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Abstract. In this paper, the general planar piecewise smooth Hamiltonian system with period
annulus around the center at the origin is considered. We obtain the expressions for the first
order and the second-order Melnikov functions of its general second-order perturbation, which
can be used to find the number of limit cycles bifurcated from periodic orbits. Further, we have

shown that the number of limit cycles of the system Ẋ =

{
(H+

y ,−H+
x ) if y > ε f (x)

(H−
y ,−H−

x ) if y < ε f (x)
equal to

the number of positive zeros of f when at ε = 0 , the system has a period annulus around the
origin.

1. Introduction

Motions of many non-smooth processes such as impact switching, sliding, and
other discrete state transitions are modeled into piecewise smooth dynamical systems
rather than the smooth dynamical systems. Recently piecewise smooth dynamical sys-
tems are of great interest. It has many applications in physical processes such as elec-
trical circuits, impact oscillators, dry friction oscillators, relay control systems, model-
ing of irregular heartbeats etc.[2]. In many scientific applications, systems with self-
sustained oscillations modeled where limit cycles play an important role. Limit cy-
cle bifurcations in the case of smooth dynamical systems are very well studied [11],
whereas the non-smooth systems have been studied recently.

Averaging theory, Melnikov theory, and normal form theory are well-known tech-
niques used to study the limit cycle bifurcation of planar smooth differential systems
[6, 12], whereas the techniques for piecewise smooth systems are in the process of
development [5, 10].

In [4] authors considered a piecewise linear differential system (PLDS) having
center-focus type singularity with switching manifold y = 0 in which limit cycle bi-
furcation of the system is studied when the switching manifold is y = ε . Also, in [19]
authors studied PLDS with saddle-center type singularity at the origin and switching
curve y = bsinx and shown that the number of limit cycles bifurcated from the period
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annulus of the system with b = 0 is equal to the number of positive zeros of sinx .
Note that the system considered in [19] is symmetric about the y-axis and zeros of
switching curve y = bsinx are also symmetric about the y-axis. In [14] first order Mel-
nikov function is obtained for piecewise smooth near-Hamiltonian system and studied
the Hopf bifurcation. In [18] authors studied the same system as in [19] by consider-
ing the switching curve y = bx(x2− x2

1)(x
2 − x2

2) · · · (x2 − x2
m) , wherein it is proved that

the number of limit cycles bifurcated from the period annulus of the system at b = 0
is equal to m , where m is a positive integer. In [3], authors studied the number of
limit cycles bifurcated from the origin of the perturbation of a planar piecewise smooth
system with center-center type singularity at the origin. Further, in [15], normal forms
of some planar piecewise smooth systems with center-center type singularity of order
(k, l) at the origin are considered and their limit cycles bifurcation from the origin un-
der higher-order perturbations have been studied. It is natural to think about the limit
cycles bifurcation of these normal forms when the separation boundary is an analytic
function. In [9] authors considered the first-order perturbation of a planar piecewise
smooth Hamiltonian system. If the unperturbed system has a period annulus centered
at the origin, then using the first order Melnikov function, the number of limit cycles
bifurcated from the periodic annulus is studied.

In [16] and [17], authors obtained a similar expression for the second order Mel-
nikov function for planar Piecewise smooth differential systems with a straight line as
a switching manifold. This expression of the second order Melnikov function contains
the time of flight of the trajectories. In [16], authors used the second order Melnikov
function to find the number of limit cycles of piecewise perturbation linear center in the
class of second-degree polynomial functions. In [17], authors used the second order
Melnikov function to find the number of limit cycles of piecewise linear differential
systems with a nonregular line of separation. In paper [1], authors found first and sec-
ond order averaging functions for the piecewise smooth differential systems system of
the form

ẋ =
N

∑
i=1

εFi(t,x)+ εN+1R(t,x,ε), (1.1)

where Fi(t,x) are smooth periodic functions on open region defined by θi−1 < t <
θi . Note that the system (1.1) is called the standard form of the piecewise smooth
system, where ẋ , i.e. oscillation, is of order ε . In [8] authors studied piecewise smooth
near-integrable systems and developed the Melnikov function method and the averaging
method for finding limit cycles and equivalence between them. In [13], the number
of limit cycles is studied for a class of piecewise smooth near-Hamiltonian systems.
Using the expression of the first order Melnikov function and results about Chebyshev
systems, upper bounds are obtained for the number of limit cycles in Hopf bifurcation
and Poincare bifurcation.

Averaging methods are used to study limit cycle bifurcation from the period an-
nulus of such a system in standard form only. Note that the piecewise-smooth systems
with a center at the origin and of the types saddle-saddle, saddle-center cannot be con-
verted into standard form. Hence, we can not use averaging functions to study the



Differ. Equ. Appl. 14, No. 4 (2022), 499–524. 501

limit cycle bifurcation of piecewise smooth differential systems with center and types
saddle-saddle, saddle-center.

In this paper we have obtained the second-order Melnikov function for the piece-
wise Hamiltonian system with second-order perturbation and the separation boundary
y = 0. We also considered a general piecewise smooth Hamiltonian system with per-
turbed separation boundary y = ε f (x) when f is a C2 function.

We have obtained an expression of the second-order Melnikov function of a piece-
wise smooth planar differential system with a line of separation which does not contain
the time of flights of the trajectories. Note that the expression of the second-order Mel-
nikov function obtained only depends on integrals of 1-form over periodic orbits of
the unperturbed system. Further, we have used this second-order Melnikov function to
find an upper bound for the number of limit cycles of the piecewise smooth differen-
tial systems of types (i) k - l center, (ii) saddle-center, and (iii) saddle-saddle with any
nonlinear smooth separation curve.

The paper is organized as follows: In Section 2 we give some preliminary concepts
about Melnikov theory, limit cycles, and stability of limit cycles. Section 3 is devoted to
investigating the first order and second order Melnikov functions for piecewise smooth
Hamiltonian systems with second-order perturbation. Section 4 deals with the general
piecewise smooth Hamiltonian system with boundary perturbation. Finally, in Section
5, we give some application of piecewise smooth Hamiltonian systems with boundary
perturbation.

2. Preliminaries

Consider a C∞ smooth system of the form

Ẋ =

{
Hy + ε f (x,y,ε,δ )
−Hx + εg(x,y,ε,δ )

, (2.1)

where X =
(

x(t)
y(t)

)
, Ẋ =

(
x′(t)
y′(t)

)
, H, f ,g are C∞ smooth functions for ε ∈ R , δ ∈

K ⊂ R
m with K compact and Hx(x,y) =

∂H
∂x

(x,y) , Hy(x,y) =
∂H
∂y

(x,y) . For ε = 0,

the system (2.1) becomes Hamiltonian system

Ẋ =

{
Hy

−Hx
. (2.2)

Suppose that the system (2.2) has a period annulus A = {Γh : H(x,y) = h,h∈ (α,β )⊂
R} such that Γh → Γα as h → α, which is an elementary center point for the system
and Γh →Γβ as h→ β , which is usually a homoclinic loop consisting of a saddle point
or heteroclinic loop containing two saddle points. For some h0 ∈ (α,β ) , consider a pe-
riodic orbit Γh0 from the period annulus and a Poincare section S = {(a(h),0) : h ∈
(h0 − ε0,h0 + ε0)} , for some ε0 > 0, at the point A(a(h0),0) to Γh0 . Let Γh0ε be
the solution of (2.1) starting at A(a(h0),0)and let B(b(h0,ε,δ ),0) be its first point of
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intersection with the Poincare section. Then the Poincare map P maps A(a(h0),0)
to B(b(h0,ε,δ ),0) . Note that H(A(a(h0),0)) = H(B(b(h0,ε,δ ),0)) if and only if
A(a(h0),0) = B(b(h0,ε,δ ),0) . Therefore we can use the difference map H(B)−H(A)
to investigate the number of limit cycles of (2.1) bifurcated from Γh0 . Thus,

H(B)−H(A) =
∫

ÂB
dH =

∫
ÂB

(Hxdx+Hydy)

=
∫ τh0

0
[Hx(Hy + ε f )+Hy(−Hx + εg)]dt = ε

∫ τh0

0
(Hx f +Hyg)dt

= εF(h0,ε,δ ) =
∞

∑
k=1

Mk(h0,δ )εk, (2.3)

where τh0 is the time of flight along the trajectory ÂB of (2.1) from A to B and

Mk(h0,δ ) =
1

(k−1)!
∂ (k−1)F
∂εk−1 (h0,0,δ ).

