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Abstract. In this research paper, we present some results about the existence and uniqueness of
periodic solutions for a great nonlinear class of Volterra-Fredholm integro-differential equations
equipped with fractional integral conditions, involving ψ -Hilfer fractional operator. This inves-
tigation is carried out by means of the coincidence degree theory of Mawhin. A typical example
is also presented.

1. Introduction

Fractional Calculus is one of the most showing areas and has attracted the heed
of many scholars in a deep rang of fields [1, 2, 3, 14, 15, 16, 20, 25]. Many research
have published in the domain related to the study of fractional differential equations by
using different methods and approaches [6, 7, 8, 9, 10, 11].

Several researchers have investigated different extension of some classical frac-
tional operators. In 2018, Vanterler et al. discussed the so-called ψ -Hilfer fractional
derivative [23]. For some new research related to the study of some class of fractional
differential equations involving the generalized Hilfer fractional derivative, see [4, 22]
and the references therein.

In [21], Tidke studied the existence and uniqueness using the fixed point theory of
mixed Volterra-Fredholm integro-differential problem{

u′(t) = f
(
u(t),

∫ t
0 κ(t,s,u(s))ds,

∫ b
0 h(t,s,u(s))ds

)
, t ∈ [0,b]

u(0)+g(u) = u0.

By means of fixed-point theorem for the mixed integro-differential equations with Ca-
puto fractional derivative of order 0 < α � 1, Anguraj et al. [5] studied the existence
and uniqueness of solution for the following problem with integral boundary conditions,⎧⎨

⎩
dαu(t)

dtα = f
(
t,u(t),

∫ t
0 κ(t,s,u(s))ds,

∫ 1
0 h(t,s,u(s))ds

)
, t ∈ [0,1]

u(0) =
∫ 1
0 g(s)u(s)ds.
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Very recently, some interesting results about periodic solutions for different classes of
differential equations have been provided (see [13, 19, 24] and the references therein).

Motivated by the above researches and using the technique of the coincidence
degree theory of Mawhin, in this work, we consider the following nonlinear class of
Volterra-Fredholm integro-differential fractional equation

D
α ,β ;ψ
a+ u(τ) = F (τ,u(τ),G u(τ),H u(τ)) , τ ∈ (a,b], (1.1)

with the fractional integral conditions

I
1−ν;ψ
a+ u(a) = I

1−ν;ψ
a+ u(b), (1.2)

where

G u(τ) =
∫ τ

a
g(τ,s,u(s))ds and H u(τ) =

∫ b

a
h(τ,s,u(s))ds, (1.3)

and

F : (a,b]×R×R×R→ R, g : Δ×R→ R and h : Δ0×R→ R,

are continuous functions with J := [a,b], (−∞ < a < b < +∞), Δ0 = J×J and Δ =
{(τ,s) : a � s � τ � b} . D

α ,β ;ψ
a+ denote the generalized ψ -Hilfer fractional derivative

of order 0 < α � 1 and type β ∈ [0,1]. I
1−ν;ψ
a+ is the generalized fractional integral in

the sense of Riemann-Liouville of order 1−ν , (ν = α + β −αβ ).
To the best of our Knowledge, the results obtained are news and they cannot be

find via fixed point theory approaches.
In this research, we investigated some new existence and uniqueness results for a

wide class of Volterra-Fredholm integro-differential equations with fractional integral
conditions, involving ψ -Hilfer fractional derivative, by using the coincidence degree
theory of Mawhin introduced in [12, 17]. Our results enlarge and complement the
results mentioned above. Thus, in Theorem 4 we prove the existence by choosing
a suitable operators and applying the coincidence degree theory of Mawhin, while in
Theorem 5 we present some sufficient conditions ensuring the existence and uniqueness
of periodic solutions for our problem (1.1)–(1.2) . Finally, the work close with an
important illustrative example.

2. Basic concepts

In this paper, we consider C(J,R),AC(J,R) and Cm(J,R) the spaces of contin-
uous, absolutely continuous and m times continuously differentiable functions on J ,
respectively. We note Lp(J,R) , p � 1, the space of Lebesgue integrable functions on
J .

The weighted spaces of continuous functions are defined by

Cν;ψ(J,R) = {u : (a,b] → R : (ψ(τ)−ψ(a))νu(τ) ∈C(J,R)},
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Cm
ν;ψ (J,R) = {u ∈Cm−1(J,R) : u(m) ∈Cν;ψ (J,R)}, m ∈ N,

C0
ν;ψ(J,R) = Cν;ψ (J,R),

with the norms

‖u‖Cν;ψ = ‖(ψ(·)−ψ(a))νu(·)‖∞ = sup
τ∈J

|(ψ(τ)−ψ(a))νu(τ)|

and

‖u‖Cm
ν;ψ =

m−1

∑
k=0

‖u(k)‖∞ +‖u(m)‖Cν;ψ ,

where ‖ · ‖∞ denotes the suppremum norm on C(J,R) .
These spaces satisfy the properties below.

• C0,ψ(J,R) = C(J,R).

• Cm
ν,ψ(J,R) ⊂ ACm(J,R).

DEFINITION 1. [16] Let (a,b) , (−∞ � a < b � ∞) be a finite or infinite interval
of the real line R and α > 0. Also let ψ , be an increasing and positive monotone
function on (a,b], having a continuous derivative ψ ′ on (a,b). The left sided fractional
integral of a function u with respect to another function ψ on [a,b] is defined by

I
α ;ψ
a+ u(τ) =

1
Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1u(s)ds.

