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INFINITELY MANY PERIODIC SOLUTIONS

FOR ANISOTROPIC Φ–LAPLACIAN SYSTEMS

SONIA ACINAS AND FERNANDO MAZZONE ∗

(Communicated by L. Kong)

Abstract. In this paper, we study existence of periodic solutions for an anisotropic differen-
tial operator via the minimax methods in critical point theory. Concretely, we consider a Φ -
Laplacian operator and we extend and generalize known results obtained in the isotropic setting
given by a p -Laplacian system. Moreover, our results when applied to p -Laplacian system
improve the ones known in the literature nowadays.

1. Introduction and main result

Let Φ : R
d → [0,+∞) be a differentiable, convex function such that Φ(0) = 0,

Φ(y) > 0 if y �= 0, Φ(−y) = Φ(y) ,

lim
|y|→0

Φ(y)
|y| = 0, and lim

|y|→∞

Φ(y)
|y| = +∞, (1.1)

where | · | denotes the euclidean norm on R
d . From now on, we say that Φ is an

anisotropic N -function (briefly N -function) if Φ satisfies the previous properties.
For T > 0, we assume that F : [0,T ]×R

d → R
d (F = F(t,x)) is a differentiable

function with respect to x for a.e. t ∈ [0,T ] . Additionally, suppose that F satisfies the
following conditions:

(C) F and its gradient ∇xF , with respect to x ∈ R
d , are Carathéodory functions, i.e.

they are measurable functions with respect to t ∈ [0,T ] , for every x ∈ R
d , and

they are continuous functions with respect to x ∈ R
d for a.e. t ∈ [0,T ] .

(A) For a.e. t ∈ [0,T ] , it holds that

|F(t,x)|+ |∇xF(t,x)| � a(x)b(t),

where a ∈C
(
R

d , [0,+∞)
)

and 0 � b ∈ L1([0,T ],R) .
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The goal of this paper is to obtain existence of infinitely many (weak) solutions for
the following boundary value problem{

d
dt ∇Φ(u′(t)) = ∇xF(t,u(t)), for a.e. t ∈ (0,T ),
u(0)−u(T) = u′(0)−u′(T ) = 0.

(PΦ)

We will look for solutions of (PΦ) by minimax methods in critical point theory
applied to the action integral associated to the kinetic energy Φ(u′) and potential −F ,
given by

I(u) :=
∫ T

0
Φ(u′(t))+F(t,u(t)) dt. (IA)

Before stating our main result, we will introduce some definitions.
First of all, we recall the condition (B) introduced in [18, Definition 3.1] with the

aim of encompassing the sublinearity condition used, for example, in [25, 28, 31] for
the Laplacian, [15, 26] for the p -Laplacian and [16, 19, 20, 30] for (p1, p2)-Laplacian.

For the definition of the order relation ≺≺ and the complementary function Φ�

used in the following definition see Section 2.

DEFINITION 1. Let F : [0,T ]×R
d → R be a function. We say that F satisfies

condition (B) if there exist an N -function Φ0 , with Φ0 ≺≺ Φ ; and, a function d ∈
L1([0,T ],R) , with d > 0, such that

Φ�

(
∇xF
d(t)

)
� Φ0(x)+1. (B)

REMARK 1. It is easy to see that it is possible to replace in the previous definition
Φ0(x)+ 1 by C

(
Φ0(x)+ 1

)
, with any constant C > 0. It is also possible to establish

(B) for |x| > R , where R > 0 is some radius.

The following concept was introduced in [32] and it was used in the context of
variational problems in [1].

DEFINITION 2. Let F : [0,T ]×R
d → R be a function. We say that F has a

bounded local oscillation respect to the second variable (F ∈ BO) if there exists b ∈
L1([0,T ]) such that

‖F(t, ·)‖BO := sup
|x−y|�1

|F(t,x)−F(t,y)| � b(t). (BO)

The goal of this paper is to prove the following result.

THEOREM 1. Let Φ be an N -function such that Φ,Φ� ∈ Δ2 . Suppose that F =
F1 +F2 , with F1 and F2 satisfying (A), (C) and the following conditions:

H1) F1 ∈ BO.

H2) F2 satisfies condition (B).
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H3) There hold

liminf
R→+∞

sup
x∈Rd ,|x|=R

∫ T

0
F(t,x)dt = −∞, (1.2)

and

limsup
r→+∞

inf
x∈Rd ,|x|=r

1
Φ0(2x)

∫ T

0
F(t,x)dt = +∞. (1.3)

Then

1. the problem (PΦ) has a sequence of solutions {un} such that I(un)→+∞ as n→ ∞ ,

2. the problem (PΦ) has a sequence of solutions {u�
n} such that I(u�

n)→−∞ as n→ ∞ .

Theorem 1 generalizes [15, Theorem 1.1] to Orlicz-Sobolev anisotropic spaces. In
Section 4, we present three examples where our theorem is applicable and the known
results so far fail. The first example corresponds to a (p,q)-Laplacian system and the
second one deals with a p -Laplacian system. We observe that Theorem 1 gives new
results even in the case of p -Laplacian system (see Subsection 4.2). The last example
is a sum of p -Laplacian operators with different p -values.

