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Abstract. In this research paper, we present some results about the existence and uniqueness of
periodic solutions for a great nonlinear class of Volterra-Fredholm integro-differential equations
equipped with fractional integral conditions, involving v -Hilfer fractional operator. This inves-
tigation is carried out by means of the coincidence degree theory of Mawhin. A typical example
is also presented.

1. Introduction

Fractional Calculus is one of the most showing areas and has attracted the heed
of many scholars in a deep rang of fields [1, 2, 3, 14, 15, 16, 20, 25]. Many research
have published in the domain related to the study of fractional differential equations by
using different methods and approaches [6, 7, 8, 9, 10, 11].

Several researchers have investigated different extension of some classical frac-
tional operators. In 2018, Vanterler et al. discussed the so-called y-Hilfer fractional
derivative [23]. For some new research related to the study of some class of fractional
differential equations involving the generalized Hilfer fractional derivative, see [4, 22]
and the references therein.

In [21], Tidke studied the existence and uniqueness using the fixed point theory of
mixed Volterra-Fredholm integro-differential problem

{u’(t) —f <u(t)7 ke, s,u(s))ds, [ h(t,s,u(s))ds) . 1€[0,0b]
u(0) + g(u) = up.

By means of fixed-point theorem for the mixed integro-differential equations with Ca-
puto fractional derivative of order 0 < o < 1, Anguraj et al. [5] studied the existence
and uniqueness of solution for the following problem with integral boundary conditions,

Lo = £ (r.ul0), Jy (e,,8(5))ds, 3 h(e5:u(s))ds) , 1€ [0,1]
u(0) = Jj gls)u(s)ds.
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Very recently, some interesting results about periodic solutions for different classes of
differential equations have been provided (see [13, 19, 24] and the references therein).

Motivated by the above researches and using the technique of the coincidence
degree theory of Mawhin, in this work, we consider the following nonlinear class of
Volterra-Fredholm integro-differential fractional equation

D3P Vu(1) = 7 (1,u(1),9u(x), #u(1)), T € (a,b], (1.1)
with the fractional integral conditions

3 u(a) = 31 Yu(b), (1.2)

a

where
T b
Gu(t) = / o(t,5,u(s))ds and Hu(t) = / h(r,s,u(s)ds,  (13)
and

F (b XRAXRAXR—-R, g:AxR—R and h:A) xR — R,

are continuous functions with J := [a,b], (—e0o < a < b < +o0), Ag=Fx J and A =
{(7,8) ra<s<T<b}. ’D:;ﬁ ¥ denote the generalized y-Hilfer fractional derivative

of order 0 < o < 1 and type B € [0,1]. Jiiv"” is the generalized fractional integral in
the sense of Riemann-Liouville of order 1 — v, (v =0+ — aff).

To the best of our Knowledge, the results obtained are news and they cannot be
find via fixed point theory approaches.

In this research, we investigated some new existence and uniqueness results for a
wide class of Volterra-Fredholm integro-differential equations with fractional integral
conditions, involving y-Hilfer fractional derivative, by using the coincidence degree
theory of Mawhin introduced in [12, 17]. Our results enlarge and complement the
results mentioned above. Thus, in Theorem 4 we prove the existence by choosing
a suitable operators and applying the coincidence degree theory of Mawhin, while in
Theorem 5 we present some sufficient conditions ensuring the existence and uniqueness
of periodic solutions for our problem (1.1)—(1.2). Finally, the work close with an
important illustrative example.

2. Basic concepts

In this paper, we consider C(J,9),AC(J,0R) and C™(J,R) the spaces of contin-
uous, absolutely continuous and m times continuously differentiable functions on J,
respectively. We note LP (J,9R), p > 1, the space of Lebesgue integrable functions on
J.

