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EXISTENCE AND NONEXISTENCE OF SOLUTIONS OF

THIN–FILM EQUATIONS WITH VARIABLE EXPONENT SPACES

N. LAKSHMIPRIYA, S. GNANAVEL, L. SHANGERGANESH AND N. NYAMORADI ∗

(Communicated by P. Souplet)

Abstract. The paper aims at presenting a thin film problem involving variable exponent sources
in a bounded domain. For the problem, we give attention to the existence and nonexistence of
solutions under subcritical initial energy. We determine the global existence of solutions, expo-
nential decay and blow-up of solutions in finite time with specific conditions for the proposed
model.

1. Introduction

The fourth order reaction-diffusion equations take an inevitable space in the study
of evolution equations. It describes a great number of physical phenomena like thin
film theory, lubrication theory, phase transition and many other fields. This paper takes
up a fourth order parabolic problem with nonlocal source and the Neumann boundary
condition to describe the evolution of epitaxial growth of nanoscale thin films. Thin
films are formed on a substrate by chemical vapor decomposition, thermal evaporation
or the evaporation of the source materials. The study of thin films is of great importance
since thin film technology has an extensive range of applications including electronics,
photovoltaics, membrane technology and biosystems. Numerous models of thin films
are connected to the developments in the semiconductor industry and for more details,
we refer the interested readers to [4, 15, 19, 23, 28] and the references therein.

Briefly we discuss the works available on thin film equations with nonlocal sources
and these works are closely related to the paper. The fourth-order degenerate diffusion
equation, in one space dimension for thin viscous films considered in [2] and regu-
larity and long-time behavior of weak solutions studied under some conditions. Long
wave unstable thin film equations considered and the existence of a weak solution that
becomes singular in finite time established in [3]. Blow-up and global existence of so-
lutions for the higher-order thin films equation studied in [10] for various conditions.
Cao and Liu studied a thin film equation with nonlocal sources and build results on
global existence and non-extinction of global solutions for negative initial energy in
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[6]. The problem was generalized in [13] to a p -biharmonic problem with the same
nonlocal source and the authors further studied the extinction and blow up behaviour
of solutions under certain assumptions on the initial data. Unboundedness of solutions
of a thin film equation by taking the nonlocal term as |v|p−1v− −

∫
Ω |v|p−1vdx is stud-

ied in [23], and the authors proved results on global existence and nonexistence for
sign-changing solutions. The same problem is studied for positive initial energy and
blow-up results are obtained in [30]. The problem for supercritical energy case was
studied and conditions for boundedness of solutions were obtained in [24]. Global ex-
istence as well as unboundedness of solutions in finite time, under low initial energy
are studied in [25]. Introducing a p -Laplace term, the existence, uniqueness and blow-
up behaviour of solutions under different initial energy conditions are obtained in [17].
Bounds for the blow-up time are obtained in [9] for J(v0) < d, where J(v0) is the initial
energy and d is the mountain pass level. Further, the authors have analyzed the case
J(v0) > d and arrived at results on global boundedness of solutions. For the thin film
problem in higher dimensions, existence of weak solutions and unboundedness were
established in [21]. Necessary and sufficient conditions for the blow-up of solutions in
finite time for the thin film equation are studied in [29]. Upper and lower bounds for
blow-up time under low initial energy and the life span of solutions are also established.
By considering all the above papers as motivation, this work studies a fourth order thin
film problem in variable exponent spaces.

We analyze the existence and the unboundedness of solutions of the nonlocal thin
film equation with variable exponents as follows:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

vt + Δ2v = |v|k(x)−1v−−
∫

Ω
|v|k(x)−1vdx, (x, t) ∈ Ω× (0,∞)

∂v
∂η = ∂ (Δv)

∂η = 0, (x,t) ∈ ∂Ω× [0,∞)

v(x,0) = v0(x), x ∈ Ω

(1.1)

where Ω ⊂ R
n(n > 2) is a bounded domain with smooth boundary ∂Ω and η is the

unit external normal direction on ∂Ω . Also,−
∫

Ω
vdx =

1
|Ω|

∫
Ω

vdx, v0 ∈ H2(Ω) with∫
Ω

v0dx = 0,v0 �≡ 0. Here H2(Ω) is a Sobolev space of order two. In (1.1) v is the

height of film in the epitaxial growth. Here Δ2v is the capillarity driven surface diffu-
sion. The variable exponent k(x) is log-H ö lder continuous and satisfies the following
hypotheses

a1) 1 < k− � k(x) � k+ < ∞,

a2) ess inf
x∈Ω

(2∗ − (k(x)+1)) > 0 where 2∗ =
2n

n−4
.

