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MULTIPLE SOLUTIONS FOR NONLOCAL

FRACTIONAL KIRCHHOFF TYPE PROBLEMS

AHMAD GHOBADI AND SHAPOUR HEIDARKHANI ∗

(Communicated by D. Kang)

Abstract. In this paper, using variational methods and critical point theory, we establish the
existence of two and infinitely many solutions for a fractional Kirchhoff type problem driven
by a nonlocal operator of elliptic type in a fractional Orlicz-Sobolev space with homogeneous
Dirichlet boundary conditions. Some examples are presented to demonstrate the application of
our main results.

1. Introduction

In this paper we consider the existence of multiple weak solutions for the following
a(.)-Kirchhoff type problem⎧⎨⎩M

(∫ ∫
Ω×Ω

Φ
( |u(x)−u(y)|

|x− y|s
)

dxdy
|x− y|N

)
(−Δ)s

a(.)u = f (x,u), in Ω,

u = 0, in R
N \Ω,

(1.1)

where Ω is an open bounded subset in R
N , N � 1, with Lipschitz boundary ∂Ω ,

0 < s < 1, Φ is an N -function, the function M : R
+ → R

+ is continuous and M̂(t) =∫ t
0 M(ξ )dξ . Let f : Ω×R → R be a Carathéodory function and (−Δ)s

a(.) be the non-
local integro-differential operator of elliptic type defined as:

(−Δ)s
a(.)u(x) = 2 lim

ε→0

∫
RN\Bε (x)

a

( |u(x)−u(y)|
|x− y|s

)
u(x)−u(y)
|x− y|s .

dy
|x− y|N+s ,

for all x ∈ R
N , where a : R → R.

The Kirchhoff equation, proposed by Kirchhoff [19] in 1883 in the study of the
oscillations of stretched strings and plates, is an extended version of the classical wave
equation due D’Alembert by taking into account the effects of the changes in the length
of the string during the vibrations. Nonlinear Kirchhoff models can be used for describ-
ing the dynamics of an axially moving string. Moreover, the Kirchhoff equation can be
used for modeling, such as computer science, mechanical engineering, control systems,
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artificial or biological neural networks, economics, and many others. In recent years,
the study of various mathematical problems with variable exponent growth condition
has been received considerable attention. Existence results of the Kirchhoff equation
have been established by several authors by applying different tools like fixed point
theory, lower and upper solutions method, variational methods and critical point theory,
and Morse theory. We refer the reader to [11, 12, 13, 15, 17] and the references therein
for some recent results on this topic.

Fractional calculus is a broader concept, since it is a generalization of arbitrary
order derivatives and integrals. In recent decades, fractional differential equations have
been the focus of many studies due to their frequent appearance in various applica-
tions in physics, biology, engineering, signal processing, systems identification, control
theory, finance, and fractional dynamics. Thus fractional models are the natural sub-
stitutes of the classical integer-order model for such systems. Fractional calculus also
provides an excellent tool to describe the hereditary properties of various materials and
processes. Many powerful and efficient methods have been proposed to obtain numer-
ical solutions and exact solutions of fractional differential equations so far. Such as
fixed-point theorems, the method of upper and lower solutions, the topological degree
theory and the critical point theory, etc. (see [7, 8, 16, 18] and references therein).

Moreover, there are few results about the existence of solutions for fractional
Kirchhoff problems involving the supercritical term. For the problems involving frac-
tional Kirchhoff type, we refer the reader to the works [2, 3, 4, 6, 14]. Recently, Fis-
cella and Valdinoci [14] proposed a stationary Kirchhoff type variational model, which
considered the nonlocal aspect of the tension arising from nonlocal measurements of
fractional length of the string. More precisely, they studied the following fractional
Kirchhoff type problem involving critical growth

⎧⎨⎩M

(∫ ∫
R2N

Φ
( |u(x)−u(y)|p

|x− y|N+sp

)
dxdy

)
(−Δ)su = λ f (x,u)+ |u|2∗s u, in Ω,

u = 0, in R
N \Ω,

(1.2)
by combining a truncated technique with the mountain pass theorem, they obtained
the existence of nontrivial solutions for the above equation when λ is large enough.
In [2], Ambrosio and Servadei first studied the existence of nontrivial solutions for
factional Kirchhoff problems with supercritical growth by using a truncation argument,
the mountain pass theorem and Moser iterative method.

In the present paper we are interested in ensuring the existence of at least two
solutions and infinitely many solutions for the problem (1.1). The present paper is
organized as follows. In Section 2, we recall some properties on fractional Orlicz-
Sobolev spaces and our main tools. In Section 3, we state and prove the main Theorem
of the paper and finally, we give two examples to show the application of our results.
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2. Preliminaries and basic notation

In this section, we introduce some definitions and basic information about the
fractional Orlicz-Sobolev space to find out the solution of problem (1.1).

Consider Ω be an open subset of R
N with N > 1. We let that a : R → R in (1.1)

is such that ϕ : R → R , defined by

ϕ(t) =

{
a(|t|)t, t �= 0,

0, t = 0,
(2.1)

is increasing homeomorphism from R onto itself. Let

Φ(t) =
∫ t

0
ϕ(τ)dτ,

then, Φ is a N -function (see [1]), i.e. Φ : R
+ → R

+ is a continuous, convex and
increasing function, with

lim
t→0

Φ(t)
t

= 0, lim
t→+∞

Φ(t)
t

= +∞.