The weighted spaces of continuous functions are defined by

Croy(3,R) = {u: (a,b] = R: (y(7) - w(a))"u(r) € CT.N)},



Differ. Equ. Appl. 14, No. 3 (2022), 447-467. 449

Cy(3,9%) = {ue C™'(3,R) :ul™ € Cuy (3. M)}, me N,
Chy(3,7) = Cuy 3, R),

with the norms

[ulleyy = 1w () = y(@)"u()lle = sup |(w(7) — y(a)) "u(7)]

T€Y
and

Iullem, = Z e+ [u ™l

where || - || denotes the suppremum norm on C(J,R).
These spaces satisfy the properties below.

o Coy(J,R) =C(IT,N).
° C‘v‘}u,(fj,iﬁ) C AC™(J,R).
DEFINITION 1. [16] Let (a,b), (—eo < a < b < o) be a finite or infinite interval
of the real line & and o > 0. Also let y, be an increasing and positive monotone

function on (a, b], having a continuous derivative ¥’ on (a,b). The left sided fractional
integral of a function u with respect to another function Y on [a, b] is defined by

T = Fgr [ WO W(E) — w)* u(s)ds

LEMMA 1. [16] Let o« >0 and B > 0. Then, we have
36V ¥u(t) = 3% PVu(e), forall T € (a,b)

LEMMA 2. [16] Let ¢ >0, p >0 and T € (a,b). If u(t) = (w(1) — w(a)) ",
then
T = b () -yl

DEFINITION 2. [23] Let n—1 < oo <n with n € N and u,y € C" (J,R) two
functions such that v is increasing and y'(7) # 0, for any T € J. The y-Hilfer frac-

tional derivative ’D‘;;ﬁ ¥(.) of function of order o and type 0 < B < 1, is defined by

. _ I d\" _(1-B)n-0) N
i utn =2 (i) . v

In particular, when 0 < o < 1, we have

1 d\ g
DU PVu(r) =3P “"”( —) JUPeRvy () T ey
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THEOREM 1. [23] Ifue C*(J,MR), 0<P<landn—1<a<n, then

SN DB, ¢ i W(a))v"< 1 £>Hk~(1—ﬁ)<n—a);w

& T(v—k+1) v/ (1) dt Jar w(a),

with v = a+ B(n— ). In particular, when 0 < o0 < 1, we have

jgjr‘”@:jrﬁ;‘l/u(r) =u(1)— (y(7) ;(‘I\jSa))v_l j‘lfrv vy, u(a).

THEOREM 2. [23] Let uc C'(J,MR), 0< B <1 and o > 0, we have
DUPVIEVy(1) = ().

THEOREM 3. [23] Let u,v € C"(J,R), 0< B <1 and a > 0. Then
PP Vu(r) = DEPV (1) <= u(r) = v(7) + zck y(a) ™,

where

_
QU
N————
|
L
e
=
=
L
<

B 1
*= I(v+1—k) (w’(r)%
and v=o0+fp —ap.

REMARK 1. Let u € C*(J,R), 0< B <1 and o > 0. Then
o,fB; - k
D0V u(1) =0 <= u(t 2 w(a)) ",

We will present definitions and the coincidence degree theory that are essential in
proofs of our results, see [12, 17].

DEFINITION 3. We consider the normed spaces 2~ and % . A Fredholm operator
of index zero is a linear operator £: Dom(£) C 2" — % such that

a) dimker £ = codimImgL < +oo.
b) Jmgf is a closed subset of %.

By Definition 3, there exist continuous projectors 2 : % — % and ¥ : 2 — X
satisfying

Jmgl =ker2, ker£=0mg?, % =TJmg2dImgl, Z =ker¥ Bkerl,

Thus, the restriction of £ to Dom£ Nker &2, denoted by £ 4, is an isomorphism onto
its image.
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DEFINITION 4. Let Q C 2" be a bounded subset and £ Re a Fredholm operator
of index zero with Dom£NQ # 0. Then, the operator .4 : Q — & is called to be
£-compact in  if

a) the mapping 2.4 : Q — % is continuous and 2.4 (Q) C & is bounded.

b) the mapping (£5) ' (id — 2).4 : Q — 2 is completely continuous.

LEMMA 3. [18] Let 2 ,% be a Banach spaces, Q C 2 a bounded open set
and symmetric with 0 € Q. Suppose that £ : Dom£ C 2" — % is a Fredholm operator
of index zero with Dom&NQ#0 and N + X — % is a £-compact operator on Q.
Assume, moreover, that

Lx—Nx#=C(Lx+ N (—x)),
for any x € Dom£NJIQ and any § € (0,1], where dQ is the boundary of Q with

respect to 2. If these conditions are verified, then there exist at least one solution of
the equation £x = A x on DomL£NQ.

