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Abstract. In this paper, we discuss the existence and uniqueness of a mild solution for neu-
tral impulsive fractional stochastic delay differential equations driven by Brownian motion, and
fractional Brownian motion with the Hurst parameter H ∈ (1/2,1) , by using Banach fixed point
theorem in a Hilbert space.

1. Introduction

Fractional differential equations have been widely applied in many fields of sci-
ence and engineering, such as physics ([1]–[2]), chemistry ([3]–[4]), etc. For example,
the fluid dynamic traffic model with fractional derivatives [5] can eliminate the defi-
ciency arising from the assumption of continuum traffic flow. Stochastic differential
equations (SDEs) have attracted great interest due to its applications in various fields of
science and engineering. There are many interesting results on the theory and applica-
tions of stochastic differential equations (see, e.g., [6]–[10]). SDEs are used to model
various phenomena such as unstable stock prices or physical systems subject to ther-
mal fluctuations. Typically, SDEs contain a variable which represents random white
noise calculated as the derivative of Brownian motion (Wiener) process. Stochastic dif-
ferential equations are considered by many authors (see for example, [11] where the
stochastic disturbances are described by stochastic integrals with respect to Brownian
motion processes. However, the Brownian motion process is not suitable to represent
a noise process if long-range dependence is modeled. It is then desirable to replace
the Brownian motion process by fractional Brownian motion (fBM). Fractional Brow-
nian motions are widely used in modeling many complex phenomena in applications
when the systems are subject to rough external forcing. The existence of the fBM fol-
lows from the general existence theorem of centered Gaussian processes with given
covariance functions [12]. The fBM is divided into three very different families corre-
sponding to 0 < H < 1/2, H = 1/2 and 1/2 < H < 1, respectively. The fBM (BH ) is
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not a semimartingale, as a result, the usual It ô calculus is not available for use. When
H > 1/2, it happens that the regularity of the sample paths of BH is enough and allows
for using Young integral. In the case that H < 1/2 a powerful approach (Rough path
theory) may be used.

Impulsive stochastic differential equations are practically used to describe the real
life phenomena in the fields of ecology, chemical technology, electrical engineering,
etc. P. Balasubramaniam, P. Tamilalagan [8] are investigated the solvability and opti-
mal controls for impulsive fractional stochastic integro-differential equations in Hilbert
space and P. Balasubramaniam, N. Kumaresan [9] are studied the local and global exis-
tence of mild solutions for impulsive fractional semilinear stochastic differential equa-
tion with nonlocal condition in a Hilbert space, and so many researchers showed interest
in investigating neutral stochastic differential equations ([10], [13] and [14]).

First of all, Ferrante and Rovira [15], the existence and uniqueness of solutions
and the smoothness of the density for delayed SDEs driven by fBM is proved when
H > 1/2, but under strong hypotheses, using only techniques of the classical stochastic
calculus, and preventing, for instance, the presence of a hereditary drift in the equa-
tions. Neuenkirch et al. [16], using rough path theory, the authors prove existence and
uniqueness of solutions to fractional equations with delays when H > 1/3. T. Caraballo
et al. [17] prove the existence of solutions to stochastic delay evolution equations with
a fBM. Recently, Min Yang and Haibo Gu. [18], study of the existence and uniqueness
of mild solution to a class of Riemann-Liouville fractional stochastic evolution equa-
tions driven by both Wiener process and fractional Brownian motion with nonlocal
conditions of the form

LDα
t [x(t)+h(t,x(t))] = Ax(t)+F(t,x(t))

dw(t)
dt

+ σ(t)
dBH

Q

dt
, t ∈ (0,T ],

I1−α
0+ [x(0)+g(x)] = x0 ∈ X ,

where LDα
t denotes the Riemann-Liouville fractional derivative in time defined for

1/2 < α < 1, Iα is the temporal Riemann-Liouville fractional integral operator of or-
der α and x(t) takes values in a separable Hilbert space X and A is the infinitesimal
generator of an analytic semigroup, {S(t)}t�0 , of bounded linear operators in a separa-
ble Hilbert space X . Let L(K,X) denote the space of all bounded linear operators from
K (another separable Hilbert space) to X ; h : J = [0,T ]×X → X , F : J×X → L(K,X)
be functions satisfying some specific assumptions and {w(t)}t�0 is a given K -valued
Wiener process with a finite trace nuclear covariance operator Q > 0 defined on the
filtered complete probability space (Ω,ℑ,P) . The initial data x0 is an ℑ0 -measurable,
stochastic process independent of the Wiener process w and fBm BH(t) with finite
second moment.