LEMMA 1. [16] Let α > 0 and β > 0. Then, we have

I
α ;ψ
a+ I

β ;ψ
a+ u(τ) = I

α+β ;ψ
a+ u(τ), for all τ ∈ (a,b)

LEMMA 2. [16] Let α > 0 , ρ > 0 and τ ∈ (a,b). If u(τ) = (ψ(τ)−ψ(a))ρ−1 ,
then

I
α ;ψ
a+ u(τ) =

Γ(ρ)
Γ(α + ρ)

(ψ(τ)−ψ(a))α+ρ−1 .

DEFINITION 2. [23] Let n− 1 < α < n with n ∈ N and u,ψ ∈ Cn (J,R) two
functions such that ψ is increasing and ψ ′(τ) �= 0, for any τ ∈ J. The ψ -Hilfer frac-

tional derivative D
α ,β ;ψ
a+ (·) of function of order α and type 0 � β � 1, is defined by

D
α ,β ;ψ
a+ u(τ) = I

β (n−α);ψ
a+

(
1

ψ ′(τ)
d
dτ

)n

I
(1−β )(n−α);ψ
a+ u(τ), τ ∈ J.

In particular, when 0 < α < 1, we have

D
α ,β ;ψ
a+ u(τ) = I

β (1−α);ψ
a+

(
1

ψ ′(τ)
d
dτ

)
I

(1−β )(1−α);ψ
a+ u(τ), τ ∈ J.
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THEOREM 1. [23] If u ∈Cn(J,R) , 0 � β � 1 and n−1 < α < n, then

I
α ;ψ
a+ D

α ,β ;ψ
a+ u(τ) = u(τ)−

n

∑
k=1

(ψ(τ)−ψ(a))ν−k

Γ(ν − k+1)

(
1

ψ ′(τ)
d
dτ

)n−k

I
(1−β )(n−α);ψ
a+ u(a),

with ν = α + β (n−α). In particular, when 0 < α < 1, we have

I
α ;ψ
a+ D

α ,β ;ψ
a+ u(τ) = u(τ)− (ψ(τ)−ψ(a))ν−1

Γ(ν)
I

1−ν;ψ
a+ u(a).

THEOREM 2. [23] Let u ∈C1(J,R) , 0 � β � 1 and α > 0, we have

D
α ,β ;ψ
a+ I

α ;ψ
a+ u(τ) = u(τ).

THEOREM 3. [23] Let u,υ ∈Cn(J,R) , 0 � β � 1 and α > 0. Then

D
α ,β ;ψ
a+ u(τ) = D

α ,β ;ψ
a+ υ(τ) ⇐⇒ u(τ) = υ(τ)+

n

∑
k=1

ck (ψ(τ)−ψ(a))ν−k ,

where

ck =
1

Γ(ν +1− k)

(
1

ψ ′(τ)
d
dτ

)n−k

I
(1−β )(n−α);ψ
a+ u(a),

and ν = α + β −αβ .

REMARK 1. Let u ∈Cn(J,R), 0 � β � 1 and α > 0. Then

D
α ,β ;ψ
a+ u(τ) = 0 ⇐⇒ u(τ) =

n

∑
k=1

ck (ψ(τ)−ψ(a))ν−k .

We will present definitions and the coincidence degree theory that are essential in
proofs of our results, see [12, 17].

DEFINITION 3. We consider the normed spaces X and Y . A Fredholm operator
of index zero is a linear operator L : Dom(L) ⊂ X → Y such that

a) dimkerL = codimImgL < +∞ .

b) ImgL is a closed subset of Y .

By Definition 3, there exist continuous projectors Q : Y →Y and P : X →X
satisfying

ImgL = kerQ, kerL = ImgP, Y = ImgQ ⊕ ImgL , X = kerP ⊕kerL,

Thus, the restriction of L to DomL∩kerP, denoted by LP , is an isomorphism onto
its image.
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DEFINITION 4. Let Ω ⊆ X be a bounded subset and L be a Fredholm operator
of index zero with DomL∩Ω �= /0. Then, the operator N : Ω → Y is called to be
L-compact in Ω if

a) the mapping QN : Ω → Y is continuous and QN
(
Ω

) ⊆ Y is bounded.

b) the mapping (LP )−1 (id−Q)N : Ω → X is completely continuous.

LEMMA 3. [18] Let X ,Y be a Banach spaces, Ω ⊂ X a bounded open set
and symmetric with 0∈ Ω. Suppose that L : DomL⊂X →Y is a Fredholm operator
of index zero with DomL∩Ω �= /0 and N : X → Y is a L-compact operator on Ω.
Assume, moreover, that

Lx−N x �= −ζ (Lx+N (−x)),

for any x ∈ DomL∩ ∂Ω and any ζ ∈ (0,1], where ∂Ω is the boundary of Ω with
respect to X . If these conditions are verified, then there exist at least one solution of
the equation Lx = N x on DomL∩Ω .

3. Main results

Let

X = {u ∈C1−ν;ψ(J,R) : u(τ) = I
α ;ψ
a+ υ(τ) : υ ∈C1−ν;ψ(J,R),τ ∈ (a,b]},

and Y = C1−ν;ψ (J,R) with the norm

‖u‖X = ‖u‖Y = ‖u‖C1−ν;ψ .

Let us introduce the following hypotheses:

(A1) The function F : (a,b]×R×R×R→ R be such that

F (·,u(·),G (u)(·),H (u)(·)) ∈C1−ν;ψ(J,R) for all u ∈C1−ν;ψ(J,R),

(A2) There exist a positive constants γ,η1,η2 with

|F (τ,u,G (u),H (u))−F (τ, u,G (u),H (u))|
� γ|u− u|+ η1|G u−G u|+ η2|H u−H u|,

for every τ ∈ (a,b] and u, u ∈C1−ν;ψ (J,R).