3. Main results
Let
2 ={ueCyy@R) :u(t) =737Y0(1) 1 v € Clyy (3, R), 7 € (a,b]},
and % = Ci_y,y(J,9R) with the norm
[ull2 = llullz = [[ullc, .-
Let us introduce the following hypotheses:

(A1) The function % : (a,b] x R x R x R — R be such that

F(u(-), 9 W) (), 2 (1) () € Clov,y(3,R) forallu € Ci_y.y(J,R),

(A2) There exist a positive constants ¥, 11,7, with

F(t,w,9 (u), 2 (u) — F(t,u,9 (u), 7 (u))|
<Yu—u|+m|Gu—Gu[+ m|u— A u,

forevery 7 € (a,b] and u,ut € Ci_y,y(J,R).
(A3) There exists a constant p; > 0 such that
‘g(T7S7D) —g(T,S,ﬁ)‘ < p1|1) - 6|7

for every (7,s) €A and v,V € Ci_y,y(J,NR).
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(A4) There exists a constant p, > 0 such that
‘h(TaSa 'l)) —h(T,S,ﬁ)‘ < P2|U - 6|a
for every (7,5) € Ag and v,V € Ci_y,y(J,R).

To prove the main findings, we need the following Lemmas. Before to state it, we
give the definition of the operator £ : DomL C 2 — &

Su =%V, (3.1)

where ‘ - -
Dom€={ue 2 : Z):f’l”u ey Jazv"”u(a) = Jaiv’l”u(b)}.

LEMMA 4. Using the definition of £ given in (3.1). Then

3y (a)

ker £ = {u €Z u(r) = “}T (w(t)—w(a)' ', 1€ (a, b]},

and .
Tmgl = {u e gt PlE vy () — 0} .

Proof. By Remark 1, we have for all u € 2" the equation Lu = ’D‘;;ﬁ Yu=0in

(a,b], has a solution given by

~l=viy
S P A

which implies that

ker £ = {u €2 u(r) = T (w(t)—w(a)" ', 1€ (a, b]}.

For v € JmgZ, there exists u € Dom£ such that v = £u € #. Using Theorem 1, we
obtain for each 7 € (a, b]

~Ll=Vv;
Ja+v Yu(a)

40 ="

(1) — (@)~ + 35 (7).
By using Lemma 2 we obtain that

Jijv"”u(r) = J;V"”u(a) + Jiiﬁ(a_l);"’v(r).
Since u € Dom£ then we have Jizv;wu(a) = Jizv;"’u(b). Thus

j;iﬁ(ail);wv(b) —=0.
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Furthermore, if v € %/, and satisfies
j‘ljﬁ(a_l);wv(b) -0,
then for any u(7) =37 v (1), we get v(7) = @g’f;wu(r). Therefore
T Mu(e) = 3 u(a),

which implies that u € Dom£. So that v € Jmgg.
So
Tmgl = {u e gl PlET vy () — 0} .

Which completes the proof. [J

LEMMA 5. Let £ be defined by (3.1). Then £ is a Fredholm operator of index
zero, and the linear continuous projector operators 2 :% — % and & : X — X
can be written as

_ T@+Bla—1))  _i1pa-1:y
2O @y e

and

Furthermore, the operator Sfﬂl :Imgl — 2 Nker & can be written by
£, (v)(1) =350 (7).

Proof. Obviously, for each v € %, 2?v = 2v and v = (v— 2(v)) + 2(v),
where (V—2(v)) € ker 2 = JmgZL.
Using the fact that Jmgg = ker 2 and 22 = 2 then Jmg2NJImgL = 0. So,

% =JmgldImg2.

By the same way we get that Jmg%? = ker £ and 92> = . It follows for each u €
2, that u= (u— 2Z(u))+ Z(u) then 2" =ker Z +kerL. Clearly we have ker &2 N
ker £ = 0. Thus

Z =kerZ @kerL.

Therefore
dimker £ = 0imJImg2 = codimImgL.