The problem (1.1) considered is a direct generalization of variable exponent spaces to
the model studied in [23]. As far as we know, there have been very few works on the
blow up of sign changing solutions of thin film equations. And to our knowledge, there
are no paper available on a thin film equation with variable exponent nonlocal source.
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We use the potential well method to establish the main results of the work. The method
was first studied by Sattinger and Payne in [20] for initial boundary value problems of
wave equations. Further, it was extended by many researchers for various equations,
see, for example [7, 11, 12, 14, 16, 18, 22, 26, 27].

The paper is structured along the following lines. In the second section, we call up
some essential preliminaries. We give the definition of weak solutions and prove some
significant lemmas in the third section. Sections 4 and 5, discuss subcritical initial
energy cases and establish the life span of solutions under distinct conditions.

2. Preliminaries

Before we start the main sections, we put forward some of the basic results of the
generalized Lebesgue and Sobolev spaces. For further details, one can refer [8]. Let Ω
be a bounded domain in R

n.
Assume that k,k1,k2 : Ω −→ [1,∞) are measurable functions.

DEFINITION 1. [8] We introduce the variable exponent Lebesgue space with ex-
ponent k(x) ,

Lk(x)(Ω) :=
{
v : Ω −→ R|ρk(x)(λv) < ∞, for some λ > 0

}
,

where,

ρk(x)(v) =
∫

Ω
|v(x)|k(x)dx.

REMARK 1. [8] The variable exponent space Lk(x)(Ω) with the norm

‖v‖k(x) = in f
{

λ > 0|ρk(x)

( v
λ

)
� 1

}
, (2.1)

becomes a Banach space. (2.1) is known as the Luxembourg norm.
k− := mink(x) and k+ := maxk(x) on Ω. Then we have,

min

{
‖v‖k−

k(x),‖v‖k+
k(x)} �

∫
Ω
|v|k(x)dx � max{‖v‖k−

k(x),‖v‖k+
k(x)

}

Further, Lk′(x)(Ω) denote the dual space of Lk(x)(Ω) , 1
k(x) + 1

k′(x) = 1.

DEFINITION 2. [8] The Sobolev space with variable exponents is defined as

Wm,k(x)(Ω) =
{

v ∈ Lk(x)(Ω)|Dβ v ∈ Lk(x)(Ω), |β | � m
}

,

where m � 1, Dβ v is the β th weak partial derivative, |β |=
n

∑
i=1

βi , with β = (β1,β2, . . . ,βn)

a multi-index.
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REMARK 2. [8] Wm,k(x)(Ω) equippedwith the norm ‖v‖m,k(x) := ∑|β |�m ‖Dβ v‖k(x)

is a Banach space. Moreover, Wm,k(x)
0 (Ω) denotes the closure of C∞

0 (Ω) in Wm,k(x)(Ω) .

DEFINITION 3. [5] Assume that Y is a Banach space. Then La(0,T,Y ) is the
collection of functions v : [0,T ] −→ Y satisfying

‖v‖La(0,T ;Y ) =
(∫ T

0
‖v(t)‖a

Ydt

) 1
a

< ∞, if 1 � a < ∞,

‖v‖L∞(0,T ;Y ) = esssup
0�t�T

‖v(t)‖Y < ∞, if a = ∞.

Here for a∈ [1,∞) the space La(0,T ;Y ) is a Banach space with norm defined as before.

LEMMA 1. [8] If the variable exponents k1(x) & k2(x) satisfy k1(x) � k2(x) a.e.
in Ω , then the embedding Lk2(x)(Ω) ↪→ Lk1(x)(Ω) is continuous.

Next, we introduce the Sobolev embedding theorem for variable exponent spaces.