(A3) There exists a constant ρ1 > 0 such that

|g(τ,s,υ)−g(τ,s,υ)| � ρ1|υ −υ|,

for every (τ,s) ∈ Δ and υ ,υ ∈C1−ν;ψ (J,R).
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(A4) There exists a constant ρ2 > 0 such that

|h(τ,s,υ)−h(τ,s,υ)| � ρ2|υ −υ|,
for every (τ,s) ∈ Δ0 and υ ,υ ∈C1−ν;ψ(J,R).

To prove the main findings, we need the following Lemmas. Before to state it, we
give the definition of the operator L : DomL ⊆ X → Y

Lu := D
α ,β ;ψ
a+ u, (3.1)

where
DomL = {u ∈ X : D

α ,β ;ψ
a+ u ∈ Y : I

1−ν;ψ
a+ u(a) = I

1−ν;ψ
a+ u(b)}.

LEMMA 4. Using the definition of L given in (3.1). Then

kerL =

{
u ∈ X : u(τ) =

I
1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 , τ ∈ (a,b]

}
,

and
ImgL =

{
υ ∈ Y : I1+β (α−1);ψ

a+ υ(b) = 0
}

.

Proof. By Remark 1, we have for all u ∈ X the equation Lu = D
α ,β ;ψ
a+ u = 0 in

(a,b], has a solution given by

u(τ) =
I

1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 , τ ∈ (a,b],

which implies that

kerL =

{
u ∈ X : u(τ) =

I
1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 , τ ∈ (a,b]

}
.

For υ ∈ ImgL, there exists u ∈ DomL such that υ = Lu ∈ Y . Using Theorem 1, we
obtain for each τ ∈ (a,b]

u(τ) =
I

1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 +I

α ;ψ
a+ υ(τ).

By using Lemma 2 we obtain that

I
1−ν;ψ
a+ u(τ) = I

1−ν;ψ
a+ u(a)+I

1+β (α−1);ψ
a+ υ(τ).

Since u ∈ DomL then we have I
1−ν;ψ
a+ u(a) = I

1−ν;ψ
a+ u(b). Thus

I
1+β (α−1);ψ
a+ υ(b) = 0.
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Furthermore, if υ ∈ Y , and satisfies

I
1+β (α−1);ψ
a+ υ(b) = 0,

then for any u(τ) = I
α ;ψ
a+ υ(τ), we get υ(τ) = D

α ,β ;ψ
a+ u(τ). Therefore

I
1−ν;ψ
a+ u(b) = I

1−ν;ψ
a+ u(a),

which implies that u ∈ DomL. So that υ ∈ ImgL.
So

ImgL =
{

υ ∈ Y : I1+β (α−1);ψ
a+ υ(b) = 0

}
.

Which completes the proof. �

LEMMA 5. Let L be defined by (3.1). Then L is a Fredholm operator of index
zero, and the linear continuous projector operators Q : Y → Y and P : X → X
can be written as

Qυ(τ) =
Γ(2+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1) I
1+β (α−1);ψ
a+ υ(b),

and

P(u)(τ) =
I

1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 .

Furthermore, the operator L−1
P : ImgL → X ∩kerP can be written by

L−1
P (υ)(τ) = I

α ;ψ
a+ υ(τ).

Proof. Obviously, for each υ ∈ Y , Q2υ = Qυ and υ = (υ −Q(υ))+Q(υ),
where (υ −Q(υ)) ∈ kerQ = ImgL.

Using the fact that ImgL = kerQ and Q2 = Q then ImgQ∩ImgL = 0. So,

Y = ImgL⊕ImgQ.

By the same way we get that ImgP = kerL and P2 = P. It follows for each u ∈
X , that u = (u−P(u))+P(u) then X = kerP +kerL. Clearly we have kerP ∩
kerL = 0. Thus

X = kerP ⊕kerL.

Therefore
dimkerL = dimImgQ = codimImgL.

Consequently L is a Fredholm operator of index zero.
Now, we will show that the inverse of L|DomL∩kerP is L−1

P . Effectively, for υ ∈
ImgL, by Theorem 2 we have

LL−1
P (υ) = D

α ,β ;ψ
a+

(
I

1−ν;ψ
a+ υ

)
= υ . (3.2)
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Furthermore, for u ∈ DomL∩kerP we get

L−1
P (L(u(τ))) = I

1−ν;ψ
a+

(
D

α ,β ;ψ
a+ u(τ)

)
= u(τ)− I

1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 .

Using the fact that u ∈ DomL∩kerP, then

I
1−ν;ψ
a+ u(a)

Γ(ν)
(ψ(τ)−ψ(a))ν−1 = 0.

Thus,
L−1

P L(u) = u. (3.3)

Using (3.2) and (3.3) together, we get L−1
P = (L|DomL∩kerP)−1 . Which completes the

demonstration. �

LEMMA 6. For all u, u ∈C1−ν;ψ(J,R) and τ ∈ (a,b] we get:

|G u(τ)−G u(τ)| � λ1‖u− u‖X ,

|H u(τ)−H u(τ)| � λ2‖u− u‖X ,

where

λ1 =
(ψ(b)−ψ(a))ν

ν min
τ∈[a,b]

ψ ′(τ)
ρ1 and λ2 =

(ψ(b)−ψ(a))ν

ν min
τ∈[a,b]

ψ ′(τ)
ρ2.

Proof. Using (A3) , we have for any τ ∈ (a,b]

|G u(τ)−G u(τ)| �
∫ τ

a
|g(τ,s,u(s))−g(τ,s, u(s))|ds

� ρ1‖u− u‖X

∫ τ

a
(ψ(s)−ψ(a))ν−1ds

� ρ1‖u− u‖X

∫ τ

a
ψ ′(s)(ψ(s)−ψ(a))ν−1 1

ψ ′(s)
ds

� ρ1‖u− u‖X

min
τ∈[a,b]

ψ ′(τ)

∫ b

a
ψ ′(s)(ψ(s)−ψ(a))ν−1ds

� (ψ(b)−ψ(a))ν

ν min
τ∈[a,b]

ψ ′(τ)
ρ1‖u− u‖X := λ1‖u− u‖X .