Consequently £ is a Fredholm operator of index zero.
Now, we will show that the inverse of £|pomerker2 1S SZJ} Effectively, for v €
Jmg&, by Theorem 2 we have

a

285} (0) = DLV (30 ) = v. G2
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Furthermore, for u € Dom£ Nker & we get
~l=vs 1,/
_ - ‘ T u(a) _
£ (2(() =30 (DL Yu(r)) = u(r) - = (w(r) — w(a)*
I'(v)
Using the fact that u € Dom£ Nker &, then
33 u(a)

Thus,
£, L(u) =u. (3.3)

Using (3.2) and (3.3) together, we get 2;1 = (€| pomerker gz)_l . Which completes the
demonstration. [

LEMMA 6. Forall u,it € Ci_y,(J,R) and 7 € (a,b] we get:

[Gu(7) —Fu(r)| < hifu—ullo,
[A#u(1) = Au(7)| < Aaflu—ul[2,
where b y b ;
o WO —v@)? e @)
v min y/(7) v min_ y'(7)
‘[G[a b] ‘L'E[Cl,b]
Proof. Using (A3), we have for any T € (a, b]
(1) / 12(7,5,u(s)) — (1,5, 5(s))|ds
< pillu—1 / )'~lds
1
< —ull o _ V—l—
<pillu=illy [ WO WO - y@) ! s
o pillu— u||f/ v-1
<R [ve w(a)ds
7€(a,b]
(w(b) —w(a)" - _
< - — 9 = — 9.
Pl 2= Aau ]
7€(a,b]

By using an argument similar and (A4), we get
[ 2u(1) = Au(7)| < Maflu—utl[ 2.
Now, we define A4 : 2" — % by

A u(t) = F (t,u(7),9u(r),#u(1)),7 € (a,b].
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The operator ./ is well defined, because .% , g and h are continuous functions.
We can remark that the problem (1.1)—(1.2) is equivalent to the problem Lu =
Au. O

LEMMA 7. Suppose that (Al), (A2), (A3) and (A4) are satisfied then, for any
bounded open set Q C 2, the operator N is £-compact.

Proof. We consider for .# >0 the bounded openset Q ={ue 2 : |Ju|l o~ < .#}.
We split the proof into three steps:

Step 1: 2N is continuous.
Let (un),cy be a sequence such that u, — u in %/, then for each 7 € J, we
have

|2 (un) (1) = 24 (w) (7))
_ b
S (W(é;jﬁé;)lizal)/‘] V() (w(6) — w(s))PO D |4 (ug) (s) — A (w)(s)| ds.

By (A2), we have

|24 (un)(7) — QJV( )(7)]

b (l//(bgl—i_[3 1+/3a 1) / V(s ())ﬁ(afl)\un(S)—u(sﬂds
<w$>(l+ﬁ l+ﬁ / V(s — ()P |G (wn)(s) — Z (w)(s) | ds
<w?§>(l+ﬁ l+ﬁ ) / V(s ()P A (un) () — A () (s)| ds

b <w<ybr>(iy€:>>l+ﬁ<)3 7 lun =l 3P () — @) ()
(w?bl)(uﬂ 1+ﬁa ) / W(s — ()P VG (un)(s) — G (u)(s)| ds
(w?;;lw 1+ﬁa ) / V(s w(s)P @1 (uy) (5) — 0 (u)(s)] ds.

Using Lemma 2 and Lemma 6, we get

2N () ()~ 21 () 2)

< T LT ()~ @) o =l + (a4 1220) o~

R4 Bla— )T
INo+1)

(y(0) = w(@)"™ + (i +Aam) | Jun — .

~
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Thus, for each 7 € J, we obtain
(W () = w(@)' ™ (24 (n)(7) — 2.4 (u)(0))]