To the best of our knowledge, there has no results about neutral impulsive stochas-
tic Caputo-type fractional differential equations with finite time delay driven by both
Brownian motion and fractional Brownian motion processes. Motivated by the above
discussion, the aim of this paper is to establish the existence and uniqueness of a mild
solutions to neutral impulsive stochastic fractional differential equations with finite time
delay driven by both Brownian motion and fractional Brownian motion processes of the
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form

CDα
t [u(t)+g(t,u(τ(t)))] = Au(t)+ f (t,u(τ(t)))

dB(t)
dt

+ σ(t)
dBH

Q

dt
, t ∈ (0,T ], t �= tk

u(t+k )−u(t−k ) = Ik(u(t−k )), k = 1,2,3, · · · ,δ .

u(t) = φ(t), −r � t � 0, (1.1)

where A is the infinitesimal generator of an analytic semigroup, {T (t)}t�0 , of bounded
linear operators in a separable Hilbert space X ; BH

Q is a fBM with Hurst index H > 1/2
on a real separable Hilbert space Y , B(t) is a Brownian motion process with a finite
trace covariance operator Q > 0 defined on the filtered complete probability space,
f ,g : [0,∞)×X→X , σ : [0,∞)→ L2(Y ,X) are given functions, τ : [0,∞)→ [0,∞) is
a suitable delay function, Ik : X →X represents the impulsive perturbation of u at time
tk , and the initial data φ : [−r,0]×Ω→X in the space of all continuous functions from
(−r,0] to X and has finite second moments.

REMARK 1.1. In this paper, we consider impulsive neutral stochastic Caputo-
type (better than Riemann-Liouville-type) fractional differential equations with time
delay driven by both Brownian motion and fractional Brownian motion processes. The
novelty of this article is that we consider impulsive stochastic Caputo-type fractional
differential equations with varying-time delay which the paper [18] we are referred is
considered a class of Riemann-Liouville-type fractional stochastic evolution equations
with nonlocal conditions. Also, in this paper, we are used some same hypothesis as in
[18] and added some another conditions in order to prove the existence and uniqueness
of solutions for equation 1.1. So our problem has a completely different form from the
considered problem in [18] and, accordingly, our result is different from [18].

The outline of this paper is structured as follows: section 2 contains some nota-
tions and preliminary facts. In section 3, the existence and uniqueness of solutions for
equation (1.1) are established. The last section contains an example to illustrate our
main results.

2. Preliminaries

In the following part we give a brief review and preliminaries needed to establish
our main results.

DEFINITION 2.1. The Reimann-Liouville fractional derivative of f is defined as

RDα
t f (t) =

1
Γ(n−α)

dn

dtn

∫ t

0

f (s)
(t − s)α+1−n ds,

where t > 0 and n ∈ Z+ , n− 1 < α < n , Γ(·) stands for the gamma function and
n = [α]+1 with [α] denotes the integer part of α (see e.g., [19]).
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The Reimann-Liouville derivative has certain disadvantages when trying to model
real-world phenomenawith fractional differential equations (e.g., the Riemann-Liouville
derivative of a constant is not zero. In addition, if an arbitrary function is a constant at
the origin, its fractional derivation has a singularity at the origin for instant exponential
and Mittag-Leffler functions. Theses disadvantages reduce the field of application of
the Riemann-Liouville fractional derivative). Therefore, we shall introduce a modified
fractional differential operator Dα∗ proposed by M. Caputo in his work on the theory of
viscoelasticity.

DEFINITION 2.2. The Caputo-type derivative of order α for a function f can be
written as

CDα
t f (t) =

1
Γ(n−α)

∫ t

0

f (n)(s)
(t− s)α+1−n ds,

where t > 0, n−1 < α < n (see e.g., [19]).

REMARK 2.1.