By using an argument similar and (A4) , we get

|H u(τ)−H u(τ)| � λ2‖u− u‖X .

Now, we define N : X → Y by

N u(τ) := F (τ,u(τ),G u(τ),H u(τ)) ,τ ∈ (a,b].
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The operator N is well defined, because F , g and h are continuous functions.
We can remark that the problem (1.1)–(1.2) is equivalent to the problem Lu =

N u . �

LEMMA 7. Suppose that (A1) , (A2) , (A3) and (A4) are satisfied then, for any
bounded open set Ω ⊂ X , the operator N is L-compact.

Proof. We consider for M > 0 the bounded open set Ω = {u∈X : ‖u‖X < M }.
We split the proof into three steps:

Step 1: QN is continuous.
Let (un)n∈N

be a sequence such that un −→ u in Y , then for each τ ∈ J, we
have

|QN (un)(τ)−QN (u)(τ)|
� (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |N (un)(s)−N (u)(s)|ds.

By (A2), we have

|QN (un)(τ)−QN (u)(τ)|
� γ (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |un(s)−u(s)|ds

+
η1 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |G (un)(s)−G (u)(s)|ds

+
η2 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |H (un)(s)−H (u)(s)|ds

� γΓ(2+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)‖un−u‖Y I
1+β (α−1);ψ
a+ (ψ(s)−ψ(a))ν−1 (b)

+
η1 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |G (un)(s)−G (u)(s)|ds

+
η2 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |H (un)(s)−H (u)(s)|ds.

Using Lemma 2 and Lemma 6, we get

|QN (un)(τ)−QN (u)(τ)|
� γΓ(2+ β (α −1))Γ(ν)

Γ(α +1)
(ψ(b)−ψ(a))ν−1‖un−u‖Y +(η1λ1 + η2λ2)‖un−u‖Y

�
[

γΓ(2+ β (α −1))Γ(ν)
Γ(α +1)

(ψ(b)−ψ(a))ν−1 +(λ1η1 + λ2η2)
]
‖un−u‖Y .
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Thus, for each τ ∈ J, we obtain∣∣∣(ψ(τ)−ψ(a))1−ν (QN (un)(τ)−QN (u)(τ))
∣∣∣

�
[

γΓ(2+ β (α −1))Γ(ν)
Γ(α +1)

+ (λ1η1 + λ2η2)(ψ(b)−ψ(a))1−ν
]
‖un−u‖Y .

Then, for all τ ∈ J, we get∣∣∣(ψ(τ)−ψ(a))1−ν (QN (un)(τ)−QN (u)(τ))
∣∣∣ −→ 0 as n −→ +∞,

therefore,
‖QN (un)−QN (u)‖Y −→ 0 as n −→ +∞.

We deduce that QN is continuous.

Step 2: QN (Ω) is bounded
For τ ∈ J and u ∈ Ω , we have

|QN (u)(τ)|
� (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|N (u)(s)|ds

� (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

×
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|F (s,u(s),G (u)(s),H (u)(s))−F (s,0,0,0)|ds

+
(1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|F (s,0,0,0)|ds

� (1+ β (α −1))F ∗

α
(ψ(b)−ψ(a))ν−1

+
γ (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|u(s)|ds

+
η1 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|G (u)(s)−G (0)(s)|ds

+
η1 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|G (0)(s)|ds

+
η2 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|H (u)(s)−H (0)(s)|ds

+
η2 (1+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|H (0)(s)|ds

� (1+ β (α −1))
α

[
F ∗ +M (γ + λ1η1 + λ2η2)

]
(ψ(b)−ψ(a))ν−1

+(g∗η1 +h∗η2)(b−a),
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where

F ∗ = ‖F (.,0,0,0)‖C1−ν;ψ , g∗ = sup
(τ,s)∈Δ

|g(τ,s,0,0)| and h∗ = sup
(τ,s)∈Δ0

|h(τ,s,0,0)| .

Thus

‖QN (u)‖Y � (1+ β (α −1))
α

[
F ∗ +M (γ + λ1η1 + λ2η2)

]
+(g∗η1 +h∗η2)(b−a)(ψ(b)−ψ(a))1−ν .

So, QN (Ω) is a bounded set in Y .

Step 3: L−1
P (id−Q)N : Ω → X is completely continuous.

We will use the Arzelà-Ascoli theorem, so we have to show that L−1
P (id−Q)N (Ω)

⊂ X is equicontinuous and bounded. Firstly, for any u ∈ Ω and τ ∈ (a,b], we get

L−1
P (N u(τ)−QN u(τ))

= I
α ;ψ
a+

[
F (τ,u(τ),G u(τ),H u(τ))

− Γ(2+ β (α −1))

(ψ(b)−ψ(a))1+β (α−1) I
1+β (α−1);ψ
a+ F (s,u(s),G u(s),H u(s))(b)

]

=
1

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1 F (s,u(s),G u(s),H u(s))ds

− Γ(2+ β (α −1))(ψ(τ)−ψ(a))α

Γ(α +1)(ψ(b)−ψ(a))1+β (α−1) I
1+β (α−1);ψ
a+ F (s,u(s),G u(s),H u(s))(b)

]
.