< [YW P G ) () - w(a»”] it — -

Then, for all T € J, we get

(W) = y(@)' " (2 (1ta)(7) = 28 (w)(7))| — Oas n — oo,
therefore,
|2 (uy) — 24 (u)||ly — 0asn — Hoo.
We deduce that 2.4 is continuous.
Step 2: 2.4 (Q) is bounded
For 1 €J and u € Q, we have

|24 (u)(7)]

b
></a W’(S)(W(b)—W(S))ﬁ(“’”\ff(s,u(S),g(u)(S),%(u)(S))—ﬁ(s,O,O,O)IdS

(w(b) +5 1+/3 / v(s )P@=1].2(5,0,0,0)|ds

< (1+B(aa—1))y* (w6 ()"
(w(b) T aHZ / Vs NP Dlu(s)lds
(wm l+ﬁ a1+l31 (a=1) / Vs )PV (u)(s) — 4(0)(s)|ds
(wm 1+B aHﬂIQ D / V(s )P (0)(s)|ds
(an l+ﬁ a”ﬁla D / V(s VPOV (w) (s) — A(0) (s)|ds
(an 1+B and D / V(s )P (0)(s)lds

. M}Cjaw Fov ol (y+ M, +/12n2)] (y(6) — y(w)""!

+(g"m +h*ny)(b—a),
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where
T =|7(.,0,0,0)[c,_,., > & = sup |g(7,5,0,0)] and h* = sup |h(7,s,0,0)].
' (t,5)€A (1,5)€Ag
Thus

12wl < CPEZD et gy a0

+(g" M +h"12) (b —a) (w(b) — w(a))' "
So, 2.4 (Q) is a bounded set in & .

Step 3: EE); (id— 2)./ : Q — 2 is completely continuous.
We will use the Arzela-Ascoli theorem, so we have to show that £, (id — 2).4(Q)
C & is equicontinuous and bounded. Firstly, for any u € Q and 7 € (a,b], we get

L (A u(t) — 24 u(T))

= j‘;‘i"’ lﬂ(r,u(r),%u(f),%pu(f))

FR+B(a—1))  _14pla—1uy , o uls ] S
o)yl R e 75wl Fuls), A ))(b)]

= e [ WO (W0~ () 5u(s), Fuls), A u(s))ds

2+ﬁ((x— 1)) (V/(T) B Vj(a))ajliﬁ(a_l);wﬁ(s,u(s)7§4u(s)7g%”u(s))(b)‘| )

Forall u € Q and 7 € (a,b], we get
|£’ (id — 2) N u(71)|
v )% (5,4(6), Fu(s), A u(5)) — F(5,0,0,0)lds

+F(a> / V) (W) — () [#(5.0,0,0)ds

+

(1+B (o= 1)) (w(b) = y(a) "

Io+1)
b ! a—1)| g
x / W(s) (w(b) — w(s))‘” | F (s,u(s), 9 u(s), #u(s)) — F (5,0,0,0)|ds
. v 1
L1+ B(a 11")0(5 (; y(a /l,, v(s)P@ D12 (5,0,0,0)|ds,
< T o wia)=t T }zfxﬂig D (o) - waper!

=L [y ) w0 = ) uts)las
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e [TV )W) v () - S O0)(5)lds

nm
/ v(s )*1%(0)(s)|ds
/ v(s )4 () (s) — A(0) (s)|ds
/ Vs )4 HA(0)(s)lds

By using Lemma 6, we get

f *TVJ) (W)~ yla)“ !

T(v ) (2+p(a—1))
M (o+1)
(w(7) = w(a)*™!

€5} (id — 2). N (1) <

MlF( )
(v+oc)
+7///F(

T2+ B(a—1))
I2(o+1)

(A + A2m2) (w(b) — w(a)*

(y(b) —y(a)) !
2.4

RICERY
#2008 (g ma) (o) - ()

So

2= 2 uo) < T (o) -y
. (F*+y#)T(v)IT(24+B(a—1))
P(o+1)
2(y(6)- ()"
Ta+1)

(y(6) = (a)* ™!

| (it 2ama) 4+ (& mi-+h"ma) (b-a)
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Therefore

1£5 (id — 2) A u|| 2
. [(ﬁ* +y.#)T(v) n (F*+y#)T(VT2+B(a—1))
h T(o+v) P(o+1)

| (we) — w(a)®

+ A+ A A+ (€M 7 2) (6 — )| ((6) — (@)1

2 { (
Io+1)
This means that £ (id — 2).#(Q) is uniformly bounded in 2.

It remains to show that £, )\ (id — 2)./ (Q) is equicontinuous.