In the case of p -Laplacian, it is usual to formulate assumptions in terms of expo-
nents related to p and take advantage of the fact that the set of all p -functions con-
stitutes a totally ordered set. Meanwhile, in the anisotropic setting some difficulties
appear. Namely, 1) the lack of homogeneity of the differential operator; and, 2) the lack
of a natural reference scale for N -functions. We overcome these obstacles by using
a partial order on the set of N -functions and not by appealing to homogeneity in the
proofs. Compare, for example, condition (B) with its analogous isotropic condition for
the p -Laplacian |∇F | � f (t)|x|α + g(t) , 0 � α < p− 1, see [16, Theorem 11]. We
also want to emphasize that, as far as possible, we avoid using Δ2 -condition, which es-
tablishes sub-homogeneity for N - functions. We only need Δ2 -condition to guarantee
that our action integral is defined over the entire Sobolev-Orlicz space, where we set
our problem.

A key estimate which is used several times in the proof is provided by Lemma
3. Different versions of this lemma were implicitly proved in many articles assuming
a condition called subconvexity for F1 and variants of condition (B) for F2 . We recall
that F is called (λ ,μ)-subconvex when

F(t,λ (x+ y)) � μ
[
F(t,x)+F(t,y)

]
, (S)

for all x,y ∈R
d . Usually, it is required that the parameters λ and μ satisfy that λ ,μ >

0 and 2μ < (2λ )p . As far as we know, the first paper where the concept of (λ ,μ)-
subconvexity was considered is [24]. There C-L. Tang obtained existence of periodic
solutions for a Laplacian system with F1 (1,1)-subconvex and F2 satisfying (B) with
Φ0 ≡ 0. In an anisotropic setting, subconvexity was treated in [19]. In this paper,
D. Paşca studied existence of periodic solutions via the direct method of calculus of
variations for Φ(u1,u2) = |u1|p/p+ |u2|q/q , F1 (λ ,μ)-subconvex with λ > 1/2 and
0 < μ < 2r−1λ r , r = min{p,q} and F2 satisfies hypothesis (B) with Φ0 = |u1|p′/p′ +
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|u2|q′/q′ , 1 < p′ < p and 1 < q′ < q . Later, in [21] results of [19] were generalized to
the context of variable exponent (p,q)-Laplacian system.

We prefer the condition (BO) to subconvexity. In the first place, due to the fact
that the statement of Theorem 1 becomes simpler using the condition (BO). In the
second place, there are functions which satisfy (BO) but they are not subconvex. For
example, it is not hard to see that F1(x) = sinx is not (λ ,μ)-subconvex for any λ ,μ >
0. Conversely, there are potentials satisfying (S) which do not belong to the class BO .
An example of this fact is given by any function F1 with superlinear growth at infinity.

The function

F1(t,x) =

{
sin

(
x
t

)
(x,t) ∈ R× (0,1]

0 t = 0, x ∈ R

is a potential belonging to the class BO but it is not subconvex. Moreover, |∇F1| is un-
bounded in every open set with a non empty intersection with the set t = 0. Therefore,
neither F1 fulfills condition (B) nor (S). However, yet in this case we could rewrite the
potential F as F = G1 +G2 , where G1 = F1 +C = sin(x/t)+C and G2 = F2−C . If
C > 1 then G1 is (λ ,μ)-subconvex with λ = 1 and μ = (C + 1)/2(C− 1)) . Now,
choosing C large enough we get that 2λ ,2μ > 1 and 2μ < (2λ )p . It seems an inter-
esting problem to search for a relation between the class of potentials which are sum
of potentials satisfying (S) and (B) and the class of those which are sum of potentials
fulfilling (BO) and (B).

2. Preliminaries

In this section, we give a short introduction to Orlicz and Orlicz-Sobolev spaces
of vector valued functions associated to anisotropic N -functions Φ : R

d → [0,+∞) .
References for these topics are [23, 18, 27, 2, 6]. And, we suggest [7] for the theory of
convex functions in general.

Associated to Φ we have the complementary function Φ� which is defined at
ζ ∈ R

d as
Φ�(ζ ) = sup

x∈Rd
x ·ζ −Φ(x). (2.1)

From the continuity of Φ and (1.1), we also have that Φ� : R
d → [0,∞) . The com-

plementary function Φ� is an N -function (see [23, Theorem 2.2]). Moreau’s Theorem
(see [7, Theorem 4.21]) implies that Φ�� = Φ .

Some elementary and useful properties which are satisfied by N -functions are:

(P1) Φ(λx) � λ Φ(x) , for every λ ∈ [0,1],x ∈ R
d ;

(P2) if 0 < |λ1| � |λ2| , then Φ(λ1x) � Φ(λ2x);

(P3) x · y � Φ(x)+ Φ�(y) (Young’s inequality).

We say that Φ : R
d → [0,+∞) satisfies the Δ2 -condition and we denote Φ ∈ Δ2 ,

if there exists a constant C > 0 such that

Φ(2x) � CΦ(x)+1, x ∈ R
d . (2.2)
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Note that this definition is equivalent to the classic one, i.e. there exist r0,C > 0
with Φ(2x) � CΦ(x) for |x| > r0 .

Let Φ1 and Φ2 be N -functions. According to the notation in [22], we write
Φ1 ≺≺ Φ2 if for every k > 0 there exists C > 0 such that

Φ1(x) � C+ Φ2(kx), x ∈ R
d . (2.3)

REMARK 2. Again, this definition is equivalent to say that for every k > 0 there
exists R > 0 such that Φ1(x) � Φ2(kx) for every |x| > R .

If Φ� ∈ Δ2 then Φ satisfies the ∇2 -condition, i.e. for every 0 < r < 1 there exist
l = l(r) > 0 and C = C(r) > 0 such that

Φ(x) � r
l
Φ(lx)+C, x ∈ R

d . (2.4)

REMARK 3. In this case, it is easy to see that this definition is equivalent to the
the more usual, i.e. with r = 1/2 and inequality (2.4) holding for |x| > R and certain
R > 0.