For all u ∈ Ω and τ ∈ (a,b], we get

|L−1
P (id−Q)N u(τ)|

� 1
Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1 |F (s,u(s),G u(s),H u(s))−F (s,0,0,0)|ds

+
1

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1 |F (s,0,0,0)|ds

+
1

Γ(α +1)
(1+ β (α −1))(ψ(b)−ψ(a))ν−1

×
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |F (s,u(s),G u(s),H u(s))−F (s,0,0,0)|ds

+
(1+ β (α −1))(ψ(b)−ψ(a))ν−1

Γ(α +1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |F (s,0,0,0)|ds,

� F ∗Γ(ν)
Γ(α + ν)

(ψ(τ)−ψ(a))α+ν−1 +
F ∗Γ(ν)Γ(2+ β (α −1))

Γ2(α +1)
(ψ(b)−ψ(a))α+ν−1

+
γ

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1|u(s)|ds
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+
η1

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1|G (u)(s)−G (0)(s)|ds

+
η1

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1|G (0)(s)|ds

+
η2

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1|H (u)(s)−H (0)(s)|ds

+
η2

Γ(α)

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))α−1|H (0)(s)|ds

+ γ(1+β (α−1))(ψ(b)−ψ(a))ν−1

Γ(α+1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|u(s)|ds

+η1(1+β (α−1))(ψ(b)−ψ(a))ν−1

Γ(α+1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|G (u)(s)−G (0)(s)|ds

+η1(1+β (α−1))(ψ(b)−ψ(a))ν−1

Γ(α+1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|G (0)(s)|ds

+η2(1+β (α−1))(ψ(b)−ψ(a))ν−1

Γ(α+1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|H (u)(s)−H (0)(s)|ds

+η2(1+β (α−1))(ψ(b)−ψ(a))ν−1

Γ(α+1)

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)|H (0)(s)|ds

By using Lemma 6, we get

|L−1
P (id−Q)N u(τ)| � F ∗Γ(ν)

Γ(α + ν)
(ψ(τ)−ψ(a))α+ν−1

+
F ∗Γ(ν)Γ(2+ β (α −1))

Γ2(α +1)
(ψ(b)−ψ(a))α+ν−1

+
γM Γ(ν)
Γ(ν + α)

(ψ(τ)−ψ(a))α+ν−1

+
γM Γ(ν)Γ(2+ β (α −1))

Γ2(α +1)
(ψ(b)−ψ(a))α+ν−1

+
2M

Γ(α +1)
(λ1η1 + λ2η2)(ψ(b)−ψ(a))α

+
2(b−a)
Γ(α +1)

(g∗η1 +h∗η2)(ψ(b)−ψ(a))α .

So

|L−1
P (id−Q)N u(τ)| � (F ∗ + γM )Γ(ν)

Γ(α + ν)
(ψ(τ)−ψ(a))α+ν−1

+
(F ∗ + γM )Γ(ν)Γ(2+ β (α −1))

Γ2(α +1)
(ψ(b)−ψ(a))α+ν−1

+
2(ψ(b)−ψ(a))α

Γ(α+1)

[
(λ1η1+λ2η2)M+(g∗η1+h∗η2)(b−a)

]
.
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Therefore

‖L−1
P (id−Q)N u‖X

�
[ (F ∗ + γM )Γ(ν)

Γ(α + ν)
+

(F ∗ + γM )Γ(ν)Γ(2+ β (α −1))
Γ2(α +1)

]
(ψ(b)−ψ(a))α

+
2

Γ(α +1)

[
(λ1η1 + λ2η2)M +(g∗η1 +h∗η2) (b−a)

]
(ψ(b)−ψ(a))α+1−ν .

This means that L−1
P (id−Q)N (Ω) is uniformly bounded in X .

It remains to show that L−1
P (id−Q)N (Ω) is equicontinuous.

For a < τ1 < τ2 � b , u ∈ Ω, we have

|(ψ(τ2)−ψ(a))1−ν L−1
P (id−Q)N u(τ2)−(ψ(τ1)−ψ(a))1−ν L−1

P (id−Q)N u(τ1)|
� 1

Γ(α)

∫ τ1

a
ψ ′(s)

×
∣∣∣(ψ(τ2)−ψ(s))α−1 (ψ(τ2)−ψ(a))1−ν −(ψ(τ1)−ψ(s))α−1 (ψ(τ1)−ψ(a))1−ν

∣∣∣
×|F (s,u(s),G u(s),H u(s))|ds

+
1

Γ(α)

∫ τ2

τ1

ψ ′(s)(ψ(τ2)−ψ(s))α−1 (ψ(τ2)−ψ(a))1−ν |F (s,u(s),G u(s),H u(s))|ds

+
(1+β (α−1))

Γ(α+1)(ψ(b)−ψ(a))1+β (α−1)

[
(ψ(τ2)−ψ(a))1+α−ν −(ψ(τ1)−ψ(a))1+α−ν

]

×
∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1) |F (s,u(s),G u(s),H u(s))|ds

� (F ∗+γM )
Γ(α)

∫ τ1

a
ψ ′(s)

×
∣∣∣(ψ(τ2)−ψ(s))α−1 (ψ(τ2)−ψ(a))1−ν −(ψ(τ1)−ψ(s))α−1 (ψ(τ1)−ψ(a))1−ν

∣∣∣
×(ψ(s)−ψ(a))ν−1 ds

+
1

Γ(α)

[
(λ1η1+λ2η2)M+(η1g

∗+η2h
∗)(b−a)

]∫ τ1

a
ψ ′(s)

×
∣∣∣(ψ(τ2)−ψ(s))α−1 (ψ(τ2)−ψ(a))1−ν −(ψ(τ1)−ψ(s))α−1 (ψ(τ1)−ψ(a))1−ν

∣∣∣ds

+
(F ∗+γM )

Γ(α)

∫ τ2

τ1

ψ ′(s)(ψ(τ2)−ψ(s))α−1 (ψ(τ2)−ψ(a))1−ν (ψ(s)−ψ(a))ν−1 ds

+
1

Γ(α)

[
(λ1η1+λ2η2)M+(η1g

∗+η2h
∗)(b−a)

]

×
∫ τ2

τ1

ψ ′(s)(ψ(τ2)−ψ(s))α−1 (ψ(τ2)−ψ(a))1−ν ds
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+

[
(F ∗+γM )Γ(2+β (α−1))Γ(ν)

Γ(α+1)(ψ(b)−ψ(a))1−ν +(λ1η1+λ2η2)M+(η1g
∗+η2h

∗)(b−a)

]

× 1
Γ(α+1)

[
(ψ(τ2)−ψ(a))1+α−ν −(ψ(τ1)−ψ(a))1+α−ν

]
.