Here, Mk(h0,δ ) is called as the k th order Melnikov function and F is called as a
bifurcation function for the system (2.1).

Clearly, from equation (2.3) we have

F(h0,0,δ ) = M1(h0,δ ) =
∫

Γh0

(Hx f +Hyg)dt =
∫

Γh0

(gdx− f dy)

= −
∫ ∫

Int(Γh0
)
( fx +gy)dxdy,

where Int(Γh0) is the region bounded by Γh0 . Here, we say that the cyclicity of Γh0 is
k if there exist ε0 such that (2.1) has at most k limit cycles in some neighborhood of
Γh0 for any δ ∈ K and for any 0 < ε < ε0 and that (2.1) has exactly k limit cycles in
every neighbourhood of Γh0 for some (ε,δ ) .

The following proposition states that the number of periodic solutions of (2.1),
called limit cycles, in the small neighborhood for Γh0 is less than or equal to the number
of isolated zeros of the first order Melnikov function M1(h0,δ ) .

PROPOSITION 1. [6] Let δ0 ∈K and let h0 ∈ (α,β ) . Then we have the following:

1. There is no limit cycle near Γh0 for |ε|+ |δ − δ0| � 1 , if M1(h0,δ0) �= 0 .

2. There is exactly one (at least one) limit cycle Γ(ε,δ ) for |ε|+ |δ − δ0| � 1 ,

which approaches Γh0 as (ε,δ ) → (0,δ0) if M1(h0,δ0) = 0,
∂M1

∂h
(h0,δ0) �= 0

(if h0 is a zero of M(h,δ0) with odd multiplicity, respectively).

3. If there exist 0 � j � k such that M1(h0,δ0) = 0 and
∂ jM1

∂h j (h0,δ ) �= 0 for every

δ ∈ K then at most k limit cycles of (2.1) are bifurcated form Γh0 .
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Now we have the following result about the stability of limit cycles using the first
order Melnikov function.

PROPOSITION 2. The limit cycle of (2.1) bifurcated from the periodic orbit of
(2.2) passing through (a(h0),0) of the Poincare section is stable if

dM1

dh
(h0,δ0) < 0,

where M1 is the first order Melnikov function for (2.1) and |ε|+ |δ − δ0| � 1 .

Proof. From equation (2.3), we have

H(b(h,ε,δ ),0)−H(a(h),0) = εM1(h,δ )+o(ε2).

By Taylor’s expansion in powers of ε , we have

H(a(h),0)+ εHx(a(h),0)
(

∂b
∂ε

)
ε=0

+o(ε2)−H(a(h),0) = εM1(h,δ )+o(ε2).

(2.4)

Equating ε order terms in equation (2.4) on both sides we get

Hx(a(h),0)
(

∂b
∂ε

)
ε=0

= M1(h,δ ).

Now if Pε is the Poincare map of system (2.1) then we have Pε(a(h)) = b(h,ε,δ ) .
Hence (

∂Pε
∂ε

)
ε=0

=
M1(h,δ )

Hx(a(h),0)
. (2.5)

Now differentiating (2.5) with respect to h , we get

d
dx

[(
∂Pε
∂ε

)
ε=0

]
a′(h) =

1
Hx(a(h),0)

dM1

dh
−M1

Hxx(a(h),0)
(Hx(a(h),0))2 a′(h). (2.6)

Since H(a(h),0) = h , we have Hx(a(h),0)a′(h) = 1. Therefore from (2.6) we get,

∂
∂ε

[(
dPε

dx

)]
ε=0

=
dM1

dh
−M1

Hxx(a(h),0)
Hx(a(h),0)2 .

Now if 0 < ε � 1, then we have

dPε
dx

− dP0

dx
≈ ε

(
dM1

dh
−M1

Hxx(a(h),0)
Hx(a(h),0)2

)
.

But P0 is Poincare return map for (2.2). Hence, P0(a(h)) = a(h) , which imply that

dP0

dx
(a(h))a′(h) = a′(h).
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Hence,

dPε

dx
−1 ≈ ε

(
dM1

dh
−M1

Hxx(a(h),0)
Hx(a(h),0)2

)
.

Thus, the limit cycle passing through A(a(h),0) is stable if

dM1

dh
−M1

Hxx(a(h),0)
Hx(a(h),0)2 < 0.

At h = h0 , δ = δ0 , M1(h0,δ0) = 0, we have
dM1

dh
(h0,δ0) < 0 for |ε|+ |δ − δ0| �

1. �

General planar piecewise smooth differential system with two zones and switching
manifold Σ = ϕ−1(0) is given by

Ẋ =

{
(X+

1 (x,y), X+
2 (x,y)), (x,y) ∈ Σ+

(X−
1 (x,y), X−

2 (x,y)), (x,y) ∈ Σ− , (2.7)

where X±
i , f± , g± , i = 1,2 and ϕ are sufficiently smooth functions on some open

region containing the origin with 0 as a regular value of ϕ and Σ+ = ϕ−1(0,∞) ,
Σ− = ϕ−1(−∞,0) are two zones of (2.7). Now we denote X± := (X±

1 ,X±
2 ) , X±ϕ :=

〈X±,∇ϕ〉 and (X±)kϕ := 〈X±,∇(X±)k−1ϕ〉 , where 〈,〉 is an Euclidean dot product.
We say that a point p∈Σ is a k th contact point for the vector field X if (Xkϕ)(p) �=

0 and (Xlϕ)(p) = 0 for l = 1, · · · ,k−1. A point p ∈ Σ is a (k, l)-contact singularity
of X± if X0 is a k th contact point for X+ and is a l th contact point for X− .