For an N -function Φ and u : [0,T ] → R
d in the set M of Bochner measurable

functions, we define the modular function

ρΦ(u) :=
∫ T

0
Φ(u)dt.

The Orlicz space LΦ = LΦ (
[0,T ],Rd

)
is given by

LΦ :=
{
u ∈ M

∣∣∃λ > 0 : ρΦ(λu) < ∞
}
. (2.5)

The Orlicz space LΦ equipped with the Luxemburg norm

‖u‖LΦ := inf

{
λ

∣∣∣∣ρΦ

(
v
λ

)
dt � 1

}
,

is a Banach space.
A generalized version of Hölder’s inequality holds in Orlicz spaces (see [23, The-

orem 7.2]). Namely, if u ∈ LΦ and v ∈ LΦ�
then u · v ∈ L1 and∫ T

0
u · vdt � 2‖u‖LΦ‖v‖LΦ� . (2.6)

We let u · v denote the usual dot product in R
d between u and v .

Suppose u ∈ LΦ([0,T ],Rd) and consider K := ρΦ(u)+ 1 � 1. Then, from (P1)
we have ρΦ(K−1u) � K−1ρΦ(u) � 1. Therefore, we conclude

‖u‖LΦ � ρΦ(u)+1. (2.7)
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We define the Sobolev-Orlicz space W 1LΦ = W 1LΦ (
[0,T ],Rd

)
by

W 1LΦ :=
{
u|u is absolutely continuous, u′ ∈ LΦ}

.

This space W 1LΦ is a Banach space when equipped with the norm

‖u‖W1LΦ = ‖u‖LΦ +‖u′‖LΦ . (2.8)

The subspace W 1LΦ
T of W 1LΦ is defined by

W 1LΦ
T := W 1LΦ ∩{

u|u(0) = u(T )
}
.

Note that W 1LΦ
T is a closed subspace of W 1LΦ .

As is customary, we will use the decomposition u = u + ũ for a function u ∈
L1([0,T ]) , where u = 1

T

∫ T
0 u(t)dt and ũ = u−u . Then, one has

W 1LΦ
T = W̃ 1LΦ

T ⊕R
d,

where R
d has to be read as the set of constant functions and

W̃ 1LΦ
T = {u ∈W 1LΦ

T : u = 0}.

We recall the Anisotropic Poincaré-Wirtinger’s inequality (see Lemma 2.4 in [18]
and Theorem 4.4 in [6]).

LEMMA 1. (Anisotropic Poincaré-Wirtinger’s inequality) Let Φ : R
d → [0,+∞)

be an N -function and let u ∈W 1LΦ
T

(
[0,T ],Rd

)
. Then

Φ
(
ũ(t)

)
� 1

T

∫ T

0
Φ

(
Tu′(r)

)
dr. (A.P-W.I)

REMARK 4. Another three consequences of [18, Lemma 2.3] that will be useful
in the sequel are the next.

1. ‖u‖′
W1LΦ

T
= |u|+‖u′‖LΦ defines an equivalent norm to ‖·‖W1LΦ on W 1LΦ

T ([0,T ],Rd) .

2. Every bounded sequence {un} in W 1LΦ([0,T ],Rd) has an uniformly convergent
subsequence.
3. If un ⇀ u (as usual ⇀ denotes weak convergence) in W 1LΦ([0,T ],Rd) then un

converges to u uniformly.

3. Proofs

LEMMA 2. Let F : [0,T ]×R
d → R

d be any potential. Then, the following state-
ments are equivalent:

1. F ∈ BO.



Differ. Equ. Appl. 14, No. 4 (2022), 533–551. 539

2. There exists b ∈ L1([0,T ],R+) such that

|F(t,x)−F(t,y)| � b(t)(1+ |x− y|). (BO1)

3. For every N -function Φ : R
d → [0,+∞) there exists b ∈ L1([0,T ],R+) such that

|F(t,x)−F(t,y)| � b(t)(1+ Φ(x− y)).

Proof. The equivalence between item 1 and item 2 was essentially proved in [32,
Lemma 3.33]. Since an N -function is bounded in the unit euclidean ball of R

d , item 3
implies trivially item 1. On the other hand, for any N -function Φ there exists a positive
constant C such that |x|� Φ(x)+C . From this fact, we obtain that item 2 implies item
3. �

REMARK 5. We note that if F satisfies (BO) and (A) and if we take y = 0 in
(BO1), we obtain that there exists a function b ∈ L1([0,T ],R+) such that

|F(t,x)| � b(t)(1+ |x|). (3.1)

Therefore, a function in the class BO presents at most linear growth at infinity.

LEMMA 3. Let Φ be an N -function such that Φ� ∈Δ2 . Suppose that F =F1+F2 ,
where F1 and F2 satisfy (C) and the following conditions:

H1) F1 ∈ BO.

H2) F2 satisfies condition (B).

Then, there exists a constant C > 0 such that

I(u) � 1
4

∫ T

0
Φ(u′)dt +

∫ T

0
F(t,u)dt−CΦ0(2u)−C. (3.2)

Proof. Firstly, we deal with F1 .
By H1) and Lemma 2, we have∫ T

0
F1(t,u)dt =

∫ T

0
F1(t,u)−F1(t,u)dt +

∫ T

0
F1(t,u)dt

� −
∫ T

0
(Φ0 (ũ)+1)b(t)dt +

∫ T

0
F1(t,u)dt.

(3.3)

Let k be given by k = min{1/T,1/(4‖b‖L1)} . Now, we use the fact that Φ0 ≺≺ Φ ,
the Anisotropic Poincaré Inequality (A.P-W.I) and (P1), and we get∫ T

0
Φ0

(
ũ
)
b(t)dt � ‖b‖L1

1
T

∫ T

0
Φ

(
kTu′(s)

)
ds+C(k)‖b‖L1

� ‖b‖L1k
∫ T

0
Φ

(
u′(s)

)
ds+C(k)‖b‖L1

� 1
4

∫ T

0
Φ

(
u′(s)

)
ds+C(k)‖b‖L1 .