The operator L−1
P (id−Q)N (Ω) is equicontinuous in X because the right-hand

side of the above inequality tends to zero as τ1 → τ2 and the limit is independent of
u . The Arzelà-Ascoli theorem implies that L−1

P (id −Q)N (Ω) is relatively compact
in X . As a consequence of steps 1 to 3, we get that N is L-compact in Ω. Which
completes the demonstration. �

LEMMA 8. Assume (A1) , (A2) , (A3) and (A4) . If the condition

γΓ(ν)
Γ(ν + α)

(ψ(b)−ψ(a))α +
(λ1η1 + λ2η2)

Γ(α +1)
(ψ(b)−ψ(a))1+α−ν <

1
2
, (3.4)

is satisfied, then there exists A > 0 , which is independent of ζ , such that,

L(u)−N (u) = −ζ [L(u)+N (−u)] =⇒‖u‖X � A , ζ ∈ (0,1].

Proof. Let u ∈ X satisfies

L(u)−N (u) = −ζL(u)− ζN (−u),

then

L(u) =
1

1+ ζ
N (u)− ζ

1+ ζ
N (−u).

So, from the expression of L and N , we get for any τ ∈ (a,b] :

Lu(τ) = D
α ,β ;ψ
a+ u(τ) =

1
1+ ζ

F (τ,u(τ),G u(τ),H u(τ))

− ζ
1+ ζ

F (τ,−u(τ),G (−u)(τ),H (−u) (τ)).

By Theorem 1 we get

u(τ) =
c1 (ψ(τ)−ψ(a))ν−1

Γ(ν)
+

1
ζ +1

[
I

α ;ψ
a+

(
F (s,u(s),G u(s),H u(s))

)
(τ)

−ζI
α ;ψ
a+

(
F (s,−u(s),G (−u)(s),H (−u)(s))

)
(τ)

]
,

where c1 = I
1−ν;ψ
a+ u(a). Thus for each τ ∈ (a,b] we have

|u(τ)| � |c1|(ψ(τ)−ψ(a))ν−1

Γ(ν)
+

2F ∗Γ(ν)
(ζ +1)Γ(ν + α)

(ψ(τ)−ψ(a))α+ν−1

+
2(g∗η1 +h∗η2)(b−a)

(ζ +1)Γ(α +1)
(ψ(τ)−ψ(a))α

+
2‖u‖X

(ζ +1)

[ γΓ(ν)
Γ(ν + α)

(ψ(τ)−ψ(a))α+ν−1 +
(λ1η1 + λ2η2)

Γ(α +1)
(ψ(τ)−ψ(a))α

]
,
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thus

‖u‖X

� |c1|
Γ(ν)

+
2F ∗Γ(ν)
Γ(ν + α)

(ψ(b)−ψ(a))α +
2(g∗η1 +h∗η2)(b−a)

Γ(α +1)
(ψ(b)−ψ(a))1+α−ν

+2
[ γΓ(ν)

Γ(ν + α)
(ψ(b)−ψ(a))α +

(λ1η1 + λ2η2)
Γ(α +1)

(ψ(b)−ψ(a))1+α−ν
]
‖u‖X .

We deduce that

‖u‖X �
|c1|

Γ(ν) + 2F ∗Γ(ν)
Γ(ν+α) (ψ(b)−ψ(a))α + 2(g∗η1+h∗η2)(b−a)

Γ(α+1) (ψ(b)−ψ(a))1+α−ν

1−2
[

γΓ(ν)
Γ(ν+α) (ψ(b)−ψ(a))α +

(λ1η1 + λ2η2)
Γ(α +1)

(ψ(b)−ψ(a))1+α−ν
]

:= A .

The demonstration is completed. �

LEMMA 9. If conditions (A1)–(A4) and (3.4) are verified, then there exist a
bounded open set Ω ⊂ X with

L(u)−N (u) �= −ζ [L(u)+N (−u)], (3.5)

for any u ∈ ∂Ω and any ζ ∈ (0,1].

Proof. Using Lemma 8, then there exists a positive constant A which is indepen-
dent of ζ such that, if u verify

L(u)−N (u) = −ζ [L(u)+N (−u)], ζ ∈ (0,1],

thus ‖u‖X � A . So, if
Ω = {u ∈ X ;‖u‖X < ϑ}, (3.6)

such that ϑ > A , we deduce that

L(u)−N (u) �= −ζ [L(u)−N (−u)],

for all u ∈ ∂Ω = {u ∈ X ;‖u‖X = ϑ} and ζ ∈ (0,1]. �

To prove the main result in this subsection, we need the following Lemma

LEMMA 10. Assume that 0 < δ < 1 and 0 < μ � 1 . Then, the following inequal-
ity holds

1
Γ(δ +1)

� Γ(μ)
Γ(δ + μ)

.
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Proof. By using Lemma 2 we have, for τ ∈ (a,b]

1
Γ(δ +1)