3. Perturbation of piecewise smooth Hamiltonian system

Recently in [9], authors studied the number of limit cycles of the piecewise smooth
Hamiltonian system

Ẋ = (H+
y (x,y),−H+

x (x,y))+ ε( f +(x,y,ε,δ ),g+(x,y,ε,δ )), (x,y) ∈ Σ+ (3.1)

Ẋ = (H−
y (x,y),−H−

x (x,y))+ ε( f−(x,y,ε,δ ),g−(x,y,ε,δ )), (x,y) ∈ Σ− (3.2)

i.e.,

Ẋ =

{
(H+

y (x,y),−H+
x (x,y))+ ε( f +(x,y,ε,δ ),g+(x,y,ε,δ )), (x,y) ∈ Σ+

(H−
y (x,y),−H−

x (x,y))+ ε( f−(x,y,ε,δ ),g−(x,y,ε,δ )), (x,y) ∈ Σ− . (3.3)

System (3.3) is a perturbation of the Hamiltonian system

Ẋ = (H+
y (x,y),−H+

x (x,y)),(x,y) ∈ Σ+ (3.4)

Ẋ = (H−
y (x,y),−H−

x (x,y)),(x,y) ∈ Σ− (3.5)
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or

Ẋ =

{
(H+

y (x,y),−H+
x (x,y)), (x,y) ∈ Σ+

(H−
y (x,y),−H−

x (x,y)), (x,y) ∈ Σ− . (3.6)

Suppose that the switching manifold for (3.3) and (3.6) is Σ = ϕ−1(0) , where ϕ(x,y) =
y . Assume that the system (3.6) has a period annulus around the origin in some open
region V . Let L+ = V ∩ {(x,0) : x > 0} and L− = V ∩ {(x,0) : x < 0} . Let Γ+

r :
H+(x,y) = r , y � 0 be a trajectory of (3.4) which starts at P(r) = (p(r),0) on L+ ,
ends at the point P1(r) = (p1(r),0) on L− with the time of flight t+(r) . Then the
Poincare half return map P+ : L+ → L− is given by

P+(p(r)) = p1(r).

Let Γ−
r : H−(x,y) = s , y � 0 be the trajectory of (3.5) starting at P1(r) on L− and

ending at the point P(r) with time of flight t−(r) . Therefore the next half return map
P− : L− → L+ is given by

P−(p1(r)) = p(r).

Figure 1: Trajectories showing the difference map

Let Γ+
rε be a trajectory of (3.1) starting at P(r) and meeting the first time on L−

at the point P2(p2(r,ε),0) and let Γ−
rε be the trajectory of the system (3.2) starting at

P2 and the meeting first time on L+ at the point Q(q(r,ε),0) (See Fig. 1).
Then the Poincare map Pε for (3.3) defined on L+ is given by

Pε(p(r)) = q(r,ε).

Observe that Γ+
rε ∪ Γ−

rε forms a closed trajectory of the system (3.3) if and only if
p(r) = q(r,ε) . But p(r) = q(r,ε) is equivalent to H+(p(r),0) = H+(q(r,ε),0) . Hence,
analogous to the case of a smooth differential system, we use the difference map

H+(Q)−H+(P) = εF(r,ε,δ ) =
∞

∑
k=1

Mk(r,δ )εk,
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where Mk(r,δ ) is called as the k th order Melnikov function for the system (3.3) and F
is a bifurcation function.

Similar to the Proposition 1 and Proposition 2, we can state the conditions for
cyclicity and stability of limit cycles for the system (3.3).

PROPOSITION 3. Assume that the system (3.6) has a period annulus with a center
at the origin. Let M1(r) be the first order Melnikov function for the system (3.3). Then
we have the following:

1. If there exist 0 � j � k such that M1(r0,δ0) = 0 and
∂ jM1

∂ r j (r0,δ0) �= 0 , then

at most k limit cycles of (3.3) are bifurcated form Γr0 , where Γr0 is a periodic
orbit of (3.6) through r0 .

2. Limit cycle of (3.3) bifurcated from the periodic orbit of (3.6) passing through
(p(r),0) of the Poincare section is stable if

dM1

dr
(r0,δ0) < 0

for |ε|+ |δ − δ0| � 1.

Proof. Proof is similar to that of Proposition 1 and Proposition 2. �
In [9], the first order Melnikov function for (3.3) when f±,g± are independent of

ε and δ , is given by the following proposition.

PROPOSITION 4. [9] If the system (3.6) has a period annulus around the origin
then the first order Melnikov function for the system (3.3) is given by

M1(r) =
H+

x (P)
H−

x (P)

[
H−

x (P1)
H+

x (P1)

∫
P̂P1

(g+dx− f +dy)+
∫
P̂1P

(g−dx− f−dy)
]
,

where P̂P1 denotes the path along the trajectory Γ+
r and P̂1P denotes the path along

the trajectory Γ−
r .

In this section, we first derive the expressions for the first order and second order
Melnikov functions for piecewise smooth perturbed Hamiltonian system

Ẋ = (H+
y (x,y)+ ε f +

1 (x,y)+ ε2 f +
2 (x,y),−H+

x (x,y)+ εg+
1 (x,y)+ ε2g+

2 (x,y)), y > 0
(3.7)

Ẋ = (H−
y (x,y)+ ε f−1 (x,y)+ ε2 f−2 (x,y),−H−

x (x,y)+ εg−1 (x,y)+ ε2g−2 (x,y)), y < 0
(3.8)

or

Ẋ =

{
(H+

y (x,y)+ ε f +
1 (x,y)+ ε2 f +

2 (x,y),−H+
x (x,y)+ εg+

1 (x,y)+ ε2g+
2 (x,y)), y > 0

(H−
y (x,y)+ ε f−1 (x,y)+ ε2 f−2 (x,y),−H−

x (x,y)+ εg−1 (x,y)+ ε2g−2 (x,y)), y < 0

(3.9)
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under the assumption that the unperturbed system (3.6) has a period annulus around the
origin.

In [17] the expression for the second order Melnikov function for the system

dH + εω0 + ε2ω2 = 0,

with two semi-straight lines as a switching line, is obtained and it contains integrals
involving the time of flight. In general, it is difficult to obtain the time of flight of the
trajectories. Here we obtain an expression of the second order Melnikov function for
second order perturbed piecewise Hamiltonian system (3.9) in which integrals are free
from the time of flights of the trajectories.

THEOREM 1. If the system (3.6) has a period annulus around the origin, then the
first order Melnikov function for the system (3.9) is given by

M1(r) =
H+

x (P)
H−

x (P)

(
H−

x (P1)
H+

x (P1)

∫
Γ+

r

ω+
1 +

∫
Γ−

r

ω−
1

)
. (3.10)

Further, if M1 ≡ 0 then the second order Melnikov function M2 for the system (3.9) is
given by

M2(r)
H−

x (P)
H+

x (P)
=
(∫

Γ−
r

ω−
2 +

H−
x (P1)

H+
x (P1)

∫
Γ+

r

ω+
2

)
+
(

K−(P(r))
∫

Γ−
r

ω−
1

H−
y

+
H−

x (P1)K+(P(r))
H+

x (P1)

∫
Γ+

r

ω+
1

H+
y

)
−
(∫

Γ−
r

f−1 ω−
1

H−
y

+
H−

x (P1)
H+

x (P1)

∫
Γ+

r

f +
1 ω+

1

H+
y

)
+

1
2

(
H−

xx(P1)− H−
x (P1)

H+
x (P1)

H+
xx(P1)

)
σ2, (3.11)

where

ω±
i = g±i dx− f±i dy for i = 1,2; σ =

1

H+
x (P1)

∫
Γ+

r

ω+
1 , K± =

H±
x f±1 +H±

y g±1
H±

x
.

Expression (3.10) is proved in [9], we prove the expression (3.11) in sequence of
following Lemmas.