(3.4)
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From (3.3) and (3.4), we obtain∫ T

0
F1(t,u)dt �

∫ T

0
F1

(
t,u

)
dt− 1

4

∫ T

0
Φ

(
u′

)
dt−C1, (3.5)

being C1 = ‖b‖L1(C(k)+1) a positive constant.
Let now k be any positive number such that k > 2max{T,1} , later we will specify

more conditions for k . Since Φ0 ≺≺ Φ there exists C(k) > 0 such that

Φ0(x) � Φ
( x

2k

)
+C(k), x ∈ R

d . (3.6)

Note that (B) implies that the map s → d
dsF2(t,x + sy) is bounded for s ∈ [0,1] for

a.e. t ∈ [0,T ] , therefore s → F2(t,x+ sy) is absolutely continuous for a.e. t ∈ [0,T ] .
Hence, using Young’s inequality, condition (B), the convexity of Φ0 , (P2), (3.6), and
the Anisotropic Poincaré Inequality (A.P-W.I), we obtain

J :=

∣∣∣∣∣
∫ T

0
F2(t,u)−F2(t,u)dt

∣∣∣∣∣
�

∫ T

0

∫ 1

0

∣∣∇xF2(t,u+ sũ)ũ
∣∣dsdt

� k
∫ T

0
d(t)

∫ 1

0

[
Φ�

(
d−1(t)∇xF2(t,u+ sũ)

)
+ Φ

(
ũ
k

)]
dsdt

� k
∫ T

0
d(t)

∫ 1

0

[
1
2

Φ0(2u)+
1
2

Φ0(2ũ)ds+ Φ
(

ũ
k

)
+1

]
dsdt

� k
∫ T

0
d(t)

∫ 1

0

[
Φ0(2u)+2Φ

(
ũ
k

)
+C(k)

]
dsdt

� C1Φ0(2u)+ kC2

∫ T

0
Φ

(
Tu′(s)

k

)
ds+C1,

where C2 = C2(‖d‖L1 ,T ) and C1 = C1(‖d‖L1 ,T,k) . Since Φ� ∈ Δ2 , we can choose
k large enough so that l = kT−1 satisfies (2.4) for r = 1

2 min{(C2T )−1,1} . Thus, we
have

J � C1Φ0(2u)+
1
2

∫ T

0
Φ

(
u′(s)

)
ds+C1. (3.7)

It is appropriate to say that the estimation (3.7) was derived in [18]. For completness,
we included the calculations here.

Then, from (3.5) and (3.7), there exists a constant C > 0 such that

I(u) =
∫ T

0
{Φ(u′)+F1(t,u)+ [F2(t,u)−F2(t,u)]+F2(t,u)}dt

� 1
4

∫ T

0
Φ(u′)dt +

∫ T

0
F(t,u)dt−CΦ0(2u)−C. �

(3.8)

As usual, denote by W−1LΦ the dual space of W 1LΦ . From Remark 4.5 and
Theorem 4.8 in [18], we recall that the action integral I is Gâteaux differentiable in the
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set E := {u ∈W 1LΦ|d(u′,L∞) < 1} and

〈I′(u),v〉 =
∫ T

0
∇Φ(u′) · v′ + ∇xF(t,u) · vdt =: 〈I′1(u),v〉+ 〈I′2(u),v〉,

where

I1(u) :=
∫ T

0
Φ(u)dt, I2(u) :=

∫ T

0
F(t,u)dt.

Moreover if Φ� ∈ Δ2 then, in virtue of Theorem 4.8(3) in [18] and Theorem 1.9 of [3],
we obtain that I is Fréchet differentiable in E and I ∈C1(E ,R) .

The next lemma is essentially proved following the same ideas as in [8, Lemma
4.1]. Nevertheless, we include a brief proof with some modifications which are neces-
sary for our context.

LEMMA 4. Suppose that vk,v ∈ E , k = 1, . . . with vk ⇀ v in W 1LΦ , I(vk) → c
and I′(vk) → 0 in W−1LΦ when k → ∞ . Then I(v) = c and I′(v) = 0 .

Proof. We note that I2 : W 1LΦ → R is sequentially continuous when W 1LΦ

is equipped with the weak topology. This fact is a consequence of the embedding
W 1LΦ (

[0,T ],Rd
)

↪→ C([0,T ],Rd) (item 4 of Lemma 2.3 in [18]) and the fact that
vk ⇀ v implies that vk → v in C([0,T ],Rd) (the last claim comes from [18, Corollary
2.6]).

From [5, Theorem 3.6], it is obtained that I is sequentially w.l.s.c., then

I(v) � c. (3.9)

Now, as I1 is convex we have

I1(vk)+
〈
I′1(vk),v− vk

〉
� I1(v). (3.10)

It is not hard to show that ∇xF(t,vk)→ ∇xF(t,v) in L1 (see the proof of Theorem
4.8 in [18]). Consequently,

I′2(vk) → I′2(v) in W−1LΦ.