(ψ(τ)−ψ(a))δ

=
1

Γ(δ )

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))δ−1 ds

=
1

Γ(δ )

∫ τ

a
ψ ′(s)(ψ(τ)−ψ(s))δ−1 (ψ(s)−ψ(a))μ−1 (ψ(s)−ψ(a))1−μ ds

� (ψ(τ)−ψ(a))1−μ I
δ ;ψ
a+ (ψ(s)−ψ(a))μ−1 (τ)

� Γ(μ)
Γ(δ + μ)

(ψ(τ)−ψ(a))δ+μ−1 (ψ(τ)−ψ(a))1−μ

� Γ(μ)
Γ(δ + μ)

(ψ(τ)−ψ(a))δ ,

which is the desired result. �

THEOREM 4. Assume (A1)–(A4) and (3.4), then there exist at least one solution
for the problem (1.1)–(1.2).

Proof. It is clear that the set Ω defined in (3.6) is symmetric, 0∈Ω and X ∩Ω =
Ω �= /0. In addition, By Lemma 9, assume (A1) , (A2) , (A3) , (A4) and (3.4), then

L(u)−N (u) �= −ζ [L(u)−N (−u)],

for each u ∈ X ∩ ∂Ω = ∂Ω and each ζ ∈ (0,1]. By Lemma 3, problem (1.1)–(1.2)
has at least one solution on DomL∩Ω . Which completes the demonstration. �

Now, we investigate the existence and uniqueness of periodic solutions for our
problem (1.1)–(1.2) .

THEOREM 5. Let (A1) , (A2) , (A3) and (A4) satisfied. Moreover we assume
that

(A5) There exist constants γ > 0 and η1,η2 � 0 such that

|F (τ,u,G (u),H (u))−F (τ, u,G (u),H (u))|
� γ|u− u|−η1|G u−G u|−η2|H u−H u|,

for every τ ∈ (a,b] and u, u ∈C1−ν;ψ (J,R).

If one has[
2γΓ(ν)

Γ(α + ν)
(ψ(b)−ψ(a))α +

2Γ(ν)
Γ(α + ν)

(η1λ1 + η2λ2)(ψ(b)−ψ(a))1+α−ν

+
(η1λ1 + η2λ2)

γ
(ψ(b)−ψ(a))1−ν

]
< 1, (3.7)

then the problem (1.1)–(1.2) has a unique solution in DomL∩Ω.
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Proof. By Lemma 10 we can see that the condition (3.7) is strong than condition
(3.4). Then, by Theorem 4 we obtain that the problem (1.1)–(1.2) has at least one
solution in DomL∩Ω.

Now, we prove the uniqueness result. Suppose that the problem (1.1)–(1.2) has
two different solutions u1,u2 ∈ DomL∩Ω. Then, we have for each τ ∈ (a,b]

D
α ,β ;ψ
a+ u1(τ) = F (τ,u1(τ),G (u1)(τ),H (u1)(τ)),

D
α ,β ;ψ
a+ u2(τ) = F (τ,u2(τ),G (u2)(τ),H (u2)(τ)),

where G , H are defined as in (1.3) and

u1(a) = u1(b), u2(a) = u2(b).

Let U(τ) = u1(τ)−u2(τ), for all τ ∈ (a,b].
Then

LU(τ) = D
α ,β ;ψ
a+ U(τ)

= D
α ,β ;ψ
a+ u1(τ)−D

α ,β ;ψ
a+ u2(τ) (3.8)

= F (τ,u1(τ),G (u1)(τ),H (u1)(τ))−F (τ,u2(τ),G (u2)(τ),H (u2)(τ)).

Using the fact that ImgL = kerQ, we have

∫ b

a
ψ ′(s)(ψ(b)−ψ(s))β (α−1)

[F (s,u1(s),G (u1)(s),H (u1)(s))−F (s,u2(s),G (u2)(s),H (u2)(s))]ds = 0.

Since F ∈C1−ν;ψ(J,R), then there exist τ0 ∈ (a,b] such that

F (τ0,u1(τ0),G (u1)(τ0),H (u1)(τ0))−F (τ,u2(τ0),G (u2)(τ0),H (u2)(τ0)) = 0.

In view of (A5) we have

∣∣u1(τ0)−u2(τ0)
∣∣ � (η1λ1 + η2λ2)

γ

∥∥∥∥u1−u2

∥∥∥∥
X

,

then

|U(τ0)| � (η1λ1 + η2λ2)
γ

∥∥U
∥∥

X
. (3.9)

On the other hand, by Theorem 1, we have

I
α ;ψ
a+ D

α ,β ;ψ
a+ u(τ) = u(τ)− c1 (ψ(τ)−ψ(a))ν−1

Γ(ν)
,

which implies that

c1 =
[
u(τ0)−I

α ;ψ
a+ D

α ,β ;ψ
a+ u(τ0)

]
Γ(ν)(ψ(τ0)−ψ(a))1−ν ,
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and therefore

U(τ) = I
α ;ψ
a+ D

α ,β ;ψ
a+ U(τ)

+
[
U(τ0)−I

α ;ψ
a+ D

α ,β ;ψ
a+ U(τ0)

]
(ψ(τ0)−ψ(a))1−ν (ψ(τ)−ψ(a))ν−1 .