LEMMA 1. The difference map for the system (3.9) can be expressed as,

H+(Q(q(r,ε),0)−H+(P(p(r),0)) = εH+
x (P)ρ +

ε2

2

[
H+

xx(P)ρ2 +H+
x (P)η

]
+o(ε3),

(3.12)

where ρ =
[

∂
∂ε

(q(r,ε))
]

ε=0
and η =

[
∂ 2q(r,ε)

∂ε2

]
ε=0

.
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Proof. Let σ =
[

∂ p2(r,ε)
∂ε

]
ε=0

, τ =
[

∂ 2p2(r,ε)
∂ε2

]
ε=0

, ρ =
[

∂q(r,ε)
∂ε

]
ε=0

and

η =
[

∂ 2q(r,ε)
∂ε2

]
ε=0

.

The difference map for the system (3.9) is

H+(Q(r,ε))−H+(P(r)) = L1 +L2 +L3 +L4, (3.13)

where

L1 = H+(Q(r))−H−(Q(r)), L2 = H−(Q(r))−H−(P2(r)),

L3 = H−(P2(r))−H+(P2(r)), L4 = H+(P2(r))−H+(P(r)).

Now by Taylor’s series expansion in powers of ε we have

4

∑
i=1

Li(r,ε) =
4

∑
i=1

[
ε
(

∂Li

∂ε

)
ε=0

+
ε2

2

(
∂ 2Li

∂ε2

)
ε=0

+o(ε3)
]
.

Since

L1 = H+(Q)−H−(Q) = H+(q(r,ε),0)−H−(q(r,ε),0),

we get [
∂L1

∂ε

]
ε=0

= (H+
x (P)−H−

x (P))ρ , (3.14)

and [
∂ 2L1

∂ε2

]
ε=0

= (H+
xx(P)−H−

xx(P))ρ2 +(H+
x (P)−H−

x (P))η . (3.15)

Similarly,

L3 = H−(P2)−H+(P2) = H−(p2(r,ε),0)−H+(p2(r,ε),0)

imply that [
∂L3

∂ε

]
ε=0

= (H−
x (P1)−H+

x (P1))σ , (3.16)

and [
∂ 2L3

∂ε2

]
ε=0

= (H−
xx(P1)−H+

xx(P1))σ2 +(H−
x (P1)−H+

x (P1))τ. (3.17)
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Also,

L2 = H−(Q)−H−(P2) = H−(q(r,ε),0)−H−(p2(r,ε),0)

gives us [
∂L2

∂ε

]
ε=0

= H−
x (P)ρ −H−

x (P1)σ , (3.18)

and [
∂ 2L2

∂ε2

]
ε=0

= H−
xx(P)ρ2−H−

xx(P1)σ2 +H−
x (P)η −H−

x (P1)τ. (3.19)

Further,

L4 = H+(P2)−H+(P) = H+((p2(r,ε),0))−H+(p(r),0),

so that [
∂L4

∂ε

]
ε=0

= H+
x (P1)σ , (3.20)

and [
∂ 2L4

∂ε2

]
ε=0

= H+
xx(P1)σ2 +H+

x (P1)τ. (3.21)

Hence, from equations (3.13)–(3.21) we get equation (3.12). �

LEMMA 2. The expression for L4 is given by

L4 = ε
∫

Γ+
r

ω+
1 + ε2

(∫
Γ+

r

ω+
2 +K+(P(r))

∫
Γ+

r

ω+
1

H+
y
−
∫

Γ+
r

f +
1 ω+

1

H+
y

)
+o(ε3), (3.22)

where ω+
i = g+

i dx− f +
i dy , i = 1,2 .

Proof. We have,

L4 = H+(P2)−H+(P) =
∫

P̂P2

dH+ =
∫

P̂P2

H+
x dx+H+

y dy

=
∫

P̂P2

[
H+

x (H+
y + ε f +

1 + ε2 f +
2 )+H+

y (−H+
x + εg+

1 + ε2g+
2 )
]
dt

= ε
∫

P̂P2

(H+
x f +

1 +H+
y g+

1 )dt + ε2
∫

P̂P2

(H+
x f +

2 +H+
y g+

2 )dt

= ε
∫

P̂P2

(H+
x f +

1 +H+
y g+

1 )dt + ε2
∫

P̂P1

(H+
x f +

2 +H+
y g+

2 )dt +o(ε3)

= ε
∫

P̂P2

(H+
x f +

1 +H+
y g+

1 )dt + ε2
∫

Γ+
r

ω+
2 +o(ε3). (3.23)



510 N. PHATANGARE, S. KENDRE AND K. MASALKAR

Along the path P̂P2 , we have

dt =
dy
ẏ

=
dy

−H+
x + εg+

1 + ε2g+
2

=
−1

H+
x

(
1+ ε

g+
1

H+
x

+o(ε2)
)

dy.

Let us denote K+ =
H+

x f +
1 +H+

y g+
1

H+
x

, K+dy =−g+
1 dx+ f +

1 dy =−ω+
1 on Γ+

r and

R is the region bounded by Γ+
rε and Γ+

r ∪−−→
P1P2 , where

−−→
P1P2 denote the line segment

from P1 to P2 . Then

∫
P̂P2

(H+
x f1

+ +Hy
+g1

+)dt

=
∫

P̂P2

−H+
x f1+ +Hy

+g1
+

Hx
+

(
1+ ε

g1
+

Hx
+ +o(ε2)

)
dy

= −
∫

P̂P2

Hx
+ f1+ +Hy

+g1
+

Hx
+ dy− ε

∫
P̂P2

g1
+(Hx

+ f1+ +Hy
+g1

+)

Hx
+2 dy+o(ε2)

= −
∫

P̂P2

K+dy− ε
(∫

P̂P1

g1
+K+

Hx
+ dy+o(ε)

)
+o(ε2)

= −
∫

P̂P1

K+dy−
∫
−−→
P1P2

K+dy−
∫∫

R

∂K+

∂x
dxdy

− ε
(∫

P̂P1

K+g1
+

Hx
+ dy+o(ε)

)
+o(ε2)

=
∫

Γ+
r

ω+
1 −

∫
−−→
P1P2

K+dy−
∫∫

R

∂K+

∂x
dxdy− ε

∫
Γ+

r

K+g1
+

Hx
+ dy+o(ε2)

=
∫

Γ+
r

ω+
1 −

∫∫
R

∂K+

∂x
dxdy+ ε

∫
Γ+

r

g1
+ω+

1

Hx
+ +o(ε2). (3.24)

Now suppose that R = R1∪R2 , where R1 is the region bounded by Γ+
r , Γ+

rε , x =
p1(r) and x = p(r) whereas R2 is bounded by y = 0, Γ+

rε , x = p2(r,ε) and x = p1(r) .
Note that, since the radial distance z from P1(r) to the point on Γ+

rε in R2 is of order

ε , we have
∫ ∫

R2

dxdy =
∫ π

2

0

∫ z

0
rdrdθ =

π
4

z2 = o(ε2) . Therefore,

∫∫
R2

∂K+

∂x
dxdy = o(ε2). (3.25)

Let us represent Γ+
rε and Γ+

r by yε = y(x,ε) , y0 = y(x,0) , respectively. Now put
y(x,s) = y0(x)+ s(yε (x)− y0(x)) , p1(r) � x � p(r) , 0 � s � 1. Hence, area element
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for the region R1 becomes dydx = (yε(x)− y0(x))dsdx . Therefore,∫∫
R1

∂K+

∂x
dxdy =

∫ p(r)

p1(r)

(∫ 1

0

∂K+

∂x
(yε(x)− y0(x))ds

)
dx

= ε
∫ p(r)

p1(r)

(∫ 1

0

∂K+

∂x

(
∂yε
∂ε

)
ε=0

ds

)
dx+o(ε2)

= ε
∫ p(r)

p1(r)

(∫ 1

0

∂K+

∂x
(x,y0(x))

(
∂yε

∂ε

)
ε=0

ds

)
dx+o(ε2)

= ε
∫ p(r)

p1(r)

∂K+

∂x
(x,y0)

(
∂yε
∂ε

)
ε=0

dx+o(ε2). (3.26)

Now along Γ+
rε , we have

ẏε =
∂yε
∂x

ẋ = −Hx
+ + εg1

+ + ε2g2
+ ⇒ ∂yε

∂x
=

−Hx
+ + εg1

+ + ε2g2
+

Hy
+ + ε f1

+ + ε2 f2
+

⇒ yε =
∫ x

p1(r)

−Hx
+ + εg1

+ + ε2g2
+

Hy
+ + ε f1+ + ε2 f2+ ds

=
∫ x

p1(r)

−Hx
+

Hy
+ ds+ ε

∫ x

p1(r)

Hx
+ f1+ +Hy

+g1
+

Hy
+2 ds+o(ε2).