Fora<1'1<‘L'2<b,uEQ7 we have

)= w(s) ™ (W) -y (@) — () —w(s)* " (w(m)-y(a)' "
s,u(s), Zu(s), #u(s))| ds
)
(

bt [ VO W)W (W) -y(@)' 7 (5.u(6). Fuls), A u(s)) ds

I'a+1) (w(b)_w(a))lﬂi(a—l) (‘I/(T2)—l//(a))l+a—v _ (V/(Tl)_l//(a))l-&-a—v}

/ (s @112 (5, u(s), Zu(s), #u(s))| ds
ﬂ‘*ﬂ/////
v/ (s

//\

“Hy(n)—v()

x \(w(n)—w(s))
% (yls)- ()"~ ds

+% [(Mm+7LGz)///+(n1g*+nzh*)(b—a)] /:l V' (s)

‘ w(s) ™ (w(m)—y(@) ™ = (y(m)—w(s) " (y(n)-y()' "

& HJ/// V() (w(m2) = ()" (w(m)—w(a) ™ (wls)—w(a)" " ds

ds

[ (Qami+Aoma). A+ (mg”+mob”) (b-a)|

@l
< W6 )y (w(m)-w(a)' s
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(F*+y.4)T(2+B(0—1))T(v)
T(o+1) (y(b)—y(a)' "

1 I+o—v I+o—v
X oy L(W(2) - ¥(@) (y(m)=y(a) ).

The operator £, (id — 2).# (Q) is equicontinuous in 2 because the right-hand
side of the above inequality tends to zero as 7} — T, and the limit is independent of
u. The Arzela-Ascoli theorem implies that SE,}(id — 2)./(Q) is relatively compact
in .2". As a consequence of steps 1 to 3, we get that .4 is £-compact in Q. Which

completes the demonstration. [J

+(7Ll711+7Lz772)///+(771g*+772h*)(b—a)l

LEMMA 8. Assume (Al), (A2), (A3) and (A4). If the condition

rz/\l::j/()x) (w(b) — W(a))a + % (y(b) — W(a))l+a—v <

is satisfied, then there exists </ > 0, which is independent of {, such that,
Llu) = A (u) = =C[L(w) + A (—w)] = [Jull2 < &, £ € (0,1].
Proof. Let u € 2 satisfies
Llu) = A (u) = =CL(w) — A (—u),

., (34

N —

then

_ ¢
= W

So, from the expression of £ and .4, we get for any 7 € (a,b] :

£(u)

Lu(r) = Z)‘;;ﬁ;"’u(r) = ﬁﬂ(r,u(r),%u(r)%u(r))

By Theorem 1 we get

_ v—1 _
u(r) = = ("’(T)r(v")’(a» - cil (32 (7 (5,(s),9u(s), #u(s)) ) (¥)

—CIEY (F (5, ~u(s). 9 (~u)(5), 2 (—0)(5)) ) (7))

where ¢ = j;";"’u(a), Thus for each 7 € (a,b] we have

el (v(0) —y(@)" | 27T() -
L T A
2B SO (y(2) — ya)*

2/ullz 1 ¥YI(v) ( (T)—ll/(a))a+v_1 M( (ﬂ-y/(q))a ,

+(§+1) Iv+o) Ta+1)
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thus
Jull
o —?ii(a; (v) (o) + ZERILIIO ) )y e
2 [ (o) — o)+ L) () — )
We deduce that
Il < TOT e (P(8) () 4 PR (o) -y

(i +2oma)

12| it (o) — wla) +

= .

(y(6) — w(a)) ]

The demonstration is completed. [

LEMMA 9. If conditions (Al)—(A4) and (3.4) are verified, then there exist a
bounded open set Q C 2~ with

L(w) = A (w) # —C[L(u) + A (—u)], (3.5)
forany u € dQ and any § € (0,1].