Therefore, since I′(vk) → 0, we get

I′1(vk) →−I′2(v) in W−1LΦ. (3.11)

By (3.10) and using that if ξk → ξ in W−1LΦ and vk ⇀ v in W 1LΦ , then 〈ξk,vk〉 →
〈ξ ,v〉 , we obtain that

limsup
k→∞

I1(vk) � I1(v).

Then,

c = lim
k→∞

I(vk) � limsup
k→∞

I1(vk)+ lim
k→∞

I2(vk) � I1(v)+ I2(v) = I(v). (3.12)
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Thus, by (3.9) and (3.12), we conclude that I(v) = c .
Finally, we will see that I′(v) = 0. As I1 is convex and differentiable, I′1 is

monotonous, i.e. for any u ∈ W 1LΦ (
[0,T ],Rd

)
we have 〈I′1(vk)− I′1(u),vk −u〉 � 0.

Then, from (3.11), we obtain 〈−I′2(v)− I′1(u),v−u〉 � 0. Taking u = v− th with
h ∈ W 1LΦ and t > 0, we get 〈−I′2(v)− I′1(v− th),h〉 � 0. Now, let t → 0, we have
I′2(v)+ I′1(v) = 0, because h is arbitrary. �

Proof of Theorem 1. For simplicity, we set X = W 1LΦ
T , X+ = W̃ 1LΦ

T and X− the
subspace of X consisting of all constant functions. Given any R > 0, we write BR and
SR for the sets {u ∈ X− : |u| � R} and {u ∈ X− : |u| = R} , respectively.

From Lemma 3 applied to u ∈ X+ and condition (A) on F , there exist C,C1 > 0
such that

I(u) � 1
4

∫ T

0
Φ(u′)dt−C � C1‖u‖X −C � −C, (u ∈ X+), (3.13)

where the last inequality is a consequence of the fact that ‖u‖X is equivalent to ‖u′‖LΦ

on X+ (see Remark 4 item 1 and (2.7)).
The rest of the proof is divided into five steps.

Step 1. From (1.2) in H3), there exists a sequence of positive numbers {Rn} such
that

lim
n→∞

Rn = +∞ and lim
n→∞

sup
u∈SRn

I(u) = −∞. (3.14)

Therefore, we can assume that

−C > sup
u∈SRn

I(u),

where C is the constant in (3.13). Hence

sup
u∈SRn

I(u) < inf
u∈X+

I(u).

As usual in minimax theory, we define

cn := inf
γ∈Mn

max
x∈BRn

I(γ(x)), (3.15)

being
Mn =

{
γ ∈C(BRn ,X) : γ|SRn

= id|SRn

}
. (3.16)

Arguing as it has done in [17, Theorem 4.7] (see also [17, Corollary 4.3]), we
obtain that if {γk} ⊂ Sn satisfies

max
x∈BRn

I(γk(x)) → cn, (3.17)

there exists a sequence {vk} ⊂ X such that

I(vk) → cn, d(vk,γk(BRn)) → 0, ‖I′(vk)‖X� → 0, (3.18)
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as k → ∞ . We fix γk and vk any sequences with this properties.
We will not apply [17, Theorem 4.7] because our functional does not fulfill the

(PS)cn condition. So, we will use Lemma 4 instead; but, we need to prove that vk is a
bounded sequence in X .

Step 2. We claim that there exists a positive sequence {rm} such that

lim
m→∞

rm = +∞, and lim
m→∞

inf
u∈Hrm

I(u) = +∞, (3.19)

where Hrm =
{
u ∈ X | u ∈ Srm

}
.

Let u∈Hrm , then u = u+ ũ where |u|= rm and ũ ∈ X+ and let C be the constant
satisfying Lemma 3. Then, taking the infimum in (3.2), it follows that

inf
u∈Hrm

I(u) � −C+ inf
u∈Rd ,|u|=rm

∫ T

0
F(t,u)dt −Φ0(2u)C. (3.20)

Now, if (1.3) holds we obtain a sequence rm satisfying (3.19).

Step 3. We claim that there exists a constant Kn > 0 such that

|w| < Kn, for every w ∈ γ(BRn). (3.21)

From (3.15) and (3.18), we can suppose that

cn � max
x∈BRn

I(γk(x)) � cn +1. (3.22)

By (3.19), for each n there exists rm depending only on n such that rm > Rn and
infHrm

I(u) > cn + 1. This implies that γk(BRn)∩Hrm = /0 . Therefore γk(BRn) ⊂ {u ∈
X | |u|> rm}∪{u∈ X | |u|< rm} which are disjoint and open sets. As γk(SRn) = SRn ⊂
{u∈X | |u|< rm} and γk(BRn) is a connected set, we have γk(BRn)⊂{u∈X | |u|< rm} .
This inclusion proves the claim.

Step 4. We claim that there exists Ln such that ‖w‖W1LΦ � Ln for every w ∈
γk(BRn) .

By Lemma 3 and (3.22), for w ∈ γk(BRn) we have

1
4

∫ T

0
Φ(w′)dt � cn +1+ Φ0(2w)C−

∫ T

0
F(t,w)dt +C.

From condition (A) on F and (3.21), it is easy to see that the right hand side is bounded
for a constant depending on n . Using Remark 4 item 1, (3.21) and (2.7), we get the
statement.