Note here that the last integral is taken along Γ+
r . From the above expression we have(

∂yε
∂ε

)
ε=0

=
∫ x

p1(r)

Hx
+ f1+ +Hy

+g1
+

Hy
+2 ds =

∫ x

p1(r)

K+Hx
+

(Hy
+)2 dx = I+(x) (say). (3.27)

Therefore, from equations (3.25), (3.26) and (3.27), we get∫∫
R

∂K+

∂x
dxdy = ε

∫ p(r)

p1(r)

∂K+

∂x
(x,y0)I+dx+o(ε2).

Now using integration by parts, we have∫∫
R

∂K+

∂x
dxdy = ε

(
K+(P(r))

∫ p(r)

p1(r)

K+H+
x

(H+
y )2

dx

)
− ε

∫ p(r)

p1(r)

(K+)2H+
x

(H+
y )2

dx+o(ε2)

= −εK+(P(r))
∫

Γ+
r

ω+
1

H+
y

+ ε
∫

Γ+
r

f +
1 ω+

1

H+
y

+ ε
∫

Γ+
r

g+
1 ω+

1

H+
x

+o(ε2).

(3.28)

Hence, from (3.23), (3.24) and (3.28) we obtain the formula for L4 . �

LEMMA 3. The expression for L2 is given by

L2 = ε
∫

Γ−
r

ω−
1 + ε2

(∫
Γ−

r

ω−
2 +K−(P(r))

∫
Γ−

r

ω−
1

H−
y
−
∫

Γ−
r

f−1 ω−
1

H−
y

)
+o(ε3), (3.29)

where ω−
i = g−i dx− f−i dy , i = 1,2 .
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Proof. The proof is similar to the proof of Lemma 2. �

Proof of Theorem 1. Comparing coefficients of ε and ε2 in the expression for L4

obtained in Lemma (2) and from expressions (3.20), (3.21), we have

σ =
1

H+
x (P1)

∫
Γ+

r

ω+
1 , (3.30)

and

1
2
H+

x (P1)τ =
∫

Γ+
r

ω+
2 +K+(P(r))

∫
Γ+

r

ω+
1

H+
y
−
∫

Γ+
r

f +
1 ω+

1

H+
y

− 1
2
H+

xx(P1)σ2. (3.31)

Similarly, from Lemma (3) and expressions (3.18), (3.19) we get

H−
x (P)ρ =H−

x (P1)σ +
∫

Γ−
r

ω−
1 =

H−
x (P1)

H+
x (P1)

∫
Γ+

r

ω+
1 +

∫
Γ−

r

ω−
1 , (3.32)

and

1
2
H−

x (P)η =
∫

Γ−
r

ω−
2 +K−(P(r))

∫
Γ−

r

ω−
1

H−
y
−
∫

Γ−
r

f−1 ω−
1

H−
y

− 1
2
H−

xx(P)ρ2 +
1
2
H−

xx(P1)σ2 +
1
2
H−

x (P1)τ. (3.33)

From (3.12) and (3.32) we get the first order Melnikov function.
Now if the first order Melnikov function is identically zero, then from equation

(3.12) we have ρ ≡ 0. Hence, from (3.12) and (3.33), the second order Melnikov
function is

M2(r) = Hx
+(P)η

= λ
(∫

Γ−
r

ω2
−−

∫
Γ−

r

f1−ω1
−

Hy
− +K−(P(r))

∫
Γ−

r

ω1
−

Hy
− +

1
2
Hxx

−(P1)σ2 +
1
2
Hx

−(P1)τ
)

,

where λ =
Hx

+(P)
Hx

−(P)
. By substituting τ from (3.31) we get the required expression for

M2 . �

If the Hamiltonian system (3.6) is extended smoothly on the boundary y = 0, it be-
comes a smooth Hamiltonian system. In this case, the first and second order Melnikov
functions are simple line integrals of one forms. Further, if perturbation of this system
is also smooth, then the first order and second order Melnikov functions obtained from
Theorem 1 are well-known integrals of one forms as shown in the following corollary.

COROLLARY 1. If in the system (3.9),

lim
y→0+

Hx
+(x,y) = lim

y→0−
Hx

−(x,y) and lim
y→0+

Hy
+(x,y) = lim

y→0−
Hy

−(x,y)
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for all x ∈ R , then the first order and the second order Melnikov functions are given by

M1(r) =
∫

Γ+
r

ω+
1 +

∫
Γ−

r

ω−
1 and (3.34)

M2(r) =
(∫

Γ−
r

ω−
2 +

∫
Γ+

r

ω+
2

)
−
(∫

Γ−
r

f−1 ω−
1

H−
y

+
∫

Γ+
r

f +
1 ω+

1

H+
y

)
+
(

K−(P(r))
∫

Γ−
r

ω−
1

H−
y

+K+(P(r))
∫

Γ+
r

ω+
1

H+
y

)
, (3.35)

respectively.
Further, if lim

y→0+
f +
i (x,y) = lim

y→0−
f−i (x,y) and lim

y→0+
g+

i (x,y) = lim
y→0−

g−i (x,y) for

i = 1,2 and for all x ∈ R , then the first order and second order Melnikov functions are
given by

M1(r) =
∮

Γr

ω1, and M2(r) =
∮

Γr

ω2−
∮

Γr

f1ω1

Hy
+K(P(r))

∮
Γr

ω1

Hy
, (3.36)

respectively,

where Hx(x,y) =

⎧⎪⎪⎨⎪⎪⎩
H+

x (x,y) if y > 0

H−
x (x,y) if y < 0

lim
y→0+

H+
x (x,y) if y = 0

, Hy(x,y) =

⎧⎪⎪⎨⎪⎪⎩
H+

y (x,y) if y > 0

H−
y (x,y) if y < 0

lim
y→0+

H+
y (x,y) if y = 0

,

fi(x,y) =

⎧⎪⎪⎨⎪⎪⎩
f +
i (x,y) if y > 0

f−i (x,y) if y < 0

lim
y→0+

f +
i (x,y) if y = 0

, gi(x,y) =

⎧⎪⎪⎨⎪⎪⎩
g+

i (x,y) if y > 0

g−i (x,y) if y < 0

lim
y→0+

g+
i (x,y) if y = 0

,

ωi = gidx− fidy, K = Hx f1+Hyg1
Hx

for i = 1,2 and Γr = Γ+
r ∪Γ−

r , a closed trajectory of
the unperturbed system.