THEOREM 1. [8] Assume k1(x) ∈C(Ω),k2 : Ω −→ [1,∞) be a measurable func-
tion satisfying

ess inf
x∈Ω

(k∗1(x)− k2(x)) > 0, where k∗1 =

{
nk1(x)

n−mk1(x)
, if mk1(x) < n,

∞, if mk1(x) � n.

Then the Sobolev embedding Wm,k1(x)(Ω) ↪→ Lk2(x)(Ω) is continuous and compact.

3. Weak solutions

In this section, we give the definition of local weak solution to the considered
variable exponents thin film equation, and we introduce the energy functionals and
mountain-pass energy level. Then, the global existence and blow-up of solution can be
considered naturally in sections 4 and 5. Further, throughout the work, we use C as a
generic constant instead of different constants.

Now, define a space

W (Ω) :=
{

v ∈ H2(Ω)|
∫

Ω
vdx = 0

}
, (3.1)

with the norm ‖Δv‖2 . Here W (Ω) is a Banach space and H2(Ω) is a Sobolev space of
order 2.

DEFINITION 4. Suppose that v(x,0)= v0(x)∈W (Ω) then v(x,t)∈L∞(0,T ;W (Ω))
with vt ∈ L2(0,T ;L2(Ω)) is called a weak solution of the problem (1.1) if it satisfies,∫ t

0

∫
Ω

[
vtφ + ΔvΔφ −

(
|v|k(x)−1v− −

∫
Ω
|v|k(x)−1v

)
φ
]
dxds = 0, (3.2)

for all φ ∈ L2(0,T ;H2(Ω)) satisfying ∂φ
∂η |∂Ω = 0.
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We can deduce the following result from (3.2) by taking φ = vt and using integra-
tion by parts, ∫ t

0
‖v′‖2

2ds+E(v) = E(v0), t ∈ (0,T ). (3.3)

We now define the energy and the Nehari functionals in the following form:

E(v) =
1
2
‖Δv‖2

2−
∫

Ω

|v|k(x)+1

k(x)+1
dx, (3.4)

N(v) = ‖Δv‖2
2−

∫
Ω
|v|k(x)+1dx. (3.5)

We, also define

N = {v ∈W (Ω);N(v) = 0}\{0}, (3.6)

and

d = inf
N

E(v). (3.7)

Now, for a fixed v ∈ H2 consider the function e : δ 
−→ E(δv) for δ ∈ (0,∞). Then

e(δ ) =
δ 2

2
‖Δv‖2

2−
∫

Ω
δ k(x)+1 |v|k(x)+1

k(x)+1
dx. (3.8)

LEMMA 2. Let k(x) satisfy the hypotheses (a1) and (a2) for a.e. x ∈ Ω and
v ∈ H2(Ω)\{0}. Then e(δ ) has the following properties

i) lim
δ→0+

e(δ ) = 0 and lim
δ→∞

e(δ ) = −∞.

ii) In (0,∞) there exists a δ ∗ = δ ∗(v) > 0, such that e(δ ) attains its maximum at
δ ∗. Furthermore, N(δv) > 0 for 0 < δ < δ ∗ , N(δv) < 0 for δ > δ ∗ and N(δ ∗v) = 0.

Proof. From (3.8), we get

e(δ ) � δ 2

2
‖Δv‖2

2−min{δ k−+1,δ k++1}
∫

Ω

|v|k(x)+1

k(x)+1
dx,

e(δ ) � δ 2

2
‖Δv‖2

2−max{δ k−+1,δ k++1}
∫

Ω

|v|k(x)+1

k(x)+1
dx.