Using (3.9) we obtain, for every τ ∈ (a,b]

|U(τ)| �
[
|U(τ0)|+

∣∣∣Iα ;ψ
a+ D

α ,β ;ψ
a+ U(τ0)

∣∣∣](ψ(τ0)−ψ(a))1−ν (ψ(τ)−ψ(a))ν−1

+
∣∣∣Iα ;ψ

a+ D
α ,β ;ψ
a+ U(τ)

∣∣∣
�

∥∥U
∥∥

X
(η1λ1 + η2λ2)

γ
(ψ(τ0)−ψ(a))1−ν (ψ(τ)−ψ(a))ν−1

+
Γ(ν)

Γ(ν + α)

∥∥∥D
α ,β ;ψ
a+ U

∥∥∥
X

(ψ(τ0)−ψ(a))α (ψ(τ)−ψ(a))ν−1

+
Γ(ν)

Γ(ν + α)

∥∥∥D
α ,β ;ψ
a+ U

∥∥∥
X

(ψ(τ)−ψ(a))ν+α−1 . (3.10)

By (A2) , (A3) , (A4) and (3.8) we find that∣∣∣Dα ,β ;ψ
a+ U(τ)

∣∣∣
= |F (τ,u1(τ),G (u1)(τ),H (u1)(τ))−F (τ,u2(τ),G (u2)(τ),H (u2)(τ))|
�

[
γ (ψ(τ)−ψ(a))ν−1 + η1λ1 + η2λ2

]
‖U‖X .

Then ∥∥∥D
α ,β ;ψ
a+ U

∥∥∥
X

�
[
γ +(η1λ1 + η2λ2)(ψ(b)−ψ(a))1−ν

]
‖U‖X . (3.11)

Substituting (3.11) in the right side of (3.10) we get, for every τ ∈ (a,b]

|U(τ)| �
[

(η1λ1 + η2λ2)
γ

(ψ(τ0)−ψ(a))1−ν (ψ(τ)−ψ(a))ν−1

+
Γ(ν)

Γ(ν + α)

(
γ +(η1λ1 + η2λ2)(ψ(b)−ψ(a))1−ν

)

×(ψ(τ0)−ψ(a))α (ψ(τ)−ψ(a))ν−1 +
Γ(ν)

Γ(ν + α)

×
(

γ +(η1λ1 + η2λ2)(ψ(b)−ψ(a))1−ν
)

(ψ(τ)−ψ(a))ν+α−1

]
‖U‖X .

Therefore

‖U‖X �
[

2γΓ(ν)
Γ(α + ν)

(ψ(b)−ψ(a))α +
2Γ(ν)

Γ(α + ν)
(η1λ1 + η2λ2)(ψ(b)−ψ(a))1+α−ν

+
(η1λ1 + η2λ2)

γ
(ψ(b)−ψ(a))1−ν

]
‖U‖X .
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Hence, by (3.7), we conclude that

‖U‖X = 0.

As a result, for any τ ∈ (a,b] we get

U(τ) = 0 =⇒ u1(τ) = u2(τ).

This completes the proof. �

4. An example

We present an example of Volterra-Fredholm integro-differential equations to test
our main results.

D
1
2 , 1

3 ;lnτ
1+ u(τ) = F (τ,u(τ),G u(τ),H u(τ)) , τ ∈ (1,e],

u(1) = u(e),

where for any τ ∈ (1,e], we have

F (τ,u(τ),G u(τ),H u(τ)) =
ln

−1
3 (τ)

(e2τ +3)
+

1
17

√
π

(
sinu(τ)+

3
2
u(τ)

)

+
1

13e3 G u(τ)+
1
19

H u(τ),

with

G u(τ) =
∫ τ

1
g(τ,s,u(s))ds =

∫ τ

1
τ5e−7−τ2

cos(u(s))ds, τ ∈ J.

and

H u(τ) =
∫ e

1
h(τ,s,u(s))ds =

∫ e

1

e−9−τ3

19(1+u(s))
ds, τ ∈ J.

Here J := [1,e], α = 1
2 ,β = 1

3 and ψ(τ) = lnτ.
It is easy to see that F ∈C 1

3 ;ψ (J,R). Hence condition (A1) is verified.

Furthermore, for all τ ∈ (1,e] and u, u ∈C 1
3 ;ψ (J,R), we obtain

|F (τ,u,G (u),H (u))−F (τ, u,G (u),H (u))|
� γ|u− u|+ η1|G u−G u|+ η2|H u−H u|,

|g(τ,s,u)−g(τ,s, u)| � ρ1|u− u|, (τ,s) ∈ Δ,

|h(τ,s,u)−h(τ,s, u)| � ρ2|u− u|, (τ,s) ∈ Δ0,

and

|F (τ,u,G (u),H (u))−F (τ, u,G (u),H (u))|
� γ|u− u|−η1|G u−G u|−η2|H u−H u|,
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with Δ = {(τ,s) : 1 � s � τ � e} and Δ0 = J×J , which implies that (A2) , (A3) , (A4)
and (A5) are satisfied with

γ =
5

34
√

π
, γ =

1
34

√
π

, η1 = η1 =
1

13e3 , η2 = η2 =
1
19

, ρ1 =
1
e6 , and ρ2 =

1
19e8

By simple calculations, we get λ1 = 3
e5 and λ2 = 3

19e7 and

[
2γΓ(ν)

Γ(α + ν)
(ψ(b)−ψ(a))α +

2Γ(ν)
Γ(α + ν)

(η1λ1 + η2λ2)(ψ(b)−ψ(a))1+α−ν

+
(η1λ1 + η2λ2)

γ
(ψ(b)−ψ(a))1−ν

]
≈ 0.39934 < 1.

So, by Theorem 5, our problem has a unique solution.

5. Conclusions

The main contribution of this research was to investigate some sufficient condi-
tions ensuring the existence and uniqueness of periodic solutions to a great nonlinear
class of Volterra-Fredholm integro-differential equations with fractional integral condi-
tions, involving ψ -Hilfer fractional derivative, by using the coincidence degree theory
of Mawhin [12]. To illustrate the efficiency of our findings, we have presented an im-
portant example.
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