , j : Ω→ [a,b]
be integrable functions on Ω, such that j(x) � 0 , x∈Ω and

∫
Ω j(x)dx = α1 > 0. Then,

we have the following Jensen inequality:

G

(
1

α1

∫
Ω

f (y) j(y)dy

)
� 1

α1

∫
Ω

G( f (y)) j(y)dy. (2.15)

In particular if G(y) = y
1
p , y � 0, p > 1 , then(

1
α1

∫
Ω

f (y) j(y)dy

) 1
p

� 1
α1

∫
Ω
( f (y))

1
p j(y)dy. (2.16)
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3. Essential Lemmas

In this section, we provide some lemmas that will be used to establish the main
stability result in Theorem 2.

LEMMA 4. Let (ϕ ,ψ ,θ ,q) be the solution to the system (1.11)– (1.13) . Then, the
solution energy associated with the system (1.11)– (1.13) , defined by

E(t) =
1
2

(
ρ1‖ϕt‖2

2 + ρ2‖ψt‖2
2 + k2‖ψx‖2

2 +
(

k1−
∫ t

0
g(s)ds

)
‖(ϕx + ψ)‖2

2

)
+

1
2

(g 	 (ϕx + ψ))(t)+
ρ3

2
‖θ‖2

2 +
τ
2
‖q‖2

2,

(3.1)

satisfies

d
dt

E(t) = −1
2
g(t)‖ϕx + ψ‖2

2 +
1
2

(
g′ 	 (ϕx + ψ)

)
(t)−α‖q‖2

2 � 0 ∀ t � 0, (3.2)

where

(g 	 (ϕx + ψ))(t) =
∫ t

0
g(t− s)‖(ϕx + ψ)(t)− (ϕx + ψ)(s)‖2

2ds.

Proof. Multiplying the equations in (1.11) by ϕt ,ψt , θ and q respectively, inte-
grating by parts over (0,1) , and using the boundary conditions (1.13), we obtain

1
2

d
dt

(
ρ1‖ϕt‖2

2 + k1‖ϕx + ψ‖2
2

)−∫ 1

0
ϕxt

∫ t

0
g(t− s)(ϕx + ψ)(x,s)dsdx

= −k1

∫ 1

0
ψt(ϕx + ψ)dx, (3.3)

1
2

d
dt

(
ρ2‖ψt‖2

2 + k2‖ψx‖2
2

)−∫ 1

0
ψt

∫ t

0
g(t− s)(ϕx + ψ)(x,s)dsdx

= k1

∫ 1

0
ψt(ϕx + ψ)dx− γ

∫ 1

0
ψtθxdx, (3.4)

1
2

d
dt

(
ρ3‖θ‖2

2

)
= −

∫ 1

0
θqxdx+ γ

∫ 1

0
ψtθxdx, (3.5)

and

1
2

d
dt

(
τ‖q‖2

2

)
=
∫ 1

0
θqxdx−α‖q‖2

2. (3.6)

Adding (3.3)–(3.6), we arrive at

1
2

d
dt

(
ρ1‖ϕt‖2

2 + k1‖ϕx + ψ‖2
2 + ρ2‖ψt‖2

2 + k2‖ψx‖2
2 + ρ3‖θ‖2

2 + τ‖q‖2
2

)
−
∫ 1

0
(ϕx + ψ)t

∫ t

0
g(t− s)(ϕx + ψ)(x,s)dsdx︸ ︷︷ ︸

J1

= −α‖q‖2
2.

(3.7)
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Now, we estimate the term J1 as follows:

J1 =
∫ 1

0
(ϕx + ψ)t

∫ t

0
g(t− s)(ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))dsdx

−
∫ t

0
g(s)ds

∫ 1

0
(ϕx + ψ)t(ϕx + ψ)dx

=
1
2

∫ 1

0

∫ t

0
g(t− s)

d
dt

(ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))2 dsdx

− 1
2

∫ t

0
g(s)ds

d
dt
‖ϕx + ψ‖2

2

=
1
2

d
dt

(g 	 (ϕx + ψ))(t)− 1
2

(
g′ 	 (ϕx + ψ)

)
(t)

− 1
2

d
dt

(∫ t

0
g(s)ds‖ϕx + ψ‖2

2

)
+

1
2
g(t)‖ϕx + ψ‖2

2.

(3.8)

Substituting (3.8) into (3.7) yields

d
dt

E(t) = −1
2
g(t)‖ϕx + ψ‖2

2 +
1
2

(
g′ 	 (ϕx + ψ)

)
(t)−α‖q‖2

2.