1. The relationship between the Riemann-Liouville derivative and the Caputo-type
derivative can be written as

CDα
t f (t) = RDα

t f (t)−
n−1

∑
k=0

tk

k!
f (k)(0)

2. The Caputo-type derivative of a constant is equal to zero.

I αg(t) =
1

Γ(α)

∫ t

0
(t− s)α−1g(s)ds, t > 0. (2.1)

Let (Ω,ℑ,P) be a complete probability space and let {β H(t),t ∈ [0,T ]} the one-
dimensional fractional Brownian motion with Hurst index H ∈ (1/2,1) . This means
by definition that β H is a centered Gaussian process with covariance function:

RH(t,s) =
1
2
(t2H + s2H− | t− s |2H)

It is known that β H has the following Wiener integral representation (see, for example,
[12]):

β H(t) =
∫ t

0
KH(t,s)dB(s),

where B = {B(t) : t ∈ [0,T ]} is a standard Brownian motion process and KH(t,s) is an
explicit square integrable kernel given by

KH(t,s) = CHs
1
2−H

∫ t

s
(u− s)H− 3

2 uH− 1
2 du, t > s,
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where

CH =

√
H(2H−1)∫ t

0(1− x)1−2HxH− 3
2 dx

=

√
H(2H−1)

β (2−2H,H− 1
2 )

and β (·, ·) denotes the Beta function. Let H be the closure of the set of indicator
functions

{
I[0,t], t ∈ [0,T ]

}
with respect to the scalar product

〈I[0,t],I[0,s]〉H = RH(t,s)

We recall that for ϕ ,ψ ∈ H their scalar product in H is given by ([20]):

〈ϕ ,ψ〉H = H(2H−1)
∫ T

0

∫ T

0
ϕ(s)ψ(t) | t− s |2H−2 dsdt

Let the operator K∗
H : H → L 2([0,T ]) defined by ([20]):

(K∗
Hϕ)(s) =

∫ T

s
ϕ(τ)

∂KH

∂τ
(τ,s)dτ

and for any ϕ ∈ H , we have

β H(ϕ) =
∫ T

0
K

∗
H(ϕ)(t)dB(t)

It is known that the elements of H may be not functions but distributions of negative
order. In order to obtain a space of functions contained in H , we consider the linear
space H ∗ generated by the measurable functions ψ such that

‖ ψ ‖2
H ∗ := H(2H−1)

∫ T

0

∫ T

0
| ψ(τ) || ψ(s) || τ − s |2H−2 dτds

It is clear that, the space (H ∗;‖ ψ ‖2
H ∗) is a Banach space and we have, ([12]):

L 2([0,T ]) ⊆ L
1
H ([0,T ]) ⊆ H ∗ ⊆ H

and for any ψ ∈ L 2([0,T ]) , we have

‖ ψ ‖2
H ∗� 2HT 2H−1

∫ T

0
| ψ(s) |2 ds

Let L(Y ,X) be the space of bounded linear operator from Y to X and let Q ∈
L(Y ,Y ) be an operator defined by Qen = λnen with finite trace TrQ = ∑∞

n=1 λn < ∞ ,
λn � 0 are nonnegative real numbers and en is a complete orthonormal basis in Y . Let
BH

Q = {BH
Q (t)} be Y -valued fBM on (Ω,ℑ,P) with covariance Q defined as:

BH
Q (t) =

∞

∑
n=1

β H
n (t)en

√
λn,
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where β H
n are fractional Brownian motions mutually independent. It is clear that the

process BH
Q is Gaussian, it starts from zero, has zero mean and covariance

E[〈BH
Q (t),x〉〈BH

Q (s),y〉] = R(t,s)〈Q(x),y〉, x,y ∈ Y , t,s ∈ [0,T ]

In order to define Wiener integrals with respect to the Q-fBM, we introduce the space
L2(Y ,X) of all Q-Hilbert-Schmidt operators Ψ : Y →X . We recall that Ψ∈L2(Y ,X)
is called a Q-Hilbert-Schmidt operator if

‖ Ψ ‖2
L2 :=

∞

∑
n=1

‖ Ψen

√
λn ‖2< ∞

We note that the space L2 equipped with the inner product

〈ϕ ,ψ〉
L2 =

∞

∑
n=1

〈ϕen,ψen〉.

is a separable Hilbert space ([17]). Now, the Wiener integral of ϕ ∈ L2(Y ,X) with
respect to BH

Q is defined by:

∫ t

0
ϕ(s)dBH

Q(s) :=
∞

∑
n=1

∫ t

0
ϕ(s)

√
λnendβ H

n (s) =
∞

∑
n=1

∫ t

0
K

∗
H(ϕen)(s)

√
λndBn(s),

where Bn is the standard Brownian motion.