Proof. Proof follows from the equation (3.10) and (3.11). �

4. Piecewise Hamiltonian system with boundary perturbation

Consider a piecewise Hamiltonian system with boundary perturbation,

Ẋ =

{
(H+

y ,−H+
x ), y > ε f (x)

(H−
y ,−H−

x ), y < ε f (x)
, (4.1)

where H+,H− : R
2 → R are C2 functions and f : R → R is a C1 function.

Here Σ = {(x,y) ∈ R
2 : y = ε f (x)} is a switching manifold and Σ± = {(x,y) ∈

R
2 : ±(y− ε f (x)) > 0} are two zones separated by Σ .

REMARK 1. According to the Filippov convention, [7], the switching manifold Σ
is divided into the following regions:
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Crossing region Σc = {(x,ε f (x)) : H±
x + εH±

y f ′(x) > 0 or H±
x + εH±

y f ′(x) < 0} ,
Sliding region Σs = {(x,ε f (x)) : H+

x + εH+
y f ′(x) < 0,H−

x + εH−
y f ′(x) > 0} , and

Escaping region Σe = {(x,ε f (x)) : H+
x + εH+

y f ′(x) > 0,H−
x + εH−

y f ′(x) < 0} .
Discontinuity-induced bifurcations are studied according to these regions.

Using the analytic invertible change of variables u = x , v = y−ε f (x) and renam-
ing the variables u by x and v by y , the system (4.1) becomes

Ẋ =

{
(X+,Y+), y > 0

(X−,Y−), y < 0
, (4.2)

where

X+ = H+
y + ε f (x)H+

yy + ε2 1
2

f (x)2H+
yyy +o(ε3),

Y+ = −H+
x − ε( f ′(x)H+

y + f (x)H+
xy)− ε2 f (x)

(
1
2

f (x)H+
xyy + f ′(x)H+

yy

)
+o(ε3),

X− = H−
y + ε f (x)H−

yy + ε2 1
2

f (x)2H−
yyy +o(ε3), and

Y− = −H−
x − ε( f ′(x)H−

y + f (x)H−
xy)− ε2 f (x)

(
1
2

f (x)H−
xyy + f ′(x)H−

yy

)
+o(ε3).

REMARK 2. Note that if Φ(x,y) = (x,y− ε f (x)) , then Φ is a diffeomorphism.
Therefore, systems (4.1) and (4.2) are topologically equivalent and their flows are C1

conjugate.

Melnikov function for the system (4.2) is given by the following theorem.

THEOREM 2. If the system (4.2) at ε = 0 has a period annulus around the origin
and H±

y (P) = H±
y (P1) , then the first order Melnikov function for (4.2) is

λM1(r) = H−
x (P1)

(
H+

y (P1)
H+

x (P1)
− H−

y (P1)
H−

x (P1)

)
( f (p)− f (p1)), (4.3)

and the second order Melnikov function is given by

λM2(r) =
H−

x (P1)
2

(
H+

yy(P1)
H+

x (P1)
− H−

yy(P1)
H−

x (P1)

)
(( f (p(r)))2 − ( f (p1(r)))2)

+
H−

x (P1)K+(P)−H+
x (P1)K−(P)

H+
x (P1)

( f (p(r))− f (p1(r)))

−
(

K−(P)
∫

Γ−
r

f

H−
y

d(H−
y )+

H−
x (P1)K+(P)

H+
x (P1)

∫
Γ+

r

f

H+
y

d(H+
y )
)

+
∫

Γ−
r

H−
yy

[
d

(
f 2

2

)
+
(

f 2

Hy
−

)
d(H−

y )
]
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+
H−

x (P1)
H+

x (P1)

∫
Γ+

r

H+
yy

[
d

(
f 2

2

)
+
(

f 2

H+
y

)
d(H+

y )
]

+
1
2

(
H−

xx(P1)− H−
x (P1)

H+
x (P1)

H+
xx(P1)

)
σ2, (4.4)

where λ =
H−

x (P)
H+

x (P)
.

Proof. From (4.2), we have∫
Γ+

r

ω+
1 =

∫
Γ+

r

(g+
1 dx− f +

1 dy) = −
∫

Γ+
r

d( fH+
y ) = f (p)H+

y (P)− f (p1)H+
y (P1), and∫

Γ−
r

ω−
1 =

∫
Γ−(r)

(g−1 dx− f−1 dy) = −
∫

Γ−
r

d( fH−
y ) = f (p1)H−

y (P1)− f (p)H−
y (P).

Hence, by Theorem 1,

M1(r)

= λ

(
f (p)

(
H−

x (P1)H+
y (P)

H+
x (P1)

−H−
y (P)

)
− f (p1)

(
H−

x (P1)H+
y (P1)

H+
x (P1)

−H−
y (P1)

) )
,

(4.5)

where λ =
H+

x (P)
H−

x (P)
.

Now if H+
y (P) = H+

y (P1) and H−
y (P) = H−

y (P1) , then we get (4.3).

Again, from (4.2) we have ω±
1 = −d( f (x)H±

y ),ω±
2 = −d

(
f 2(x)H±

yy

2

)
. Hence,

the formula for M2 follows from (3.11). �

REMARK 3. If the system (4.2) at ε = 0 is smooth, then
H+

y (P1)
H+

x (P1)
− H−

y (P1)
H−

x (P1)
=

0. Thus, M1(r) = 0 if and only if f (p(r)) = f (p1(r)) or the system is smooth. If
f (p(r)) = f (p1(r)) , the periodic orbit passing through P(r) of (4.2) at ε = 0 is also a
periodic orbit of (4.2). Hence, the number of periodic orbits persists under perturbation
equals to the number of roots of f (p(r))− f (p1(r)) .

If the system (4.1) at ε = 0 is smoothly extended on y = 0, then its period annulus
persists under perturbation of the switching boundary. In the following corollary, we
obtain the first order and second order Melnikov functions for such a system.

COROLLARY 2. If the system (4.1) at ε = 0 is smooth then its period annulus
persists under smooth perturbation of switching manifold y = 0 .
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Proof. From (4.3) we have M1(r) =
∮

Γr

ω1 =
∮

Γr

−d( f (x)Hy) = 0.

Now from (4.4) we have

λM2(r) = −K(P)
∮

Γr

f
Hy

dHy +
∮

Γr

Hyy
f 2

Hy
dHy +

∮
Γr

Hyyd

(
f 2

2

)
, (4.6)

where f ,K,Hy,Hyy and Γr are as defined in Corollary 1.
Along Γr we have

f (x)
Hy

dHy =
f (x)
Hy

(Hyxdx+Hyydy) =
f (x)
Hy

(−Hyx
Hy

Hx
+Hyy)dy

= f (x)
(−Hxy

Hx
+

Hyy

Hy

)
dy =

∂
∂y

(
f (x) log

(
Hy

Hx

))
dy, (4.7)

so that
∮

Γr

f
Hy

dHy = 0. Also,

∮
Hyy

(
f 2 dHy

Hy
+d

(
f 2

2

))
=
∮

Hyy

(
f 2 ∂

∂y

(
log

Hy

Hx

)
− f f ′

Hy

Hx

)
dy

=
∮

Hyy
(
f 2vy − f f ′u

)
dy,

where u = Hy
Hx

and v = log(u) . Integrating by parts twice, we get

∮
Hyy

(
f 2 dHy

Hy
+d

(
f 2

2

))
=
∮

H
(
f 2vyyy − f f ′uyy

)
dy

= r
∮ (

( f 2v)yyy − ( f f ′u)yy
)
dy = 0. (4.8)

Hence from equation (4.6), (4.7) and (4.8), we get M2 ≡ 0. Thus, we conclude that no
limit cycle bifurcated from the period annulus of (4.1). �

REMARK 4. In the above proof we consider an extension of the natural logarith-

mic function on R∪{+∞,−∞} as, log(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
lnx, x > 0

ln(−x), x < 0

−∞, x = 0

∞, x = ±∞

. This function is an

antiderivative of the functions f1(x)=

⎧⎨⎩
1
x
, x > 0

∞, x = 0
on [0,∞] and f2(x)=

⎧⎨⎩
1
x
, x < 0

−∞, x = 0
on [−∞,0] .
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5. Applications

There are various types of planar piecewise smooth systems according to the types
of singularities in zones separated by the switching line with a center at the origin
viz. center-center, saddle-center, and center-focus. Here we discuss the limit cycle
bifurcation from period annulus due to perturbation of the switching manifold of center-
center and saddle-center type using the first and second-order Melnikov functions.