These two inequalities give (i). By direct calculation, we get

e′(δ ) = δ‖Δv‖2
2−

∫
Ω

δ k(x)|v|k(x)+1dx. (3.9)
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Since for small δ > 0, e(δ ) > 0 and e is continuous on [0,∞) , differentiable on (0,∞).
We combine (i) and these facts to say e attains maximum at some δ ∗ > 0. Then by
Fermat’s theorem,

e′(δ ∗) = δ ∗‖Δv‖2
2−

∫
Ω
(δ ∗)k(x)|v|k(x)+1dx = 0. (3.10)

Since we have N(δv) = δe′(δ ), we obtain N(δ ∗v) = 0. Also, we can deduce that e(δ )
is increasing on (0,δ ∗) and decreasing on (δ ∗,∞). Hence, N(δv) > 0 for 0 < δ < δ ∗ ,
N(δv) < 0 for δ > δ ∗ . �

LEMMA 3. Let the hypotheses (a1) and (a2) hold. Then

d = inf
v∈N

E(v) > 0. (3.11)

Proof. We want to show that there exists v∈N such that E(v)= d. Let {vk}∞
k=1 ⊂

N be a minimizing sequence of E .

lim
k→∞

E(vk) = d. (3.12)

We can see |vk| is also a minimizing sequence of E by equation (3.4). So, let vk � 0
a.e. in Ω for all k ∈ N. We have

E(v) =
1
2
N(v)+

∫
Ω

(
1
2
− 1

k(x)+1

)
|v|k(x)+1dx. (3.13)

Since {E(vk)}∞
k=1 is bounded and N(vk) = 0, we get {vk}∞

k=1 is bounded in Lk(x)+1(Ω)
and in H2(Ω). The compact embedding H2(Ω) ↪→ Lk(x)+1(Ω) gives, there exists a
function v and a subsequence of {vk}∞

k=1 , still we denote it as {vk} , such that

vk → v weakly in H2(Ω),

vk → v strongly in Lk(x)+1(Ω).

Hence
vk → v a.e. in Ω.

Thus, v � 0 a.e. in Ω . Now, by the dominated convergence theorem, we get∫
Ω
|v|k(x)+1dx = lim

k→∞

∫
Ω
|vk|k(x)+1dx. (3.14)

By the weak lower semicontinuity of modular and ‖.‖2 , we obtain

E(v) � liminf
k→∞

E(vk) = d, (3.15)

N(v) � liminf
k→∞

N(vk) = 0. (3.16)
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We want to prove that N(v) = 0 to say v ∈ N . If N(v) < 0, then by Lemma 2 there
exists δ ∗ such that 0 < δ ∗ < 1 and N(δ ∗v) = 0.

d � E(δ ∗v) =
∫

Ω

(
1
2
− 1

k(x)+1

)
(δ ∗)k(x)+1|v|k(x)+1dx

� (δ ∗)k−+1
∫

Ω

(
1
2
− 1

k(x)+1

)
|v|k(x)+1dx

� (δ ∗)k−+1 liminf
k→∞

∫
Ω

(
1
2
− 1

k(x)+1

)
|vk|k(x)+1dx

= (δ ∗)k−+1d.

Since δ ∗ < 1, this is a contradiction. Thus N(v) = 0 and hence v ∈ N .

Now, we prove d > 0.

We know that N(v) = 0 for v ∈ N , which gives ‖Δv‖2
2 =

∫
Ω
|v|k(x)+1dx. Firstly,

consider the case when ‖Δv‖2 � 1, then by making use of Sobolev embedding we get

‖Δv‖2
2 =

∫
Ω
|v|k(x)+1dx

� max
{
‖v‖k−+1

k(x)+1,‖v‖
k++1
k(x)+1

}

� max
{

Sk−+1‖Δv‖k−+1
2 ,Sk++1‖Δv‖k++1

2

}

� max
{

Sk−+1,Sk++1
}
‖Δv‖k−+1

2

= A‖Δv‖k−+1
2 ,

where S is the embedding constant and A = max
{
Sk−+1,Sk++1

}
. Therefore, we get

‖Δv‖2 �
(

1
A

) 1
k−−1

. (3.17)

Similarly, when ‖Δv‖2 � 1, we get

‖Δv‖2 �
(

1
A

) 1
k+−1

. (3.18)
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Now, equations (3.17) and (3.18) together give

E(v) � 1
2
‖Δv‖2

2−
1

k− +1

∫
Ω
|v|k(x)+1dx

=
(

1
2
− 1

k− +1

)
‖Δv‖2

2, since N(v) = 0 for v ∈ N

�
(

1
2
− 1

k− +1

)
min

{(
1
A

) 1
k−−1

,

(
1
A

) 1
k+−1

}
> 0.