Proof. Using Lemma 8, then there exists a positive constant </ which is indepen-
dent of { such that, if u verify

L(w) = A () = =¢[Lw) + A4 (-u)], § € (0,1],

thus |[ul] 2~ < &. So, if
Q={ue Z:ul2 <V}, (3.6)

such that ¥ > &, we deduce that
L(u) = A (u) # —=C[L(w) — A (—u)],

forallue dQ ={ue Z%|ul|2 =9} and £ € (0,1]. O
To prove the main result in this subsection, we need the following Lemma

LEMMA 10. Assume that 0 < 8§ < 1 and 0 < u < 1. Then, the following inequal-
ity holds
LT
T(6+1) T(6+p)
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Proof. By using Lemma 2 we have, for 7 € (a, b]

(51+1 (w(1) - w(@))?
0] / Y/ (s) (w(t) = w(s)° " ds
B ﬁ/a v () (w(0) = w(s) " (ws) = w@)* " (wls) — wia)' Hds
SW(H-yla >>17”3‘3’+"'(W(S)—w(a))“*l(r)
S % (w(t) — w(a)° 1 (y(1) — w(a) H
S %(wﬂ— v(@)’,

which is the desired result. [

THEOREM 4. Assume (Al)—(A4) and (3.4), then there exist at least one solution
for the problem (1.1)—(1.2).

_ Proof. ltis clear that the set Q definedin (3.6) is symmetric, 0 € Q and 2~ nQ=
Q # 0. In addition, By Lemma 9, assume (A1), (A2), (A3), (A4) and (3.4), then

L(w) = A (w) # =C[L(w) — A (—u)],

for each u € 2" NJQ = JQ and each { € (0,1]. By Lemma 3, problem (1.1)—(1.2)
has at least one solution on Dom£ M €. Which completes the demonstration. []

Now, we investigate the existence and uniqueness of periodic solutions for our
problem (1.1)—(1.2).
THEOREM 5. Let (Al), (A2), (A3) and (A4) satisfied. Moreover we assume
that
(AS) There exist constants Y > 0 and T1,Mz = 0 such that
2 (1.0, (w), () — F (3, 0,9 (), ()|
> Ylu—u] = Mi|Gu—Gu| = M| A u— A,
for every T € (a,b] and u,u € Ci_y,y (3, R).

If one has
s (w6 = a4 o 4 o) () — wa))

+ (ﬁlz’l +ﬁ22’2) (V/(

7 b)—y()' | <1, (3.7

then the problem (1.1)—(1.2) has a unique solution in Dom£ N Q.
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Proof. By Lemma 10 we can see that the condition (3.7) is strong than condition
(3.4). Then, by Theorem 4 we obtain that the problem (1.1)—(1.2) has at least one
solution in Dom£NQ.

Now, we prove the uniqueness result. Suppose that the problem (1.1)—(1.2) has
two different solutions 1,1y € Dom£NQ. Then, we have for each 7 € (a,b]

DUV (r) = Z (1, (0), 9 (w) (2), 7 (w) (7)),

Z)‘;;ﬁ;wuz(r) =7 (1,u2(7),9 (uz) (1), 5 (1) (7)),
where &, 7 are defined as in (1.3) and
up(a) =uy(b), up(a) =up(b).

Let 4(7) =ui(7) —ua(7), forall 7 € (a,b].
Then

£i(r) = D4PVu(r)

= D3PV (1) - 2PV () (3.8)
=7 (1w (1), 9 (w)(7), 2 (w1) (7)) = F(7,12(7),% (u2) (1), 7 (u2) (7))

Using the fact that JmggC = ker 2, we have

[ W) we) - wispey
[F (s,u1(s),9 (w) (s), 7 (u1)(s)) = F (5,u2(5), 9 (w2) (5), 7 (u2) (s))] ds = 0.
Since .7 € Ci_y;y(J,R), then there exist 7y € (a,b] such that
F(10,u1(70),% (1) (70), 7 (u1)(T0)) — 7 (T,u2(0), ¥ (u2) (%), 7 (u2)(70)) = 0.
In view of (A5) we have

(MA+M242)

|u1(70) — ux (1) | < 7

b

P

’ul — U
then
)| < (ﬁlll ;ﬁ2l2) Hu

On the other hand, by Theorem 1, we have

|U( 70

P (3.9)

_ v—1
YU PVu(r) = u(r) - & (W(T}(VV)/(a)) |

which implies that

e1 = [u(z0) = XD V() |T(v) (wi(m) — w(a)' ",
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and therefore
U(r) =350 ()
+ [4(m) — 3V DLV u(m) | (w(m) — wia) ™ (w(r) — w(a)) .
Using (3.9) we obtain, for every 7 € (a, b]