Hence, the inequality (3.2) follows from conditions (C1) and (C2) . Thus, the energy is
decreasing and bounded above by E(0). �

LEMMA 5. Let (ϕ ,ψ ,θ ,q) be the solution to the system (1.11)– (1.13) . Then, the
functional defined by

F1(t) = −τρ3

∫ 1

0
θ
∫ 1

x
q(y,t)dydx

satisfies, for any δ1 > 0 the estimate

F ′
1(t) � −ρ3

2
‖θ‖2

2 + δ1‖ψt‖2
2 + c

(
1+

1
δ1

)
‖q‖2

2 ∀t � 0. (3.9)

Proof. Direct differentiation of F1 using (1.11)3 and (1.11)4 , integration by parts
and the boundary conditions (1.13) lead to

F ′
1(t) = −ρ3‖θ‖2

2 + τ‖q‖2
2 + τγ

∫ 1

0
qψtdx+ ρ3α

∫ 1

0
θ
∫ 1

x
q(y, t)dydx.

By applying the Cauchy-Schwarz and Young’s inequalities along side the inequality
(2.12), we obtain for any δ1 > 0,

F ′
1(t) � −ρ3

2
‖θ‖2

2 + δ1‖ψt‖2
2 +
(

τ +
(τγ)2

4δ1

)
‖q‖2

2 +
ρ3α2

2

∫ 1

0

(∫ 1

x
q(y,t)dy

)2

dx

� −ρ3

2
‖θ‖2

2 + δ1‖ψt‖2
2 +
(

τ +
(τγ)2

4δ1

)
‖q‖2

2 +
ρ3α2

2
‖q‖2

2 (3.10)

� −ρ3

2
‖θ‖2

2 + δ1‖ψt‖2
2 + c

(
1+

1
δ1

)
‖q‖2

2. �
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LEMMA 6. Let (ϕ ,ψ ,θ ,q) be the solution of the system (1.11)– (1.13) . Then, the
functional F2 defined by

F2(t) = ρ3

∫ 1

0
ψt

∫ x

0
θ (y,t)dydx

satisfies, for any positive δ2 and δ3 the estimate

F ′
2(t) �− γ

2
‖ψt‖2

2 + δ2‖ψx‖2
2 + δ3‖ϕx + ψ‖2

2 + c‖q‖2
2

+ c

(
1+

1
δ2

+
1
δ3

)
‖θx‖2

2 + cAε (h 	 (ϕx + ψ))(t) ∀ t � 0,
(3.11)

where h and Aε are defined in Lemma 2.

Proof. Using equations (1.11)2 and (1.11)3 , integration by parts and the boundary
conditions (1.13), we have

F ′
2(t) = −γ‖ψt‖2

2−
bρ3

ρ2

∫ 1

0
ψxθdx︸ ︷︷ ︸

J2

− k1ρ3

ρ2

∫ 1

0
(ϕx + ψ)

∫ x

0
θ (y,t)dydx︸ ︷︷ ︸

J3

−ρ3

ρ2

∫ 1

0

∫ t

0
g(t− s)((ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))ds

∫ x

0
θ (y, t)dydx︸ ︷︷ ︸

J4

+
ρ3

ρ2

(∫ t

0
g(s)ds

)∫ 1

0
(ϕx + ψ)

∫ x

0
θ (y,t)dydx︸ ︷︷ ︸

J5

−
∫ 1

0
ψt qdx︸ ︷︷ ︸
J6

+
γρ3

ρ2
‖θ‖2

2.

(3.12)
Applying Cauchy-Schwarz, Young’s and Poincaré’s inequalities and repeating the com-
putations in Lemmas 1–2, we estimate J2 − J6 as follows:

J2 � δ2‖ψx‖2
2 +

c
δ2

‖θx‖2
2 δ2 > 0,

J3 � δ3

2
‖ϕx + ψ‖2

2 +
c
δ3

‖θx‖2
2 δ3 > 0,

J4 � cAε
2

(h 	 (ϕx + ψ))(t)+
c
2
‖θx‖2

2,

J5 � δ3

2
‖ϕx + ψ‖2

2 +
c
δ3

‖θx‖2
2 δ3 > 0,

J6 � γ
2
‖ψt‖2

2 +
1
2γ

‖q‖2
2.

(3.13)

Substituting the estimates in (3.13) into (3.12) leads to (3.11). �
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LEMMA 7. Let (ϕ ,ψ ,θ ,q) be a solution to the system (1.11)– (1.13) . Then, the
functional F3 defined by

F3(t) = −ρ1

∫ 1

0
(ϕx + ψ)

∫ x

0
ϕt(y,t)dydx

satisfies, for any δ4 > 0 the estimate

F ′
3(t) �− l

2
‖ϕx + ψ‖2

2 + c

(
1+

1
δ4

)
‖ϕt‖2

2

+ δ4‖ψt‖2
2 + cAε (h 	 (ϕx + ψ))(t) ∀ t � 0,

(3.14)

where h and Aε are defined in Lemma 2.