Step 5. Let wk ∈ γk(BRn) be a function satisfying ‖vk −wk‖X � 1. Then, {vk}
is also bounded in X . Hence, {vk} contains a weakly convergent subsequence in X ,
also denoted by {vk} , to a certain function un and, by (3.18) and Lemma 4, we have
I(un) = cn and I′(un) = 0. Thus, using [18, Theorem 4.1], for each n large enough we
see that un is a solution of problem (PΦ) such that I(un) = cn .
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For each m we choose n such that 0 < rm � Rn . Then, we have that γk(BRn)∩
Hrm �= /0 . Effectively, suppose that γk(BRn) ⊂ {u ∈ X | |u| > rm}∪{u ∈ X | |u| < rm} ,
which are disjoint and open set. We have that γk(BRn)∩{u∈ X | |u|> rm} ⊃ SRn ∩{u∈
X | |u|> rm} �= /0 . On the other hand, we consider the continuous function f : BRn →X−

given by f (x) = γk(x) , which satisfies that f (x) = x in SRn . Then, using degree theory
(see [9, Theorem 4.1.1]) we get x ∈ BRn with f (x) = 0. Therefore γk(BRn)∩{u ∈ X |
|u| < rm} �= /0 . The above conclusions contradict the fact that γk(BRn) is a connected
set.

Consequently, we get

max
BRn

I(γk(x)) � inf
u∈Hrm

I(u). (3.23)

Now, by (3.19), (3.17) and (3.23), we obtain that cn → ∞ when n → ∞ , which com-
pletes the proof of item 1 of Theorem 1.

Step 6. Finally, let us prove item 2.
Reasoning as in Step 4, we deduce that

∫ T
0 F(t,u)dt −Φ0(2u)C is bounded on

Pm := {u ∈ X | |u| � rm} . Thus, from Lemma 3, we obtain that I is lower bounded on
Pm . Furthermore, using Lemma 3, Remark 4 and the fact |u| is bounded on Pm , we
get that I is coercive on Pm . Employing standard arguments of the direct method of
the variational calculus and the fact that Pm is weakly close, because it is convex and
closed in the norm, we obtain that I attains a minimum u�

m in Pm .
Taking n,m large enough, we can assume that 0 < Rn < rm and supu∈SRn

I(u) <

infHrm
I(u) . Then, from (3.14) and (3.19), we get

inf
u∈Pm

I(u) � sup
u∈SRn

I(u) < inf
Hrm

I(u). (3.24)

Therefore u�
m ∈ Int(Pn) . So, I′(u�

m) = 0 and u�
m is a solution of problem (PΦ).

Finally, from (3.24) and (3.14), we obtain I(u�
n) → −∞ as n → ∞ . Hence, the

second claim of Theorem 1 is proved. �

REMARK 6. It is possible to obtain a similar result to [15, Theorem 1.3] requiring
Φ ∈ Δ2 and a modification to the condition (B) on the potential F using Φ instead of
Φ0 . That is, F satisfies condition (B′) if there exists a function d ∈ L1([0,T ],R) with
d > 0 such that

Φ�

(
∇F
d(t)

)
� Φ(x)+1. (B′)

4. Examples

In this section we will apply Theorem 1 to concrete and simple examples of
systems of differential equations. We emphasize that these examples cannot be ap-
proached by considering equations with the p -Laplacian differential operator, i.e. with
Φ(x) = |x|p . It is required to use other types of N -functions. We will also exhibit nu-
merical methods that will allow us to visualize the distribution of the critical points of
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the associated functional. We also analyze numerically the character of these critical
points, that is if they are extreme or saddle points.

Before getting into details, we will make some comments of a more general nature.
Let Φ,Φ1 be anisotropic N -functions such that Φ1 ≺≺ Φ . We assume that there

exist an N -function Φ0 and a constant C > 0 such that

Φ�
(
∇Φ1(x)

)
� Φ0(x)+C and Φ0 ≺≺ Φ. (4.1)

Proceeding as in [15, Remark 1.2], we consider the potential

F2 = b(t)Φ1(x)sin
(
log(Φ1(x)+1)

)
, (4.2)

where b ∈ L1([0,T ],R+) .
Let us see that F2 satisfies condition (B) . We can assume that C � 1 and we take

d(t) = 2C(|b(t)|+1) . We note that ∇F2/d =C−1λ ∇Φ with λ ∈ R and |λ |� 1. From
property (P2), we obtain

Φ�

(
∇F2

d

)
� Φ�

(
C−1λ ∇Φ1(x)

)
� C−1Φ�

(
∇Φ1(x)

)
� Φ0(x)+1,

and consequently condition (B) holds.

4.1. (p1, p2)-Laplacian type operators

We define Φp1,p2 : R
d1 ×R

d2 → R+ , where d = d1 +d2 by

Φp1,p2(x1,x2) =
|x1|p1

p1
+

|x2|p2

p2
.

We take 1 < ri < pi , with i = 1,2, Φ = Φp1,p2 and Φ1 = Φr1,r2 . It is easy to see
that (4.1) holds for any function Φ0 = Φs1,s2 with ri < si < pi , i = 1,2. We consider
F2 as in (4.2) and let F1 be any function satisfying (BO). Then, as a consequence of
(3.1), we obtain that

lim
|x|→∞

1
Φ0(2x)

∫ T

0
F1(t,x)dt = 0.

The inequality (1.3) is satisfied because if we take xm ∈ R
d such that log

(
Φ1(xm)+

1
)

= π
2 +2πm with m ∈ N , then

lim
m→∞

1
Φ0(2xm)

[∫ T

0
F1(t,xm)dt +

∫ T

0
F2(t,xm) dt

]
= lim

m→∞

CΦ1(xm)
Φ0(2xm)

= +∞,

as Φ0 ≺≺ Φ1 .
H3) holds because if we choose xm ∈R

d such that log
(
Φ1(xm)+1

)
=− π

2 +2πm
with m ∈ N , then from (3.1)∫ T

0

(
F1(t,xm)+F2(t,xm)

)
dt � C(1+Rm−Φ1(xm)) →−∞.
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4.2. p -Laplacian differential operators

We expose an example where we show that our main theorem leads to an improve-
ment of [15, Theorem 1.1] yet when the p -Laplacian differential operator is involved.
We point out that in the case of Φ(x) = |x|p/p , for 1 < p < ∞ . For example, we take
F : [0,T ]×R → R the potential given by

F(t,x) = b(t)Φ1(x)sin
(
log(Φ1(x)+1)

)
,

where

Φ1(x) :=
∫ |x|

0

sp−1

log(s2 + e)
ds,

b ∈ L1 ∈ L1([0,T ],R+) and
∫ T
0 b(t)dt > 0.