LEMMA 2.1. If Φ : [0,T ] → L2(Y ,X) satisfies
∫ T
0 ‖ Φ(s) ‖2

L2 ds < ∞ . Then the
above sum in the previous equation is well-defined as a X -valued random variable and
we have:

E[‖
∫ t

0
Φ(s)dBH

Q ‖2] � 2HT 2H−1
∫ t

0
‖ Φ(s) ‖2

L2 ds.

We recall that for any strongly continuous semigroup {T (t); t � 0} on X , we
define the generator

Au = lim
t→0+

T (t)u−u
t

.

Throughout this paper, let A is the infinitesimal generator of a strongly continuous
semigroup {T (t); t � 0} of operators on a Hilbert space X . Clearly,

M = sup
t∈[0,T ]

‖ T (t) ‖< ∞.

LEMMA 2.2. ([21]) Suppose that 0 ∈ ρ(A) , where ρ(A) is the resolvent set of A
and the semigroup T (t) is uniformly bounded, ‖ T (t) ‖�C1 for some constant C1 � 1
and every t � 0 . Then, for 0 < q � 1 , it is possible to define the fractional power
operator (−A)q as a closed linear operator on its domain D(−A)q . Furthermore, the
subspace D(−A)q is dense in X and we define the norm on Xq := D(−A)q as:

‖ x ‖q=‖ (−A)qx ‖, x ∈ D(−A)q.
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LEMMA 2.3. ([21]) Under the above conditions the following properties hold:

1. Xq is a Banach space for 0 < q � 1 .

2. If ρ(A) is compact, then the embedding Xβ ⊂ Xq is continuous and compact for
0 < q � β .

3. For every 0 < q � 1 ; there exists Mq such that

‖ (−A)qT (t) ‖� Mqt
−qe−ρt , ρ > 0, t � 0.

Let P := C(I := [−r,T ],L 2(Ω,X)) denote the Banach space of all continuous
functions from I into L 2(Ω,X) satisfying supt∈I ‖ u ‖2< ∞ . We consider also that

Xk(t) =
{

0 , t ∈ [0,tk)
1 , t ∈ [tk,T ]

DEFINITION 2.3. An ℑt -adapted and measurable stochastic process u ∈ P is
said to be a mild solution of equation (1.1) if:

1. u(t) ∈ P .

2. u(·) is continuous on [0,t1] and on each interval (tk,tk+1] , k = 1,2, · · · ,δ .

3. u(t) = φ(t) , −r � t � 0.

4. For each tk , u(t+k ) = limt→t+k
u(t) exists.

5. For any t ∈ [0,T ] , we have,

u(t) = J(t)(φ(0)+g(0,φ(τ(0))))−g(t,φ(τ(t)))

+
∫ t

0
(t− s)α−1J∗(t− s) f (s,u(τ(s)))ds

−
∫ t

0
(t− s)α−1AJ∗(t− s)g(s,u(τ(s)))ds+

δ

∑
k=1

Xk(t)J∗(t − tk)Ik(u(tk))

+
∫ t

0
(t− s)α−1J∗(t− s)σ(s)dBH

Q (s),

where

J(t) =
∫ ∞

0
Mα(θ )T (tα θ )dθ ,

J∗(t) = α
∫ ∞

0
θMα(θ )T (tα θ )dθ

and Mα(θ ) � 0 is a probability function on (0,∞) , that is

Mα (θ ) =
1
α

θ−1− 1
α ωα(θ− 1

α ),

ωα(θ ) =
1
π

∞

∑
n=1

(−1)n−1θ−nα−1 Γ(nα +1)
n!

sinnπα.

and
∫ ∞
0 Mα(θ )dθ = 1
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LEMMA 2.4. ([22], [23]) The operators J and J∗ have the following properties:

1. For any fixed t � 0 , J(t) and J∗(t) are linear and bounded, i.e., for any x ∈ X

‖ J(t)x ‖� C2 ‖ x ‖, ‖ J∗(t)x ‖� C2α
Γ(α +1)

‖ x ‖

2. {J(t), t � 0} and {J∗(t),t � 0} are strongly continuous.