Proof. Differentiation of F3 gives

F ′
3(t) = −ρ1

∫ 1

0
(ϕx + ψ)t

∫ x

0
ϕt(y,t)dydx−ρ1

∫ 1

0
(ϕx + ψ)

∫ x

0
ϕtt (y,t)dydx.

Using (1.11)1 and integration by parts, we arrive at

F ′
3(t) = −

(
k1−

∫ t

0
g(s)ds

)
‖ϕx + ψ‖2

2 + ρ1‖ϕt‖2
2−ρ1

∫ 1

0
ψt

∫ x

0
ϕt(y, t)dydx

−
∫ 1

0
(ϕx + ψ)(x,t)

∫ t

0
g(t− s)((ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))dsdx.

(3.15)

Applying Young’s inequality and Lemmas 1–2, we have for any σ1,δ4 > 0,

F ′
3(t) �−

(
k1−

∫ t

0
g(s)ds

)
‖ϕx + ψ‖2

2 + ρ1

(
1+

1
4δ4

)
‖ϕt‖2

2 + δ4‖ψt‖2
2

+ σ1‖ϕx + ψ‖2
2 +

Aε
4σ1

(h 	 (ϕx + ψ))(t).
(3.16)

On account of condition (C1) , we see that

(
k1−

∫ t

0
g(s)ds

)
� l. By choosing σ1 =

l
2

,

we obtain (3.14). �

LEMMA 8. Let (ϕ ,ψ ,θ ,q) be the solution to the system (1.11)– (1.13) . Then, the
functional F4 defined by

F4(t) = −ρ1

∫ 1

0
ϕt

∫ x

0

∫ t

0
g(t− s)((ϕy + ψ)(y,t)− (ϕy + ψ)(y,s))dsdydx

satisfies for any t0 > 0 fixed and δ5 > 0 , the estimate

F ′
4(t) �− ρ1g0

2
‖ϕt‖2

2 + c‖ψt‖2
2 + δ5‖ϕx + ψ‖2

2

+ cAε

(
1+

1
δ5

)
(h 	 (ϕx + ψ))(t) ∀ t � t0,

(3.17)

where g0 is defined in (2.4), h and Aε are defined in Lemma 2.
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Proof. Differentiating F4, we get

F ′
4(t) = −ρ1

∫ 1

0
ϕtt

∫ x

0

∫ t

0
g(t− s)((ϕy + ψ)(y,t)− (ϕy + ψ)(y,s))dsdydx︸ ︷︷ ︸

J7

−ρ1

∫ 1

0
ϕt

∫ x

0

∫ t

0
g′(t − s)(ϕy + ψ)(y,t)− (ϕy + ψ)(y,s))dsdydx︸ ︷︷ ︸

J8

−ρ1

∫ 1

0
ϕt

∫ x

0

∫ t

0
g(t− s)(ϕy + ψ)t(y,t)dsdydx︸ ︷︷ ︸

J9

.

(3.18)

Now, we estimate the terms J7 − J9 . For J7, using (1.11)1 , integration by parts, the
boundary conditions (1.13), then applying Young’s inequality and Lemmas 1–2, we
have for any δ5 > 0

J7 = k1

∫ 1

0
(ϕx + ψ)

∫ t

0
g(t− s)((ϕx + ψ)(t)− (ϕx + ψ)(s))dsdx

+
∫ 1

0

(∫ t

0
g(t− s)((ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))ds

)2

dx

� δ5‖ϕx + ψ‖2
2 + cAε

(
1+

1
δ5

)
(h 	 (ϕx + ψ))(t),

(3.19)

where k1 =
(
k1 −

∫ t
0 g(s)ds

)
. For J8, we use the Cauchy-Schwarz and Young’s in-

equalities, then recalling that h(t) = εg(t)−g′(t) , and making use of Lemmas 1–2, we
obtain for any σ2 > 0,

J8 = −ρ1

∫ 1

0
ϕt

∫ x

0

∫ t

0
g′(t − s)((ϕy + ψ)(y,t)− (ϕy + ψ)(y,s))dsdydx

= ρ1

∫ 1

0
ϕt

∫ x

0

∫ t

0
h(t− s)((ϕy + ψ)(y,t)− (ϕy + ψ)(y,s))dsdydx

−ρ1ε
∫ 1

0
ϕt

∫ x

0

∫ t

0
g(t− s)((ϕy + ψ)(y,t)− (ϕy + ψ)(y,s))dsdydx

� σ2

2
‖ϕt‖2

2 +
c(1+Aε)

σ2
(h 	 (ϕx + ψ))(t).

