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MULTIPLE SOLUTIONS FOR NONLOCAL

FRACTIONAL KIRCHHOFF TYPE PROBLEMS
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Abstract. In this paper, using variational methods and critical point theory, we establish the
existence of two and infinitely many solutions for a fractional Kirchhoff type problem driven
by a nonlocal operator of elliptic type in a fractional Orlicz-Sobolev space with homogeneous
Dirichlet boundary conditions. Some examples are presented to demonstrate the application of
our main results.
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