Hence, we can conclude d > 0. �

4. Upper bound of blow-up time for negative energy

THEOREM 2. Let (a1) , (a2) hold and assume that v0 ∈W (Ω) satisfies E(v0) �
0. Then there does not exist global weak solution to the problem (1.1). Further, an
upper bound for the existence time of solutions is given by

T � � 2[‖v0‖2
2]

1−k−
2

(k−−1)C
· (4.1)

Proof. We first consider the function g : [0,T ) −→ R
+ as

g(t) = ‖v‖2
2. (4.2)

Subsequently, we get

g′(t) = 2
∫

Ω
vvtdx

= 2
∫

Ω
v

[
−Δ2v+ |v|k(x)−1v−−

∫
Ω
|v|k(x)−1vdy

]
dx

= −2
∫

Ω
vΔ(Δv)dx+2

∫
Ω
|v|k(x)+1dx

= −2
∫

Ω
ΔvΔvdx−2

∫
∂Ω

v
∂Δv
∂η

ds+2
∫

∂Ω
Δv

∂v
∂η

ds+2
∫

Ω
|v|k(x)+1dx

= −2

(
‖Δv‖2

2−
∫

Ω
|v|k(x)+1dx

)
.

We acquire from (3.4),

g′(t) = −4E(v)+2
∫

Ω
|v|k(x)+1dx−4

∫
Ω

|v|k(x)+1

k(x)+1
dx

� −4E(v)+
(

2− 4
k− +1

)∫
Ω
|v|k(x)+1dx,
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where
(
2− 4

k−+1

)
> 0. From (3.3), above inequality can be written as

g′(t) = 4
∫ t

0
‖v′(s)‖2

2ds−4E(v0)+
(

2− 4
k− +1

)∫
Ω
|v|k(x)+1dx.

By our assumption E(v0) � 0. Hence

g′(t) � 4
∫ t

0
‖v′(s)‖2

2ds+
(

2− 4
k− +1

)∫
Ω
|v|k(x)+1dx. (4.3)

Now, define the sets Ω− = {x ∈ Ω : |v|< 1} and Ω+ = {x ∈ Ω : |v|� 1} . Then, we get∫
Ω
|v|k(x)+1dx �

∫
Ω−

|v|k++1dx+
∫

Ω+
|v|k−+1dx

� c1

(∫
Ω+

|v|2dx

) k−+1
2

+ c2

(∫
Ω−

|v|2dx

) k++1
2

,

where c1 , c2 > 0 are constants. The above inequality together with (4.3) gives

g′(t) �
(

2− 4
k− +1

)⎡
⎣c1

(∫
Ω+

|v|2dx

) k−+1
2

+ c2

(∫
Ω−

|v|2dx

) k++1
2

⎤
⎦ , (4.4)

this implies

[
g′(t)

] 2
k−+1 � c

2
k−+1

3

∫
Ω+

|v|2dx,

[
g′(t)

] 2
k++1 � c

2
k++1

4

∫
Ω−

|v|2dx,

where c3 = c1

(
2− 4

k−+1

)
and c4 = c2

(
2− 4

k−+1

)
. Assume c5 = min

{
c

2
k−+1

3 ,c
2

k++1

4

}
,

then, we get [
g′(t)

] 2
k−+1 +

[
g′(t)

] 2
k++1 � c5

∫
Ω
|v|2dx = c5g(t). (4.5)

As a consequence of equation (4.3), we get

g(t) = g(0)+
∫ t

0
g′(τ)dτ � 0. (4.6)

Now, (4.5) and (4.6) together yields

[
g′(t)

] 2
k−+1 +

[
g′(t)

] 2
k++1 � c5g(0). (4.7)

Hence, we can see that either

g′(t) � c6

(
g(0)
2

) k−+1
2

or g′(t) � c7

(
g(0)
2

) k++1
2

, (4.8)
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with c6 =
( c5

2

) k−+1
2 and c7 =

( c5
2

) k++1
2 .

We choose c8 = min

{
c6

(
g(0)
2

) k−+1
2

,c7

(
g(0)
2

) k++1
2

}
, and since 2

k−+1 � 2
k++1 we

get [
g′(t)

] 2
k−+1

[
1+

(
g′(t)

)( 2
k++1− 2

k−+1

)]
� c5g(t).