(3.20)

For J9, on account of (2.4) and (2.8), we have for any σ2 > 0,

J9 = −ρ1

∫ 1

0
ϕt

∫ x

0

∫ t

0
g(t− s)(ϕy + ψ)t(y, t)dsdydx

= −ρ1

∫ t

0
g(s)ds

∫ 1

0
ϕt

∫ x

0
(ϕy + ψ)t(y, t)dydx

= −ρ1

∫ t

0
g(s)ds

∫ 1

0
ϕt

∫ x

0
ϕyt(y,t)dydx (3.21)

−ρ1

∫ t

0
g(s)ds

∫ 1

0
ϕt

∫ x

0
ψt(y,t)dydx
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= −ρ1

∫ t

0
g(s)ds‖ϕt‖2

2−ρ1

∫ t

0
g(s)ds

∫ 1

0
ϕt

∫ x

0
ψt(y,t)dydx

� −ρ1g0‖ϕt‖2
2 +

σ2

2
‖ϕt‖2

2 +
(ρ1g0)2

2σ2
‖ψt‖2

2.

Substituting (3.19)–(3.21) into (3.17), we arrive at

F ′
4(t) �− (ρ1g0−σ2)‖ϕt‖2

2 +
c

σ2
‖ψt‖2

2 + δ5‖ϕx + ψ‖2
2

+ cAε

(
1+

1
δ5

+
1

σ2

)
(g 	 (ϕx + ψ))(t). (3.22)

Finally, we choose σ2 =
ρ1g0

2
to get (3.17). �

LEMMA 9. Let (ϕ ,ψ ,θ ,q) be the solution to the system (1.11)– (1.13) . Then, the
functional F5 defined by

F5(t) = ρ2

∫ 1

0
ψψt dx

satisfies the estimate

F ′
5(t) �− k2

2
‖ψx‖2

2 + ρ2‖ψt‖2
2 + c‖ϕx + ψ‖2

2

+ cAε (h 	 (ϕx + ψ))(t)+ c‖θx‖2
2 ∀ t � 0,

(3.23)

where h and Aε are defined in Lemma 2.

Proof. Differentiation of F5 using (1.11)2 and integration by part, we obtain

F ′
5(t) =ρ2‖ψt‖2

2− k2‖ψx‖2
2− k1

∫ 1

0
ψ(ϕx + ψ)dx︸ ︷︷ ︸

J10

+
∫ 1

0
ψ
∫ t

0
g(t− s)(ϕx + ψ)(x,s)dsdx︸ ︷︷ ︸

J11

−γ
∫ 1

0
ψθxdx︸ ︷︷ ︸
J12

. (3.24)

Applying Young’s and Poincaré’s inequalities, and Lemmas 1–2, we have for any σ3 >
0;

J10 �σ3

4
‖ψx‖2

2 +
c

σ3
‖ϕx + ψ‖2

2,

J11 =
∫ t

0
g(s)ds

∫ 1

0
ψ(ϕx + ψ)dx

−
∫ 1

0
ψ
∫ t

0
g(t− s)((ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))dsdx

�σ3

2
‖ψx‖2

2 +
c

σ3
‖ϕx + ψ‖2

2 +
cAε
σ3

(h 	 (ϕx + ψ))(t),

J12 �σ3

4
‖ψx‖2

2 +
c

σ3
‖θx‖2

2.

(3.25)
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Substitution of the estimates in (3.25) into (3.24) leads to

F ′
5(t) �− (k2− δ3)‖ψx‖2

2 + ρ2‖ψt‖2
2 +

c
σ3

‖ϕx + ψ‖2
2

+
cAε
σ3

(h 	 (ϕx + ψ))(t)+
c

σ3
‖θx‖2

2.

We choose σ3 =
k2

2
to get (3.23). �

LEMMA 10. Let (ϕ ,ψ ,θ ,q) be the solution to the system (1.11)– (1.13) . Then,
the functional F6 defined by

F6(t) =
∫ 1

0

∫ t

0
I(t − s)(ϕx + ψ)2(x,s)dsdx, where I(t) =

∫ +∞

t
g(s)ds

satisfies

F ′
6(t) � 3(1− l)‖ϕx + ψ‖2

2−
1
2

(g 	 (ϕx + ψ))(t) ∀ t � 0. (3.26)

Proof. First, we observe that

I′(t) = −g(t), I(t) = I(0)−
∫ t

0
g(s)ds.