We consider the function Q : R → [0,+∞) given by

Q(u) =
|x|p

q
[
log(|x|2 + e)

]q ,

with q = p/(p−1) . A direct computation shows that

lim
|x|→∞

x2Q′′(x)
Q(x)

= p(p−1).

On the one hand, there exists r0 > 0 such that Q′′(x) > 0 if |x| > r0 , i.e. Q is convex
for |x| � r0 . On the other hand, it is easy to see that

lim
|x|→∞

Q(x)
|x| = +∞.

Then, in virtue of [14, Theorem 3.3], we can find an N -function Φ0 and r0 � 0, such
that Φ0(x) = Q(x) , when |x|� r0 . For any k > 0, there exists r0 large enough such that
1/q[log(|x|2 + e)q < kp/p , |x| > r0 . Taking C(k) = sup|x|�r0 Q(x) we obtain Q(x) ≺≺
Φ(x) = |x|p/p .

In order to establish condition (B), we note that Φ� (Φ′
1(x)) = Q(x) . As in the

previous paragraph, there exists C > 0 such that Q(x) � Φ0(x)+C . Therefore, we get
(4.1) and then (B) holds.

On the other hand, since Φ1 is an increasing function in [0,+∞) with limx→+∞ Φ1(x)
= +∞ , we can find rn such that rn → +∞ and sin

(
log(Φ1(xn) + 1)

)
= 1. So, if

|xn| = rn , we have

limsup
r→∞

inf
|x|=r

1
Φ0(2x)

∫ T

0
F(t,x)dt �

∫ T

0
b(t)dt lim

n→∞

1
Φ0(2xn)

∫ rn

0

sp−1

log(s2 + e)
ds

�
∫ T

0
b(t)dt lim

n→∞

∫ rn

rn
2

sp−1

log(s2 + e)
ds

�
∫ T

0
b(t)dt lim

n→∞

rn

2

( rn
2

)p−1

log(r2
n/2+ e)

= +∞.
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Therefore, (1.3) holds.
If we take Rn → +∞ and |xn| = Rn with sin

(
log(Φ1(xn)+1)

)
= −1, we deduce

liminf
r→∞

sup
|x|=r

∫ T

0
F(t,x)dt � −

∫ T

0
b(t)dt lim

n→∞

∫ Rn

0

sp−1

log(s2 + e)
ds = −∞.

In conclusion, the potential F satisfies the hypothesis of Theorem 1 when Φ(x) =
|x|p/p .

Nevertheless, [15, Theorem 1.1] fails to be applied to this example. We recall that
in [15, Theorem 1.1] it is assumed that F = F1 +F2 , where F1 is a (λ ,μ)-subconvex
and there exist g1,g2 ∈ L1([0,T ],R+) and α ∈ [0, p−1) such that

|∇F2| � g1(t)|x|α +g2(t).

It is easy to see that this last inequality implies the existence of β ∈ [0, p) (in fact,
β = α +1) and c ∈ L1([0,T ],R) such that

|F2(t,x)| � c(t)
(|x|β +1

)
. (4.3)

In virtue of [15, Equation (2.1)], we know that F1 satisfies (4.3) and so does F . How-
ever, the function F does not satisfy (4.3), because if we choose rn and xn as before
and we assume (4.3), we obtain

|F(t,xn)| = |b(t)|
∫ rn

0

sp−1

log(s2 + e)
ds � c(t)

(|x|β +1
)
.

Dividing by |x|β , taking x → +∞ , choosing t ∈ [0,T ] with b(t) > 0, we find a contra-
diction.

4.3. Sum of p -Laplacian operators

The problem we are going to consider is{
u′′(1+2|u′|) = ∇F(t,u), for a.e. t ∈ [0,2π ],
u(0) = u(2π), u′(0) = u′(2π),

(4.4)

where F : [0,2π ]×R→ R is given by

F = F2 +F1 := −(1+ x2)α sin(1+ x2)γ + xcost, α,γ > 0.

Note that the problem (4.4) is the boundary value problem (PΦ) with

Φ(y) =
|y|2
2

+
|y|3
3

.

Trivially, we have F1 ∈ BO . For F2 , we compute its gradient

DxF2(t,x) = −2x
(
x2 +1

)α−1
[

α sin
(
x2 +1

)γ + γ
(
x2 +1

)γ
cos

(
x2 +1

)γ
]
.
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Observe that since Φ3(y) := |y|3/3 � Φ(y) , then Φ�(y) � Φ�
3(y) = 2

3 |y|
3
2 . From this,

it is not hard to get that F2 satisfies (B) with Φ0(y) = |y|δ , with δ := 3
2(2α +2γ −1) .