Hence

g′(t) �

⎡
⎢⎣ c5g(t)

1+ c

(
2

k++1− 2
k−+1

)
8

⎤
⎥⎦

k−+1
2

. (4.9)

Here, choosing C =

⎡
⎢⎣ c5

1+c

(
2

k++1−
2

k−+1

)
8

⎤
⎥⎦

k−+1
2

and integrating (4.9) on (0, t) , will give

g(t) � 1[
g(0)

1−k−
2 +

(
1−k−

2

)
Ct

] 2
k−−1

,

this implies, the solution blows up at finite time T � . Furthermore an upper bound for
the blow up time is given by

T � � 2g(0)
1−k−

2

(k−−1)C
· � (4.10)

5. Existence and non-existence of global solutions for sub mountain-pass energy

This section provides results on global boundedness and unboundedness of solu-
tions, depending on the sign of N(v0). We are going to obtain the results using the same
method as in [20]. Now, we define the stable set U and unstable set V as follows

U = {v ∈W (Ω) : N(v) > 0,E(v) < d}∪{0}, (5.1)

V = {v ∈W (Ω) : N(v) < 0,E(v) < d}. (5.2)

LEMMA 4. [18] Let the conditions (a1) , (a2) are satisfied and v0 ∈W (Ω) . As-
sume that v(x, t) be a weak solution to the problem (1.1). Then

1) for v0 ∈ U , v(x,t) ∈ U for t ∈ [0,T ) .
2) for v0 ∈ V , v(x,t) ∈ V for t ∈ [0,T ) .

LEMMA 5. [18] Let J : R
+ −→ R

+ be a non increasing function. Assume that
there exist constants σ � 0 and C > 0 such that∫ ∞

t
J1+σ (s)ds � 1

C
Jσ (0)J(t),∀t � 0.
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If σ = 0, we have
J(t) � J(0)e1−Ct ,∀t � 0.

5.1. Existence and behaviour of global solutions

THEOREM 3. Assume that (a1) , (a2) are satisfied. If v0 ∈ U then the problem
(1.1) admits at least a weak solution v ∈ L∞(0,∞;W (Ω)) , whose energy decays expo-
nentially.

Proof. Consider the eigenvalue problem⎧⎪⎨
⎪⎩

Δ2φi = λiφi, x ∈ Ω,

∂φi

∂η
=

∂Δφi

∂η
= 0, x ∈ ∂Ω.

(5.3)

Let {φi}∞
l=1 be the sequence of eigenfunctions of (5.3), which form an orthogonal and

orthonormal basis of H2(Ω) and L2(Ω) respectively. Here, we seek approximation
solutions of (1.1) as sequence {vn} in finite dimensional space defined by

vn(x,t) =
n

∑
l=1

an,l(t)φl(x),

satisfying ∫
Ω

v′nφ jdx = −
∫

Ω
ΔvnΔφ jdx+

∫
Ω

h(vn)φ jdx, (5.4)

and

vn(x,0) =
n

∑
l=1

an,l(0)φl(x) −→ v0, in W (Ω) (5.5)

where h(v) = |v|(x)−1v− −
∫

Ω
|v|k(x)−1vdx. This gives a system of ODE for {an,l}n

l=1,

a′n, j(t) = −λ jan, j(t)+h j(t), (5.6)

where h j(t) = (h(vn),φ j) . The problem (5.6) is solvable by the standard theory of ODE
in an interval [0,Tn). Now, multiply (5.4) by a′n, j(t) and sum for j , to get

∫
Ω
|v′n|2dx = − d

dt

[
1
2

∫
Ω
|Δvn|2dx−

∫
Ω

|vn|k(x)+1

k(x)+1
dx

]
.

Integrating from (0, t), we get∫ t

0
‖v′n‖2

2ds+E(vn(x,t)) = E(vn(x,0)).