Thus, we have

F ′
6(t) =

∫ 1

0

∫ t

0
I′(t − s)(ϕx + ψ)2(x,s)dsdx+ I(0)‖ϕx + ψ‖2

2

= −
∫ 1

0

∫ t

0
g(t− s)(ϕx + ψ)2(x,s)dsdx+ I(t)‖ϕx + ψ‖2

2

+
∫ t

0
g(s)ds‖ϕx + ψ‖2

2

= −
∫ 1

0

∫ t

0
g(t− s)((ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))2 dsdx

+ I(t)‖ϕx + ψ‖2
2

−2
∫ 1

0
(ϕx + ψ)

∫ t

0
g(t− s)((ϕx + ψ)(x,t)− (ϕx + ψ)(x,s))dsdx

� −(g 	 (ϕx + ψ))(t)+ I(t)‖ϕx + ψ‖2
2 +2(1− l)‖ϕx + ψ‖2

2

+

(∫ t
0 g(s)ds

)
2(1− l)

(g 	 (ϕx + ψ))(t)

� −1
2

(g 	 (ϕx + ψ))(t)+2(1− l)‖ϕx+ ψ‖2
2 + I(t)‖ϕx + ψ‖2

2.

(3.27)

Since I′(t) = −g(t) � 0 by virtue of (C1) , so I(t) � I(0) = (1− l). Hence, we obtain
the desired result. �
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LEMMA 11. Let (ϕ ,ψ ,θ ,q) be the solution to the system (1.11)– (1.13) . Then,
for suitable choices of N, Nj, j = 1,2,3,4,5 , the Lyapunov functional

L(t) = NE(t)+
5

∑
j=1

NjFj(t), (3.28)

satisfies the estimates
b1E(t) � L(t) � b2E(t) ∀t � 0 (3.29)

and

L′(t) �−β
(‖ϕt‖2

2 +‖ψt‖2
2 +‖ψx‖2

2 +‖ϕx + ψ‖2
2 +‖θ‖2

2 +‖q‖2
2

)
+

1
4

(g 	 (ϕx + ψ))(t) ∀ t � t0,
(3.30)

for some β > 0 and b1, b2 > 0.

Proof. We have

|L(t)−NE(t)| � N1 |F1(t)|+N2 |F2(t)|+N3 |F3(t)|+N4 |F4(t)|+N5 |F5(t)| .
(3.31)

On account of the Cauchy-Schwarz, Young and Poincaré inequalities, we get

|L(t)−NE(t)| �c
(‖ϕt‖2

2 +‖ψt‖2
2 +‖ψx‖2

2 +‖ϕx + ψ‖2
2 +‖θ‖2

2 +‖q‖2
2

)
+ c(g 	 (ϕx + ψ))(t)

�CE(t).

This implies
(N− c)E(t) � L(t) � (N + c)E(t). (3.32)

Therefore, we choose N large enough such that (N− c) > 0, to get (3.29).
Now, using Lemmas 4–9 and recalling that h = εg−g′, we have for any t � t0,

L′(t) �−
[

ρ1g0

2
N4 − cN3

(
1+

1
δ4

)]
‖ϕt‖2

2

−
[γ
2
N2 − δ1N1− δ4N3 − cN4−ρ2N5

]
‖ψt‖2

2

−
[
k1l
2

N3 − δ3N2 − δ5N4 − cN5

]
‖ϕx + ψ‖2

2

−
[
k2

2
N5 − δ2N2

]
‖ψx‖2

2

−
[

ρ3

2
N1− cN2

(
1+

1
δ2

+
1
δ3

)
− cN5

]
‖θ‖2

2

−
[

αN− cN1

(
1+

1
δ1

)
− cN2

]
‖q‖2

2

+
k1ε
2

N (g 	 (ϕx + ψ))(t)

−
[
k1

2
N− cAε

(
N2 +N3 +N4

(
1+

1
δ5

)
+N5

)]
(h 	 (ϕx + ψ))(t).

(3.33)
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Setting

N5 = 1, δ1 =
γN2

4N1
, δ2 =

k2N5

4N2
, δ3 =

k1lN3

8N1
, δ4 =

ρ2

N3
, δ5 =

k1lN3

8N4
, (3.34)

the inequality in (3.33) takes the form

L′(t) �−
[

ρ1g0

2
N4− cN3

(
1+

N3

ρ2

)]
‖ϕt‖2

2

−
[γ
4
N2− cN4−2ρ2

]
‖ψt‖2

2

−
[
k1l
4

N3 − c

]
‖ϕx + ψ‖2

2−
k2

4
‖ψx‖2

2

−
[

ρ3

2
N1 − cN2

(
1+

4N2

k2
+

8N2

k1lN3

)
− c

]
‖θ‖2

2

−
[

αN− cN1

(
1+

4N1

γN2

)
− cN2

]
‖q‖2

2

+
k1ε
2

N (g 	 (ϕx + ψ))(t)

−
[
k1

2
N− cAε

(
N2 +N3 +N4

(
1+

8N4

k1lN3

)
+1

)]
(h 	 (ϕx + ψ))(t).