3. For every t > 0 , J(t) and J∗(t) are compact operators if T(t) is compact.

4. For any t > 0 and 0 � q < 1 , there exists a positive constant Cq such that:

AJ∗(t)x = A1−qJ∗(t)Aqx,

and

‖ (−A)qJ∗(t) ‖� αCqΓ(2−q)
tαqΓ(1+ α(1−q))

.

3. Existence and uniqueness

To establish the main result, we require the following hypotheses:

(H 1) T (t) is continuous in the uniform operator topology for t � 0, and {T (t)}t�0 is
uniformly bounded i.e., there exits M � 1 such that supt∈[0,T ] | T (t) |� M .

(H 2) 1. For each u ∈ X , the function f (·,u) : [0,T ] → L2(Y ,X) is strongly mea-
surable with respect to t and for every t ∈ [0,T ] , the function f (t, ·) : X →
L2(Y ,X) is continuous with respect to u .

2. There exist a function L f (t) ∈ L
1

2α1−1 ([0,T ]) , α1 ∈ [1/2,α) and a con-
tinuous non-decreasing function ζ : R+ → R+ such that for any (t,u) ∈
[0,T ]×P , we have

E‖ f (t,u(t))‖2 � L f (t)× ζ (‖u‖2)

3. There exist a function L f1(t) ∈ L
1

2α1−1 ([0,T ]) , α1 ∈ [1/2,α) , such that
for any u,v ∈ X , t ∈ [0,T ] , we have

E‖ f (t,u(t))− f (t,v(t))‖2 � L f1(t)×‖u− v‖2

(H 3) 1. For each u ∈ X , the function g(·,u) : [0,T ] → X is strongly measurable
with respect to t and for every t ∈ [0,T ] , the function g(t, ·) : X → X is
continuous with respect to u .

2. There exist constants q ∈ (0,1] and L > 0 such that g ∈ D(−A)q and for
any u,v ∈ P the function (−A)qg is strongly measurable and

E‖(−A)qg(t,u(t))− (−A)qg(t,v(t))‖2 � L‖u− v‖2
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3. There exist a continuous non-decreasing function η : R+ → R+ such that
for any (t,u) ∈ [−r,T ]×P , we have

E‖(−A)qg(t,u(t))‖2 � L(1+ η(‖u‖2))

(H 4) There exists some positive numbers qk , k = 1,2,3, · · · ,δ , for all u,v ∈ X and
∑δ

k=1 qk < ∞ we have:

‖Ik(u)− Ik(v)‖ � qk ‖u− v‖

(H 5) The function σ : [0,T ] → L2(Y ,X) satisfies:

∫ T

0
‖σ(s)‖

2
2α1−1

L2 ds < ∞

(H 6) τ : [0,∞) → R is a continuous function satisfying the condition that

−r � τ(t) � t, t � 0

(H 7) φ ∈ P .

THEOREM 3.1. Let Fk := {u∈P,‖ u ‖� k,u(t) = φ(t),t ∈ [−r,0]} . It is obvious
that Fk is a bounded, closed, convex set in P . We define the operator Ψ on Fk by:

Ψu(t) = φ(t), t ∈ [−r,0],
Ψu(t) = J(t)(φ(0)+g(0,φ(τ(0))))−g(t,φ(τ(t)))

+
∫ t

0
(t− s)α−1J∗(t− s) f (s,u(τ(s)))ds

−
∫ t

0
(t− s)α−1AJ∗(t− s)g(s,u(τ(s)))ds+

δ

∑
k=1

Xk(t)J∗(t − tk)Ik(u(tk))

+
∫ t

0
(t− s)α−1J∗(t− s)σ(s)dBH

Q (s), t ∈ [0,T ].

Then, Ψu(Fk) ⊂ Fk .