()] < [J(m)|+ [TV DEEY ()| | (wim) — wi(@)' ™ (w(o) - y(a) "

+ IR u()

< HﬂH%(Wl;l T2 (4 ) — @) (w(2) — ()
+r<i(?a> DIPVY||  (wr) = @) (w(z) — ()"
+r(1:/(4‘;)a) DLy (w(m) - (@) ©-10)

By (A2), (A3), (A4) and (3.8) we find that

DL V()
= 2 (1.1(2). 9 (w)(2), A (1) (7)) = F (7,02(0). 9 (12) (1), 7 (12) (1))
< (v = y@)" "+ mas+ma| -
Then
|

Substituting (3.11) in the right side of (3.10) we get, for every 7 € (a, b]

DUV < [y (maa+made) (o) —w(@)' ™ |l G

(ﬁla‘l i);ﬁZA‘Z) (V/(TO)

I'(v)
I'v+oa)

4h(7)] < = (@) ™" (y(7) — w(a)"

(v+ (M +mao) (w(6) = w(@)' ™)

< () —w(0)" (v(®) ~w(@) " + g

< (74 (M +ma2) (w(e) = y(@)' ™ ) (w() = wi(@)* " | it -

Therefore

29T (v)
T(o+v)

2I°(v)
Io+v)

[EPEES (w(b) —w(a)*+ (A +1m22) (w(b) — w(a) T

MM +THA
+(771 1J7rﬂ2 2)

(w(0) = (@) ™" | 4] -



Differ. Equ. Appl. 14, No. 3 (2022), 447-467. 465

Hence, by (3.7), we conclude that
1] 5- = 0.
As aresult, for any 7 € (a,b] we get
(1) =0=uy(7) = ua(7).

This completes the proof. [

4. An example

We present an example of Volterra-Fredholm integro-differential equations to test
our main results.

u(l) =u(e),
where for any 7 € (1,e], we have
F (v,u(1),9u(1), #u()) = (ljzjf;) - 71/5 (sinu(r) + %u(r))
+ @%u(r) + 11—9%11(’[)7
with . .
Gu(t) = /1 o(7,5,u(s))ds = /1 e cos (u(s)) ds, T € 3.
and o
Hou(t) = /1 h(t,s,u(s))ds = /1 BaTaE e

Here J:=[l,e], =1, =1 and y(1) =In7.
It is easy to see that % € C 1 .W(S ,R). Hence condition (A1) is verified.
Furthermore, for all 7 € (1,¢] and u,u € C%‘W(‘”j,%), we obtain

|F (t,u,9 (u), 2 (u) — F (T,u,9 (u), 7 (u))]
<Yu—ul+m|Gu—Gu[+ m|u— A u,

)
)

pilu—1ul, (1,5) €A,
pz\u—ﬁ\, (’L’,S) S A()7

g(
h(

la(7,5,u)
Ih(z,s,u)

—g(t,s,1)| <
—h(t,s, )| <
and

|7 (10,9 (0), # (w)) = 7 (1,u,9 (w), 2 (w))|
2 Vu—ul = Mm[Gu—Gu| - M| A u— A ul,
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with A={(1,5) : 1 <s< 1< e} and Ag=J x J, which implies that (A2), (A3), (A4)
and (AS5) are satisfied with

’J/:

5 _ 1 1 e R DN
34ﬁ77—34ﬁ7 nl—n1—13e37n2—n2—19»P1—e6» P2—1968
By simple calculations, we get A; = % and A, = 1937 and

20 (o)~ () o

T(a+v) W(nlll +mA) (w(b) — w(a))l+a—v

+M (y(6) —w(a)' ™" | ~0.39934 < 1.

So, by Theorem 5, our problem has a unique solution.

5. Conclusions

The main contribution of this research was to investigate some sufficient condi-

tions ensuring the existence and uniqueness of periodic solutions to a great nonlinear
class of Volterra-Fredholm integro-differential equations with fractional integral condi-
tions, involving v -Hilfer fractional derivative, by using the coincidence degree theory
of Mawhin [12]. To illustrate the efficiency of our findings, we have presented an im-
portant example.
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