(3.35)

Now, we choose the remaining constants carefully: First, we select N3 large such that

k1lN3

4
− c > 0, (3.36)

then we choose N4 large enough so that

ρ1g0

2
N4− cN3

(
1+

N3

ρ2

)
> 0. (3.37)

Next, we choose N2 large enough such that

γ
4
N2 − cN4−2ρ2 > 0 (3.38)

and followed by selecting N1 so large such that

ρ3

2
N1 − cN2

(
1+

4N2

k2
+

8N2

k1lN3

)
− c > 0. (3.39)

Next, from assumption (C1) and definition of h , we infer that
εg2(s)
h(s)

=
εg2(s)

εg(s)−g′(s)
<

g(s). Thus, applying the dominated convergence theorem, we see that

εAε =
∫ +∞

0

εg2(s)
εg(s)−g′(s)

ds → 0 as ε → 0. (3.40)
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Therefore, there exists 0 < ε0 < 1 such that for ε < ε0 , we have

εAε <
1

4c
(
N2 +N3 +N4

(
1+ 8N4

k1lN3

)
+1
) .

Finally, we choose N very large and take ε =
1

2Nk1
so that (3.29) remains valid and

αN − cN1

(
1+

8N1

γN2

)
− cN2 > 0, (3.41)

as well as
k1

2
N− cAε

(
N2 +N3 +N4

(
1+

8N4

k1lN3

)
+1

)
> 0. (3.42)

Combining (3.34)–(3.42) , we obtain (3.30). �

4. Main decay result

Now, we state and prove the main decay result of this paper.

THEOREM 2. Suppose conditions (C1) and (C2) hold. Then, the energy func-
tional (3.1) satisfies for some positive constants m1 and m2, the decay estimate

E(t) � m2U
−1
1

(
m1

∫ t

t0
ω(s)ds

)
, U1(t) =

∫ r

t

1
sU ′(s)

ds, (4.1)

where U1 is a strictly convex function that is decreasing on (0,r] with r = g(t0) > 0
and lim

t→0
U1(t) = +∞.

Proof. By virtue of conditions (C1) and (C2) , the functions ω and g are contin-
uous, decreasing and positive. Furthermore, U is continuous and positive. Thus, we
obtain

0 < g(t0) � g(t) � g(0), 0 < ω(t0) � ω(t) � ω(0) ∀ t ∈ [0,t0].

This implies, there exist a1 > 0 and a2 > 0 such that

a1 � ω(t)U(g(t)) � a2.

It follows that

g′(t) � −ω(t)U(g(t)) � − a1

g(0)
g(0) � − a1

g(0)
g(t), ∀ t ∈ [0, t0]. (4.2)

Therefore, (3.1) and (4.2) yield∫ t0

0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� −g(0)
a1

∫ t0

0
g′(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� −CE ′(t) ∀ t ∈ [0,t0]. (4.3)
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Using (3.30) and (4.3), we obtain

L′(t) � −βE(t)+
1
4
(g 	 (ϕx + ψ)(t)

= −βE(t)+
1
4

∫ t0

0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

+
1
4

∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� −βE(t)−CE ′(t)+
1
4

∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds.

It follows that

R′
1(t) � −βE(t)+

1
4

∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds ∀t � t0, (4.4)

where R1 = L+CE is equivalent to E due to (3.29). Now, we distinguish two cases:

Case 1. U is linear. Multiplying (4.4) by ω(t) , it follow from (3.1) and (C2) that

ω(t)L′
1(t) � −β ω(t)E(t)+

1
4

ω(t)
∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� −ω(t)E(t)+
1
2

∫ t

t0
ω(s)g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� −β ω(t)E(t)− 1
2

∫ t

t0
g′(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� −β ω(t)E(t)−CE ′(t). (4.5)

Since ω is decreasing, we obtain

(ωL1 +CE)′(t) � −β ω(t)E(t) ∀ t � t0 (4.6)

and since R1 is equivalent to E , we obtain

ωL1 +CE ∼ E. (4.7)

Thus, for some positive constant m we have

L′
2(t) � −β ω(t)E(t) � −mω(t)L2(t) ∀ t � t0, (4.8)

where L2(t) = ω(t)L1(t)+CE(t) . Integration of (4.8) over (t0,t) and recalling (4.7)
yield

E(t) � me−m′ ∫ t
t0

ω(s)ds = mU−1
1

(
m′
∫ t

t0
ω(s)ds

)
.