Since we have the convergence (5.5), continuity of E gives

E(vn(x,0)) → E(v0) < d. (5.7)
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Then, for sufficiently large n , we get

∫ t

0
‖v′n‖2

2ds+E(vn(x,t)) < d, 0 � t < ∞. (5.8)

Equation (3.4) implies that,

E(vn) � 1
2
‖Δvn‖2

2−
1

k− +1

∫
Ω
|vn|k(x)+1dx,

=
(k−−1)
2(k− +1)

‖Δvn‖2
2 +

1
(k− +1)

N(vn). (5.9)

By Lemma 4 we have N(vn) � 0. Then (5.8) and (5.9) together give

∫ t

0
‖v′n‖2

2ds+
(k−−1)
2(k− +1)

‖Δvn‖2
2 < d,

this yields

∫ t

0
‖v′n‖2

2ds < d, (5.10)

‖Δvn‖2
2 <

2(k− +1)
k−−1

d. (5.11)

Since N(vn) � 0, ∫
Ω
|vn|k(x)+1dx � ‖Δvn‖2

2 <
2(k− +1)
k−−1

d. (5.12)

We have ‖v‖p(x) � ρp(x)(v)+1 for any variable exponent p(x) ([8], Corollary 2.1.15),
hence

‖|vn|k(x)−1vn‖ k(x)+1
k(x)

�
∫

Ω
|vn|k(x)+1dx+1 <

2(k− +1)
k−−1

d +1. (5.13)

The estimates (5.10), (5.11), (5.12) and (5.13) together with the standard compactness
arguments gives

v′n −→ v′ weakly in L2(0,T ;L2(Ω)),
vn −→ v weakly∗ in L∞(0,T ;W (Ω)),

vn −→ v weakly∗ in L∞(0,T ;Lk(x)+1(Ω)).

Now, by the Aubin-Lions lemma, we get

vn −→ v in C(0,T ;H2(Ω)),

|vn|k(x)−1vn −→ |v|k(x)−1v weakly∗ in L∞(0,T ;L
k(x)+1
k(x) (Ω)).

These convergences hold for any T > 0. Passing limit in (5.4) proves the existence of
global solution.
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Next, we prove the asymptotic behaviour of global solution of the considered
equation. Since v0 ∈ U , we have v(t) ∈ U by Lemma 4. We can see from (5.1),
N(v(t)) > 0. Then, there exists δ ∗ > 1 with N(δ ∗v) = 0 by Lemma 2. Hence

0 = N(δ ∗v(t)) � (δ ∗)2‖Δv‖2
2− (δ ∗)k−+1

∫
Ω
|v|k(x)+1dx

=
(
(δ ∗)2 − (δ ∗)k−+1

)
‖Δv‖2

2 +(δ ∗)k−+1N(v).

It proves that

N(v(t)) �
(
1− (δ ∗)1−k−

)
‖Δv‖2

2. (5.14)

To get an estimate for δ ∗ , we consider

d � E(δ ∗v) = E(δ ∗v)− 1
k− +1

N(δ ∗v)

� (δ ∗)2
(

1
2
− 1

k− +1

)
‖Δv‖2

2− (δ ∗)k++1
∫

Ω

(
1

k(x)+1
− 1

k− +1

)
|v|k(x)+1dx

� (δ ∗)k++1
[
E(v)− 1

k− +1
N(v)

]
. (5.15)

From equation (3.3) and (5.15), we have

E(v0) � E(v(t)) = E(v(t))− 1
k− +1

N(v(t))+
1

k− +1
N(v(t))

� d
(δ ∗)k++1 +

1
k− +1

N(v(t))

>
d

(δ ∗)k++1 .

Since E(v0) < d, the above inequality gives

δ ∗ �
(

d
E(v0)

) 1
k++1

> 1. (5.16)

Hence, from (5.14) we get

N(v(t)) �

⎛
⎝1−

(
d

E(v0)

) 1−k−
1+k+

⎞
⎠‖Δv‖2

2. (5.17)

Using (5.17), we obtain

E(v(t)) � 1
2
‖Δv‖2

2−
1

k+ +1

∫
Ω
|v|k(x)+1dx

=
(

1
2
− 1

k+ +1

)
‖Δv‖2

2 +
1

k+ +1
N(v(t))

�

⎡
⎢⎣(1

2
− 1

k+ +1

)⎛
⎝1−

(
d

E(v0)