5.1. Boundary perturbation of center-center type system

Consider the piecewise Hamiltonian system

Ẋ =

{
(−1,2x) if y > 0

(1,2x) if y < 0
. (5.1)

System (5.1) has center at the origin (Fig. 2a). Hamiltonian of the system Ẋ = (−1,2x)
is H+(x,y) =−y−x2 . Trajectories of this system at level h = r2 are given by y+x2 =
−r2 . Hamiltonian for Ẋ = (1,2x) is H−(x,y) = y− x2 and its trajectories at the levels
h = r2 are given by y− x2 = r2.

Now consider the perturbed piecewise smooth system

Ẋ =

{
(−1+ ε f +

1 (x,y)+ ε2 f +
2 (x,y),2x+ εg+

1 (x,y)+ ε2g+
2 (x,y)) if y > 0

(1+ ε f−1 (x,y)+ ε2 f−2 (x,y),2x+ εg−1 (x,y)+ ε2g−2 (x,y)) if y < 0,
(5.2)

where

f +
1 (x,y) = ax2 +bxy+ cy2, f +

2 (x,y) = Ax2 +Bxy+Cy2,

g+
1 (x,y) = dx2 + exy+ f y2, g−2 (x,y) = Dx2 +Exy+Fy2,

f−1 (x,y) = px2 +qxy+ sy2, f−2 (x,y) = Px2 +Qxy+Sy2,

g−1 (x,y) = lx2 +mxy+ny2, g−2 (x,y) = Lx2 +Mxy+Ny2.

and a,b,c,d,e, f , p,q,s, l,m,n,A,B,C,D,E,F,P,Q,S,L,M and N are real constants.
From (3.10) we get

M1(r) = r3
(

8
15

(4b−7 f +7n−4q)r2 +
2
3

(l−d)
)

. (5.3)

Note that, M1(r) ≡ 0 if

4b−7 f +7n−4q = 0, and d− l = 0. (5.4)
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Also, from (3.10) the second order Melnikov function is

M2(r) =
(
−2656sn

315
+

3712qs
315

+
3712bc

315
− 2656c f

315

)
r9

+
(

8
15

(p(7n−4q)−a(4b−7 f ))−184
105

(ls+qm+np+a f+be+cd)+
96
35

(pq+ab)
)

r7

− 4
15

(l (7n−4q)+d (4b−7 f ))r6 +
4
15

(14(N−F)+8(B−Q)+ l p+ad)r5

+
1
3

(
d2− l2

)
r4 +

2
3

(L−D)r3. (5.5)

In the view of the conditions (5.4), the expression (5.5) becomes M2(r) = r3M′
2(h) ,

where h = r2 and

M′
2(h) =

32
315

(−29(7 f −4b)(s+ c)+120(sn+ c f ))h3

+
(

8
15

(7 f −4b)(p+a)− 184
105

(d(s+ c)+qm+np+a f +be)+
96
35

(pq+ab)
)

h2

+
4
15

(14(N−F)+8(B−Q)+d(p+a))h+
2
3

(L−D) . (5.6)

Thus under the conditions (5.4), the system (5.2) can have at most three limit cycles.
In particular, if a = p , b = q , c = s , m = −e , f = n = 2b , L = −D , F = N ,

B = Q , then (5.6) becomes

M′
2(h) = −640

63
bch3 +

(
80
21

ab+
16
3

b2− 368
105

cd

)
h2 +

8
15

adh− 4
3
D. (5.7)

We can choose constants a,b,c,d and D such that (5.7) will have three distinct positive

roots. In particular, if a = 1, bc = 1, d = −8800
42

and D = −960
21

, then (5.7) becomes

M′
2(h) = −640

63
(h3−6.000000005h2+11h−6). (5.8)

Polynomial (5.8) has three positive zeros; h = 1.000000003,1.999999980,3.000000022.
Consequently, the corresponding system will have three limit cycles (Fig. 2c).

Further, in (5.6), if 4b= 7 f , e = m = c = 0, a = p = s = n= 1, q=−b , d = 1/10,
f = 98.9, L = D , 14(N−F)+8(B−Q) = 0, then

M′
2(h) =

256
21

h3− 3680
21

h2 +
4
75

h. (5.9)

Note that (5.9) has two real positive zeros, h =
115
16

+
3
80

√
36733,

115
16

− 3
80

√
36733.

Therefore the corresponding system will have two limit cycles (Fig. 2b).
In [15], authors characterize all planar piecewise smooth differential systems hav-

ing (k, l) center at the origin. Here we mention the result;
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(a) System (5.1) (b) Two limit cycles (c) Three limit cycles

Figure 2: Flow of the system (5.2)

PROPOSITION 5. [15] Let k, l,r be positive integers and max{k, l} � r ∈ N∪
{∞,ω} . Suppose that the system

Ẋ =

{
(F+(x,y),G+(x,y)) if y > 0

(F−(x,y),G−(x,y)) if y < 0
(5.10)

is piecewise smooth with F±,G± ∈Cr and having (k, l)-Σ-center at the origin, where
Σ is the x-axis. Then there exists a Cr diffeomorphism h from period annulus of (5.10)
to a period annulus of (5.1), which maps x-axis to the x-axis.

We note that the system (5.1) is piecewise smooth Hamiltonian system with Hamil-
tonian H+(x,y) = −y− x2 , y > 0 and H−(x,y) = y− x2 , y < 0. The following propo-
sition gives information about the limit cycles bifurcated from the period annulus of
this system due to perturbation of the switching manifold.

PROPOSITION 6. The number of limit cycles for the system

Ẋ =

{
(−1,2x) if y > ε f (x)
(1,2x) if y < ε f (x)

is equal to the number of isolated positive zeros of fo(x) , where fo(x) =
f (x)− f (−x)

2
.

Proof. From (4.3) and (4.4), we get

M1(r) = 2[ f (−r)− f (r)] = 4 fo(r), and

M2(r) =
f ′(r)

r
M1(r).

Therefore the number of limit cycles bifurcated from the period annulus of the unper-
turbed system is the same as the number of positive roots of y = fo(x) . In particular, if
f is an even function, then no limit cycles are bifurcated. �
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REMARK 5. From Proposition 3, it is clear that the limit cycle of system (5.1)

through the point (r,0) is stable if
dM1

dr
=

−2
r

fe′(r) < 0, where fe(x) =
f (x)+ f (−x)

2
.