Proof. According to assumption (H 3) and Lemma (2.4), we obtain

E

∥∥∥∥
∫ t

0
(t − s)α−1AJ∗(t− s)g(s,u(τ(s)))ds

∥∥∥∥
2

� E

∫ t

0

∥∥(t − s)α−1(−A)1−qJ∗(t − s)(−A)qg(s,u(τ(s)))
∥∥2

ds

�
∫ t

0

∥∥(t− s)α−1(−A)1−qJ∗(t− s)
∥∥ds

·
∫ t

0
(t− s)α−1(−A)1−qJ∗(t− s)E‖(−A)qg(s,u(τ(s)))‖2 ds
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�
α2C2

1−qΓ2(1+q)
Γ2(1+ αq)

∫ t

0
(t − s)qα−1ds

·
∫ t

0
(t− s)qα−1(−A)1−q

E‖(−A)qg(s,u(τ(s)))‖2 ds

� T 2qα C2
1−qΓ2(1+q)

q2Γ2(1+ αq)
L(1+ η(‖u‖2))

= ϒ(α,q)L(1+ η(‖u‖2)).

Now, from assumption (H 2) and let b = α−1
1−α1

, we obtain

E

∥∥∥∥
∫ t

0
(t− s)α−1J∗(t− s) f (s,u(τ(s)))dB(s)

∥∥∥∥
2

� TrQ
C2

2α2

Γ2(α +1)

∫ t

0
(t− s)2(α−1)

E‖ f (s,u(τ(s)))‖2 ds

� TrQ
C2

2α2

Γ2(α +1)

[∫ t

0
(t− s)

2(α−1)
2−2α1 ds

]2−2α1

ζ (‖u‖)∥∥L f
∥∥

L
1

2α1−1

� TrQ
C2

2α2

Γ2(α +1)
T (1+b)(2−2α1)

(1+b)(2−2α1)
ζ (‖u‖)∥∥L f

∥∥
L

1
2α1−1

= TrQ
C2

2α2

Γ2(α +1)
Λζ (‖u‖)∥∥L f

∥∥
L

1
2α1−1

.

from assumption (H 5), we have

E

∥∥∥∥
∫ t

0
(t − s)α−1J∗(t− s)σ(s)dBH

Q(s)
∥∥∥∥

2

� 2HT 2H−1 C2
2α2

Γ2(α +1)

∫ t

0
(t− s)2(α−1)‖σ(s)‖2

L2 ds

� 2HT 2H−1 C2
2α2

Γ2(α +1)

[∫ t

0
(t − s)

2(α−1)
2−2α1 ds

]2−2α1
[∫ t

0
‖σ(s)‖ 2

2α1−1 ds

]2α1−1

� 2HT 2H−1 C2
2α2

Γ2(α +1)
T (1+b)(2−2α1)+(2H+1)

(1+b)(2−2α1)

[∫ t

0
‖σ(s)‖ 2

2α1−1 ds

]2α1−1

= 2HT 2H−1 C2
2α2

Γ2(α +1)
Λ

[∫ t

0
‖σ(s)‖ 2

2α1−1 ds

]2α1−1

.

and from assumption (H 4), we have

E

∥∥∥∥∥ ∑
0<tk<t

Xk(t)J∗(t− tk)Ik(u(tk))

∥∥∥∥∥
2

�
[

∑
0<tk<t

‖J∗(t− tk) ‖‖ Ik(u(tk))Ik(0)‖
]2
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� C2
2α2

Γ2(α +1) ∑
0<tk<t

qk ∑
0<tk<t

qkE‖u(tk)‖2

� M∗.

Then, by combining the previous inequalities, and since Ψu(t) = φ(t) , t ∈ [−r,0] we
get that

sup
−r�t�T

E‖Ψu(t)‖2 < ∞.

It is easy to check that Ψ satisfies the conditions (2,4) in Definition 2.3. Hence, we
can conclude that Ψu(Fμ) ⊂ Fμ . This completes the first step in our proof. In the next
theorem, we will proof the second step, that is, we will show that Ψ is a contraction
mapping in Fk . �

THEOREM 3.2. Assume that hypotheses (H 1–H 7) hold, then the equation (1.1)
has a unique mild solution on Fk provided that M

∗ < 1 .

Proof. Now, we are going to show that Ψ is a contraction mapping in Fk . Define
operator Ψ as in Theorem (3.1). Then we can get that the operator Ψ maps Fk into
itself, where Fk is defined as in Theorem (3.1). Moreover, for any u,v ∈ Fk , we have

E‖Ψu(t)−Ψv(t)‖2 � 4
4

∑
k=1

Φk.

Since u(t) = v(t) = φ(t),t ∈ [−r,T ] and from assumption (H 6), this implies that

E‖u(τ(t))− v(τ(t))‖2 � sup
−r�t�T

E‖u(t)− v(t)‖2

Using assumption (H 3) and let ‖(−A)−q‖ = M0 , we get the following result.