Case 2. U is nonlinear. Let L (t) = L(t)+F6(t). On account of Lemma 11 and
(3.35), we get

L ′(t) � −λE(t) ∀t � t0, (4.9)
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for some positive constant λ . It follows that

λ
∫ t

t0
E(s)ds � L (t0)−L (t) � L (t0).

Therefore, ∫ +∞

0
E(s)ds < ∞. (4.10)

Next, we define

d(t) := η
∫ t

t0
‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

By virtue of (4.10), we can select 0 < η < 1 such that

d(t) < 1 ∀ t � t0. (4.11)

To continue, we assume without loss of generality that d(t) > 0 ∀ t � t0, otherwise we
get from (4.4) that the energy functional (3.1) is exponentially stable. Also, we define
the functional

v(t) := −
∫ t

t0
g′(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

and easily see that v(t) � −CE ′(t) . Using condition (C2), we have that U is strictly
convex on (0,r], r = h(t0) and U(0) = U ′(0) = 0. It follows that

U(νt) � νU(t), 0 � ν � 1, t ∈ (0,r]. (4.12)

Thus, on account of (C2) , (4.11) and Jensen’s inequality (2.15), we have

v(t) =
1

ηd(t)

∫ t

t0
d(t)(−g′(s))η‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� 1
ηd(t)

∫ t

t0
d(t)ω(s)U(g(s))η‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� ω(t)
ηd(t)

∫ t

t0
U(d(t)g(s))η‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

� ω(t)
η

U

(
1

d(t)

∫ t

t0
d(t)g(s)η‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

)

=
ω(t)

η
U

(
η
∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

)

=
ω(t)

η
U

(
η
∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds

)
, (4.13)

where U is an extension of U on (0,+∞) introduced in (2.3). Thus, (4.13) yields∫ t

t0
g(s)‖(ϕx + ψ)(t)− (ϕx + ψ)(t− s)‖2

2ds � 1
η

U
−1
(

ηv(t)
ω(t)

)
.
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Using (4.4), we obtain

R′
1(t) � −βE(t)+ cU

−1
(

ηv(t)
ω(t)

)
∀ t � t0. (4.14)

Let r0 < r , to be specified later, and define

W1(t) := U
′
(

r0
E(t)
E(0)

)
R1(t)+E(t).

We see that W1 is equivalent to E since R1 is equivalent to E . Thus, using (4.14) and
the fact that E ′(t) � 0, U

′
(t) > 0, U

′′
(t) > 0, we have

W ′
1(t) = r0

E ′(t)
E(0)

U
′′
(

r0
E(t)
E(0)

)
R1(t)+U

′
(

r0
E(t)
E(0)

)
R′

1(t)+E ′(t)

� −βE(t)U
′
(

r0
E(t)
E(0)

)
+ cU

′
(

r0
E(t)
E(0)

)
U

−1
(

η
v(t)
ω(t)

)
︸ ︷︷ ︸

J13

+E ′(t). (4.15)

To estimate the term J13 , we consider the convex conjugate U
∗

of U (see [31] page
61-64) defined by

U
∗
(s) = s(U

′
)−1(s)−U

[
(U

′
)(s)
]
, (4.16)

and satisfies the generalized Young inequality

f1 f2 � U
∗
( f1)+U( f2). (4.17)

Setting f1 =U
′(

r0
E(t)
E(0)

)
and f2 =U

−1
(

η v(t)
ω(t)

)
, it follows from Lemma 4 and (4.15)–

(4.17) that, for all t � t0 , we have

W ′
1(t) � −βE(t)U

′
(

r0
E(t)
E(0)

)
+ cU

∗
(

U
′
(

r0
E(t)
E(0)

))
+ cη

v(t)
ω(t)

+E ′(t)

� −βE(t)U
′
(

r0
E(t)
E(0)

)
+ cr0

E(t)
E(0)

U
′
(

r0
E(t)
E(0)

)
+ cη

v(t)
ω(t)

+E ′(t). (4.18)

Now, we multiply (4.18) by ω(t) , keeping in mind that r0
E(t)
E(0) < r and

U
′
(

r0
E(t)
E(0)

)
=U ′

(
r0

E(t)
E(0)

)
,

we get

ω(t)W ′
1(t) �−β ω(t)E(t)U ′

(
r0

E(t)
E(0)

)
+ cr0

E(t)
E(0)

ω(t)U ′
(

r0
E(t)
E(0)

)
+ cηv(t)+ ω(t)E ′(t)
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�−β ω(t)E(t)U ′
(

r0
E(t)
E(0)

)
+ cr0

E(t)
E(0)

ω(t)U ′
(

r0
E(t)
E(0)

)
− cE ′(t) ∀ t � t0. (4.19)

Let W2(t) = ω(t)W1(t)+ cE(t) , since W1 is equivalent to E , it follows that

b0W2(t) � E(t) � b1W2(t), (4.20)

for some constants b0,b1 > 0. Thus, we get from inequality (4.19) that

W ′
2(t) � −(βE(0)− cr0)ω(t)

E(t)
E(0)

U ′
(

r0
E(t)
E(0)

)
, ∀t � t0.