The condition Φ0 ≺≺ Φ is fulfilled when 2(α + γ) < 3.
Taking Rn with (1+R2

n)
γ = π/2+2nπ we see that (1.2) holds. On the other hand,

when (1+ r2
n)

γ = 3π/2+2nπ , we obtain

limsup
r→+∞

inf
x∈Rd ,|x|=r

1
Φ0(2x)

∫ T

0
F(t,x)dt � lim

n→∞
C

(
1+ r2

n

)α
r−δ
n .

This inequality shows that (1.3) is satisfied if α < 3/2−3γ . Finally, by Theorem 1, we
have that if α < 3/2− 3γ then problem (4.4) has infinitely many solutions which are
critical points of the action integral

I(u) :=
∫ 2π

0

[ |u′|2
2

+
|u′|3
3

− (1+u2)α sin
(
1+u2)γ +ucost

]
dt.

Next, we will explore problem (4.4) numerically in order to visualize where the
periodic solutions are located and what type of critical point they are associated with.
The programming was developed in the python language, and the numpy, scipy and
matplotlib libraries were used. These libraries implement complex mathematical algo-
rithms and graphic display capabilities (see [11, 13, 12]). The program code to repro-
duce the experiences that we will develop below can be found in the git hub repository
https://github.com/fdmazzone/Soluciones_Periodicas/tree/master.

We will find periodic solutions by means of the shooting method ( [4]). Basically,
this method consists in looking for fixed points of the Poincaré map. Previously, we
transform the Euler-Lagrange equation (4.4) in its corresponding first order Hamilto-
nian system (see [17]). The Hamiltonian function H : [0,T ]×R

2 →R associated to the
Lagrangian L = Φ+F is given by H(t,(u, p)) = Φ�(p)−F(t,u) . The corresponding
Hamiltonian system is {

u′(t) = DpH = ψ(p(t))
p′(t) = −DuH = DxF(t,u(t)),

(4.5)

where ψ =
(
Φ�

)′ = (
Φ′)−1 = 1/2

(
−1+

√
1+4|p|)

)
sign(p) . If u, p solve (4.5) and

u(0) = u(2π) , p(0) = p(2π) then u solves (4.4) (see [17]).
We recall that the Poincaré map P : R

2 → R
2 is defined at a point X = (u0, p0) of

the following way. We solve the initial value problem given by the equations (4.5) and
initial conditions u(0) = u0 and p(0) = p0 and we write P(u0, p0) = (u(2π), p(2π)) .
Then, since F(t,x) is 2π -periodic with respect to t , the existence and uniqueness the-
orem implies that if P(X) = X then u(t), p(t) are 2π -periodic. The boundary value
problem is equivalent to find fixed points of Poincaré map.

In order to obtain a map showing the possible location of fixed points of P , we
evaluate the function E(X) = ‖X −P(X)‖2 in a grid of points in the phase space (u, p)
and we plot a color map showing the value of E . We fix the values α = 1/2 and
γ = 1/3.5, which satisfy the condition α < 3/2− 3γ . The analyzed region was the

https://github.com/fdmazzone/Soluciones_Periodicas/tree/master
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Figure 1: Color map for the function E(X) = ‖X −P(X)‖2 .

rectangle R := [−50,50]× [−5,5] and the grid was generated with steps Δu = Δp =
0.1. The result is shown in Figure 1.

Once we identify regions where we could find the fixed points, we use the function
dual annealing inside the scipy library which performs global optimization method
of the same name (see [29]) to find where the solutions of P(X)= X are exactly located.
We found 7 initial conditions in R (see Figure 1).

Now, with the aim of studying the type of the critical points that we found, we
introduce the second variations

δ 2I(u,η) :=
∫ T

0
Φ′′(u′)(η ′)2 +DuuF(t,u)η2 dt.

It is well known that a necessary condition for a critical point u∈W 1LΦ
T be a minimum

is that δ 2I(u,η) � 0 for every η ∈W 1LΦ
T (see [10]). With the purpose of verifying this

condition numerically, we discretize the Banach space W 1LΦ
T considering a finite di-

mensional subspace Mn of W 1LΦ
T generated by the Fourier basis {e0(t),e1(t), . . . ,e2n(t)}

:= {1,cost,sin t, . . . ,cosnt,sinnt} . The condition δ 2I(u,η) � 0 for every η ∈ Mn is
equivalent to requiring that the following matrix be positive semidefinite

Ai j =
∫ T

0
Φ′′(u′)e′ie

′
j +DuuF(t,u)eie j dt. i, j = 0, . . .2n.

Since A is symmetric, the positivity of A is equivalent to that all eigenvalues of A be
positive. We compute the eigenvalues and eigenvectors of A up to order n = 20. The
results are presented in the table 1. Of course, the conclusions in the last column are
mere conjectures made from the numerical evidence. It is important to point out that,
in the case of saddle points all eigenvalues are positive except an eigenvalue which is
near the vector (1,0, . . . ,0) ∈ R

2n+1 . We conjecture that in each saddle point we can
decompose the space W 1LΦ

T in direct sum of orthogonal subspaces, i.e W 1LΦ
T = L⊕Y ,

where the one dimensional subspace L is close to the subspace of constant functions
and L ⊥ Y . The action integral is negative-definite in L and positive-definite in Y .
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Point Coordinates I Type
S1 (−1.064,0.000) −7.578 Saddle
S2 (−4.467,0.000) −21.054 local minimum
S3 (3.443,0.000) −21.054 local minimum
S4 (−17.842,0.000) 99.234 Saddle
S5 (16.068,0.000) 99.234 Saddle
S6 (−39.117,0.000) −237.978 local minimum
S7 (38.093,0.000) −237.978 local minimum

Table 1: Solutions equation (4.4) in R = [−50,50]× [−5,5] .
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