Since the system (5.1) is the normal form of planar piecewise smooth systems of
the center-center type, Proposition 6 also holds for the systems (5.10).

5.2. Boundary perturbation of saddle-center type system

In [18, 19], authors studied the number of limit cycles along with the stability and
hyperbolicity of limit cycles of the system

Ẋ =

{
(y−a,x) if y > ε f (x)
(−y,x) if y < ε f (x)

. (5.11)

Origin is singularity of this system of saddle-center type and f (x) = sinx or f (x) =
x(x2−x2

1)(x
2−x2

2) . . . (x
2−x2

m) . Note that this system is a piecewise linear Hamiltonian
system with two zones. We study the number of limit cycles bifurcated from the period
annulus and stability of the above systems if we change the switching manifold y = 0 to
y = ε f (x) , under the assumption that f is sufficiently smooth. Using dilation x = au ,
y = av and renaming the variables u and v by x and y respectively, system (5.10)
becomes

Ẋ =

{
(y−1,x), y > ε f (ax)
(−y,x), y < ε f (ax)

. (5.12)

At ε = 0, system (5.11) has a period annulus A =
⋃

r∈[0,1]

(Γ+
r ∪Γ−

r ) , where

Γ+
r : H+(x,y) =

(y−1)2

2
− x2

2
=

r
2
,y � 0 and Γ−

r : H−(x,y) =
x2

2
+

y2

2
=

s
2
,y � 0.

Now for any point P(r) = (p(r),0) , r ∈ [0,1] we have

H+(P) =
r
2

= H−(P) =
s
2
⇒ (0−1)2

2
− (p(r))2

2
=

r
2

= − (p(r))2

2
− 02

2
=

s
2
.

Hence, p(r) =
√

1− r =
√

s.
Since the trajectories are symmetric about the y-axis, we have p1(r) = −p(r) =

−√
1− r . Melnikov functions for (5.11) are given by the following proposition.

PROPOSITION 7. Suppose that f : R → R is C1 smooth function. Then we have
the following:

1. The first order Melnikov function for the system (5.11) is given by

M1(r) = 2 fo(a
√

1− r),

where fo(x) =
f (x)− f (−x)

2
for 0 < r < 1 . Further, if M1(r)≡ 0 , then M2(r)≡

0 .
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(a) f (x) = 0.01sinx (b) f (x) = x(x2 −1)(x2 −4)

Figure 3: Saddle-center system with perturbation boundary y = ε f (x)

2. The number of limit cycles bifurcated from the period annulus around the origin
inside the homoclinic orbit containing the saddle point (0,a) is the number of
isolated positive roots of fo(x) . In particular, if f is an even function, then no
limit cycle bifurcated from the period annulus.

Proof. From (4.3), we have

M1(r) =
(−p(r))(−p1(r))

(−p(r))

( −1
(−p1(r))

− 0
(−p1(r))

)
( f (ap(r))− f (ap1(r)))

= f (ap(r))− f (−ap(r)).

Therefore, M1(r) = 2 f0(ap(r)) = 2 f0(a
√

1− r) for all r ∈ [0,1] .
Here, H±

xx = H±
yy = H±

xy = 0. Therefore from (4.4), we get

M2(r) =
− f ′(a

√
1− r)√

1− r
M1(r), r ∈ [0,1).

Hence the proof of (1).
Proof of (2) follows from the expression of M1 . �

REMARK 6. From Proposition 3, it is clear that the limit cycle of (5.12) through

the point (
√

1− r,0) is stable if
dM1

dr
=

−2a√
1− r

fe′(
√

1− r) < 0, where

fe(x) =
f (x)+ f (−x)

2
.

Similarly, we can characterize all planar piecewise smooth differential systems
having saddle-center type as stated in the following proposition.
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PROPOSITION 8. If the Filippov system

Ẋ =

{
(F+,G+), y > 0

(F−,G−), y < 0
(5.13)

has a period annulus around the origin inside the homoclinic orbit containing the sad-
dle point (0,a) , a > 0 , then there is a homeomorphism which maps the period annulus
of (5.11) to the period annulus of (5.13) and maps switching manifold to switching
manifold.

Proof. Let U+ be an open region in the upper half plane lying inside the homo-
clinic connection containing the saddle point (0,a) of

Ẋ = (F+,G+). (5.14)

Let (b,0) and (c,0) be the points of intersection of the homoclinic orbit of (5.14) with
the x -axis and b < 0 < c . We may assume that the periodic orbits of (5.14) are convex
(see [15]). Hence we use the polar co-ordinates (r,θ ) to transform the system (5.14)
into

dr
dθ

= P+(r,θ ). (5.15)

Let 0 < r0 < c and 0 < θ < π . Consider the initial value problem
dr
dθ

= P+(r,θ ) ,

r(0) = r0 . Let ξ = ξ (θ ,r0) be its solution. Now define the function Φ+ : [0,π ]×
[0,c] →U+ by

Φ+(θ ,r) = (ξ (θ ,r)cosθ ,ξ (θ ,r)sinθ ). (5.16)

Then Φ+ is a diffeomorphism and maps each horizontal line segment r = r0 to the
trajectory ξ = ξ (θ ,r0) of (5.14).

Similarly, if V+ denotes the region in the upper half plane occupied by the periodic
orbits of

Ẋ = (y−1,x), (5.17)

then we have the diffeomorphism Ψ+(θ ,r) : [0,π ]× [0,1] → V+ . Let χ+ : [0,π ]×
[0,c] → [0,π ]× [0,1] be the map given by χ+(x,y) = (x,y/c) . Then χ+ is also a
diffeomorphism.

The composition H + := Ψ+ ◦ χ+ ◦ (Φ+)−1 : U+ →V+ is a diffeomorphism.
Next, let U− and V− denote the open regions in lower half plane consisting of

orbits of the systems

Ẋ = (F−,G−) (5.18)

and

Ẋ = (−y,x), (5.19)
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respectively. Then we can construct a diffeomorphism H − : U− → V− which maps
orbits of (5.18) to that of (5.19).

Since the system (5.13) is Filippov, every point on the switching manifold y = 0
is a singularity of order one. Hence, lim

y→0+
H +(x,y) = lim

y→0−
H −(x,y) .

Now we define the map

H : U+∪U−∪{(x,0) : b < x < 0 or 0 < x < c}→V+ ∪V−∪{(x,0) : 0 < |x| < 1}

by

H (x,y) =

⎧⎪⎪⎨⎪⎪⎩
H +(x,y),(x,y) ∈U+

H −(x,y),(x,y) ∈U−

lim
y→0+

H +(x,y) = lim
y→0−

H −(x,y),y = 0
. (5.20)

Note that due to the Filippov convention,

lim
y→0+

F+(x,y) = lim
y→0−

F−(x,y) and lim
y→0+

G+(x,y) = lim
y→0−

G−(x,y),

so that H is continuously differentiable on the switching manifold y = 0. Therefore
H is a diffeomorphism. �

From Proposition (8) we conclude that the Proposition (7) holds for the system
(5.13).

6. Concluding remark

In this article, we found expressions for first-order as well as second-order Mel-
nikov functions for perturbed planar piecewise smooth Hamiltonian systems. Using
Melnikov functions we study limit cycle bifurcations of piecewise smooth Hamiltonian
systems due to the perturbation of the switching manifold.

This idea could be extended to study the limit cycle bifurcation of any piecewise
smooth planar differential system.

Acknowledgement. The authors would like to express sincere gratitude to the re-
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