) 1−k−
1+k+

⎞
⎠

−1

+
1

k+ +1

⎤
⎥⎦N(v(t)), (5.18)
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and

E(v(t)) � 1
2
‖Δv‖2

2−
1

k− +1

∫
Ω
|v|k(x)+1dx

=
(

1
2
− 1

k− +1

)
‖Δv‖2

2 +
1

k− +1
N(v(t))

�

⎡
⎣(1

2
− 1

k− +1

)
+

1
k− +1

⎛
⎝1−

(
d

E(v0)

) 1−k−
1+k+

⎞
⎠
⎤
⎦‖Δv‖2

2. (5.19)

Now, multiplying (1.1) with v and integrating from t to T and using the embedding
H2(Ω) ↪→ L2(Ω) ([1], Theorem 4.12) with c9 as the embedding constant, we get

∫ T

t
N(v(s))ds =

1
2
‖v(t)‖2

2−
1
2
‖v(T )‖2

2

� 1
2
c9‖Δv(t)‖2

2. (5.20)

Now, using (5.18)-(5.20), we get

∫ T

t
E(v(s))ds � 1

C
E(v),∀t � 0, (5.21)

where C > 0 depends on d,v0,k−,k+ and C1 . Hence, when T → ∞ Lemma 5 gives

E(v(t)) � E(v0)e1−Ct ,∀t � 0. (5.22)

Thus, the solution v(x,t) decays exponentially. �

5.2. Nonexistence of global solutions

THEOREM 4. Suppose that (a1) , (a2) are satisfied and let v0 ∈V . Then problem
(1.1) does not admit any global weak solution.

Proof. Assume on the contrary that solution exists globally. Now, define an aux-
iliary functional

G(t) =
∫ t

0
‖v(s)‖2

2ds+(T − t)‖v0‖2
2, t ∈ (0,T ). (5.23)

Hence

G′(t) = ‖v‖2
2−‖v0‖2

2,

G′′(t) = 2
∫

Ω
vvtdx.
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Further, we can deduce

G′′(t) = −2‖Δv‖2
2 +2

∫
Ω
|v|k(x)+1dx

= −2N(v). (5.24)

Since v0 ∈ V , by Lemma 4 v ∈ V . So, N(v) < 0. By lemma 2, we have δ ∗ < 1 with
N(δ ∗v) = 0, i. e.

δ ∗
∫

Ω
|Δv|2dx−

∫
Ω
(δ ∗)k(x)+1|v|k(x)+1dx = 0. (5.25)

From Lemma 3 and (5.25), one can see that

d � E(δ ∗v) = E(δ ∗v)− 1
k− +1

N(δ ∗v)

=
(

1
2
− 1

k− +1

)
(δ ∗)2‖Δv‖2

2−
∫

Ω

(
1

k(x)+1
− 1

k− +1

)
(δ ∗)k(x)+1|v|k(x)+1dx

�
(

1
2
− 1

k− +1

)
(δ ∗)2‖Δv‖2

2− (δ ∗)k−+1
∫

Ω

(
1

k(x)+1
− 1

k− +1

)
|v|k(x)+1dx

� (δ ∗)2
(

E(v)− 1
k− +1

N(v)
)

< E(v)− 1
k− +1

N(v). (5.26)

Now, (5.24) together with (3.3) gives

G′′(t) > 2(k− +1)(d−E(v))

� 2(k− +1)
∫ t

0
‖v′(s)‖2

2ds+2(k−+1)(d−E(v0)). (5.27)

From (5.23) and (5.27), we derive

G(t)G′′(t) > 2(k− +1)
∫ t

0
‖v(s)‖2

2ds
∫ t

0
‖v′(s)‖2

2ds+2(k−+1)(d−E(v0))G(t).

(5.28)
Using Cauchy-Schwartz inequality, we get∫ t

0
‖v(s)‖2

2ds
∫ t

0
‖v′(s)‖2

2ds �
(∫ t

0

∫
Ω

vv′dxds

)2

=
1
4
[G′(t)]2.

Thus from (5.28), we can conclude that

G(t)G′′(t)−
(

k− +1
2

)
[G′(t)]2 > 2(k− +1)(d−E(v0))G(t) > 0. (5.29)

We conclude that the solutions cannot exist globally, see [20]. �
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