Φ1 = E‖g(t,u(τ(t)))−g(t,v(τ(t)))‖2

� L
∥∥(−A)−q

∥∥2
E‖u(τ(t))− v(τ(t))‖2

� M1 sup
−r�t�T

E‖u(t)− v(t)‖2 ,

where M1 = T 2(1−α)M2
0L ,

Φ2 = E

∥∥∥∥
∫ t

0
(t − s)α−1AJ∗(t− s)[g(s,u(τ(s)))−g(s,v(τ(s)))]ds

∥∥∥∥
2

�
∫ t

0

∥∥(t− s)α−1(−A)1−qJ∗(t− s)
∥∥2

ds

·
∫ t

0
(t− s)α−1(−A)1−qJ∗(t− s)E‖(−A)qg(s,u(τ(s)))− (−A)qg(s,v(τ(s)))‖2 ds

� M2 sup
−r�t�T

E‖u(t)− v(t)‖2 ,
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where M2 = T 1−α+qαϒ2(α,q)L . By assumption (H 2), we have

Φ3 = E

∥∥∥∥
∫ t

0
(t− s)α−1J∗(t− s)[ f (s,u(τ(s)))− f (s,v(τ(s)))dB(s)

∥∥∥∥
2

� TrQ
C2

2α2

Γ2(α +1)

∫ t

0
(t − s)2(α−1)

E‖ f (s,u(τ(s)))− f (s,v(τ(s))‖2 ds

� M3 sup
−r�t�T

E‖u(t)− v(t)‖2 ,

where M3 = T 2(1−α)TrQ
C2

2 α2

Γ2(α+1)Λ
∥∥L f1

∥∥
L

1
2α1−1

,

Φ4 = E

∥∥∥∥∥ ∑
0<tk<t

Xk(t)J∗(t− tk)[Ik(u(tk))− Ik(v(tk))]

∥∥∥∥∥
2

� M4 sup
−r�t�T

E‖u(t)− v(t)‖2 ,

where M4 = C2
2 α2

Γ2(α+1)

[
∑δ

k=0 qk

]2
. Hence,

E‖Ψu(t)−Ψv(t)‖2 � M
∗ sup
−r�t�T

E‖u(t)− v(t)‖2 ,

where M
∗ := 4(∑4

i=1 Mi) < 1. We claim that Ψ is contraction. So, applying the Banach
fixed point principal, we get that Ψ has a unique fixed point in Fk which is the mild
solution of equation (1.1). �

4. Applications

In this section, we give an example to illustrate our main results.

EXAMPLE 4.1.

CD1/2
t

[
u(t,ζ )+

e−t

10
sin

(
u
(1

2
cost

))]
=

∂ 2

∂ζ 2 u(t,ζ )+
e−2tu( 1

2 cost)
80(1+u2( 1

2 cost)
dB(t)

dt

+e−π2t
dBH

Q

dt
, t ∈ (0,1], t �= tk, ζ ∈ [0,π ],

u(t,0) = u(t,π) = 0, t ∈ (0,1],

u(t+k ,ζ )−u(t−k ,ζ ) =
u(t−k )
100k2 , k = 1,2.,

u(t,ζ ) = φ(t,ζ ), −r � t � 0, (4.1)

where A : D(A) ⊂ X → X , which is defined by Aϖ = ϖ ′′ with D(A) = {u ∈ X : u′′ ∈
X,u(0) = u(π)= 0} , u,u′ are absolutely continuous and then A can be written as Au =
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∑∞
n=1 n2〈u,un〉un where un(s) =

√
2
π sin(nu) is the orthonormal set of eigenvectors of

A . Also A is the infinitesimal generator of an analytic semigroup, {T (t)}t�0 in X and
there exists M , such that ‖T (t)‖ � M . From (4.1), we know that the delay term 1

2 cost
and

g(t,u) =
e−t

10
sin(u)

f (t,u) =
e−2tu

80(1+u2)

σ(t) = e−π2t .

and with the above choices (4.1) can be formulated in the abstract form of (1.1) and it
is easy to verify the conditions of Theorem (3.2) all hold, and then (4.1) must have a
mild solution on [0,1] .
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