We select r0 < r small enough so that βE(0)− cr0 > 0 to get

W ′
2(t) � −mω(t)

E(t)
E(0)

U ′
(

r0
E(t)
E(0)

)
= −mω(t)U2

(
E(t)
E(0)

)
, ∀t � t0, (4.21)

where m is a positive constant and U2(t) = tU ′(r0t). We note that

U ′
2(t) = U ′(r0t)+ r0tG

′′(r0t),

hence using the strict convexity of U on (0,r], we see that U2(s) > 0, U ′
2(s) > 0 on

(0,r]. Next, we set

W (t) = b0
W2(t)
E(0)

.

It follows from (4.20) and (4.21) that

b′0W (t) � E(t) � b′1W (t) (4.22)

and

W ′(t) = b0
W ′

2(t)
E(0)

� −m1ω(t)U2(W (t)) ∀t � t0. (4.23)

The integration of (4.23) over (t0,t) yields

m1

∫ t

t0
ω(s)ds � −

∫ t

t0

W ′(s)
U2(W (s))

ds =
1
r0

∫ r0W(t0)

r0W(t)

1
sU ′(s)

ds.

Therefore

W (t) � 1
r0

U−1
1

(
m1

∫ t

t0
ω(s)ds

)
, where U1(t) =

∫ r

t

1
sU ′(s)

ds. (4.24)

It is easy to see from condition (C2) that U1 is strictly decreasing on (0,r] and

lim
t−→0

U1(t) = +∞.

From (4.22) and (4.24), we arrive at the stability inequality (4.1). �
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REMARK 2. The main decay estimate in (4.1) is optimal in the sense that it agrees
with the properties of g , see [28], Remark 2.3.

COROLLARY 1. Suppose conditions (C1) and (C2) hold. Assume the function U
in assumption (C2) is defined by

U(s) = sq q � 1. (4.25)

Then, the solution energy (3.1) satisfies

E(t) �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

m2 exp

(
−m1

∫ t

0
ω(s)ds

)
when q = 1,

m

(
1+

∫ t

t0
ω(s)ds

)− 1
q−1

when q > 1.

(4.26)

where m1,m2 and m are all positive constants.

5. Examples

(1). Let g(t) = ae−bt , t � 0, where a > 0, b > 0 are constants and a is chosen so
that (2.1) holds. Then

g′(t) = −abe−bt = −bU(g(t)), with U(t) = t.

Thus, it follows from (4.1) that the energy functional (3.1) satisfies

E(t) � k2e
−λ t , ∀ t � 0, where λ = bm1. (5.1)

(2). Let g(t) = ae−(1+t)b , t � 0, where a > 0, 0 < b < 1 are constants and a is
chosen such that (2.1) holds. Then,

g′(t) = −ab(1+ t)b−1e−(1+t)b = −ω(t)U(g(t)),

where ω(t) = b(1+ t)b−1 and U(t) = t. Therefore, we get from (4.1) that

E(t) � m2e
−m1(1+t)b , ∀ t � 0. (5.2)

(3). Let g(t) = a
(1+t)b , t � 0, where a > 0, b > 1 are constants and a is chosen such

that (2.1) holds. We have

g′(t) =
−ab

(1+ t)b+1 = − b

a
1
b

(
a

(1+ t)b

) b+1
b

= −ω(t)U(g(t)),

where

U(t) = tq, q =
b+1

b
satisfy 1 < q < 2 and ω(t) =

b

a
1
b

> 0.

Hence, we deduce from (4.1) that

E(t) � m
(1+ t)b , ∀ t � 0. (5.3)
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6. Conclusion

In this work, we established a general decay result for a new model of Timo-
shenko system with viscoelastic damping acting on the shear force, and heat conduction
given by Maxwell-Cattaneo’s law acting on the bending moment. Using the multiplier
method, we proved a decay result for the associated energy functional. The decay re-
sult obtained in this paper holds without the usual equal-wave of speed propagation
condition (1.7) or the stability number condition (1.14). Thus, it is of great interest to
engineers when choosing materials to build Timoshenko beams. An interesting ques-
tion will be to investigate system (1.11) with infinite memory. In this case, we believe
the wave speeds may play a vital role in the decay result.
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