For the function Φ introduced above, we define the Orlicz space:

LΦ(Ω) = {u : Ω → R mesurable :
∫

Ω
Φ(λ |u(x)|)dx < ∞ for some λ > 0}.

The space LΦ(Ω) is a Banach space endowed with the Luxemburg norm

‖u‖Φ = inf

{
λ > 0 :

∫
Ω

Φ
( |u(x)|

λ

)
dx � 1

}
.

The conjugate N -function of Φ is defined by Φ(t) =
∫ t
0 ϕ(τ)dτ where ϕ : R → R is

given by ϕ(t) := sup{s : ϕ(s) � t}. Furthermore, it is possible to prove a Hölder type
inequality, that is,

|
∫

Ω
uvdx| � 2‖u‖Φ‖v‖Φ ∀u ∈ LΦ(Ω) and v ∈ LΦ(Ω).

In this paper, we let that

1 � ϕ = inf
t�0

tϕ(t)
Φ(t)

� ϕ+ = sup
t�0

tϕ(t)
Φ(t)

< ∞. (2.2)

The above relation implies that Φ ∈ Δ2 i.e., Φ satisfies the global Δ2 -condition (see
[23]):

Φ(2t) � kΦ(t) for all t � 0,

where K is a positive constant.
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Furthermore, we assume that Φ satisfies the following condition: the function

t → Φ(
√

t) (for t ∈ [0,∞)),

is convex.
The above relation assures that LΦ(Ω) is an uniformly convex space (see [23]).

DEFINITION 1. Assume A,B be two N -functions. A is said to be stronger (resp.
essentially stronger) than B , A 	 B (resp. A 		 B) in symbols if

B(x) � A(ax), x � x0 � 0,

for some (resp. for each) a > 0 and x0 (depending on a ).

Now, we defined the fractional Orlicz-Sobolev space WsLΦ(Ω) as follows:

WsLΦ(Ω) =
{

u ∈ LΦ(Ω) :
∫

Ω

∫
Ω

Φ
(

λ |u(x)−u(y)|
|x− y|s

)
dxdy

|x− y|N < ∞ for some λ > 0

}
.

This space is equipped with the norm,

‖u‖s,Φ = ‖u‖Φ +[u]s,Φ,

where [.]s,Φ is the Gagliardo seminorm, defined by

[u]s,Φ = inf

{
λ > 0 :

∫
Ω

∫
Ω

Φ
( |u(x)−u(y)|

λ |x− y|s
)

dxdy
|x− y|N < 1

}
.

To deal with the problem under consideration, we choose

Ws
0 LΦ(Ω) = {u ∈WsLΦ(RN) : u = 0 a.e. R

N \Ω}
which can be equivalently renormed by setting ‖.‖ = [.]s,Φ. By [8], Ws

0LΦ(Ω) is a
Banach space. Indeed, it is separable (resp. reflexive) space if and only if Φ ∈ Δ2

(resp. Φ ∈ Δ2 and Φ ∈ Δ2 ).
Furthermore if Φ ∈ Δ2 and Φ(

√
t) is convex, then the space WsLΦ(Ω) is uni-

formly convex. The dual space of (WsLΦ(Ω),‖.‖) is denoted by ((WsLΦ(Ω))∗,‖.‖∗).

PROPOSITION 1. ([5]) Assume condition (2.2) is satisfied. Then the following
relations hold true,

[u]ϕ
−

s,Φ �
∫

Ω

∫
Ω

Φ
( |u(x)−u(y)|

|x− y|s
)

dxdy
|x− y|N � [u]ϕ

+

s,Φ, ∀u ∈WsLΦ(Ω) with

[u]s,Φ > 1,

and

[u]ϕ
+

s,Φ �
∫

Ω

∫
Ω

Φ
( |u(x)−u(y)|

|x− y|s
)

dxdy
|x− y|N � [u]ϕ

−
s,Φ, ∀u ∈WsLΦ(Ω) with

[u]s,Φ < 1.
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In this paper, we assume the following conditions:∫ 1

0

Φ−1(τ)

τ
N+s
N

dτ < ∞,

and ∫ ∞

1

Φ−1(τ)

τ
N+s
N

dτ = ∞. (2.3)

We define the inverse Sobolev conjugate N -function of Φ as follows

Φ−1
∗ =

∫ t

0

Φ−1(τ)

τ
N+s
N

dτ. (2.4)

THEOREM 1. ([5]) Let Ω be a bounded open subset of R
N with C0,1 -regularity

and bounded boundary. If (2.2), (2.3) and (2.4) hold, then

WsLΦ(Ω) ↪→ LB(Ω)

is compact for all B ≺≺ Φ∗ .

THEOREM 2. ([5]) Let Ω be a bounded open subset of R
N . Then,

C∞
0 ⊂C2

0(Ω) ⊂WsLΦ(Ω). (2.5)

For every u ∈Ws
0 LΦ, set

I(u) = Φ(u)−Ψ(u)

where

Φ(u) = M̂

(∫
Ω

∫
Ω

Φ
( |u(x)−u(y)|

|x− y|s
)

dxdy
|x− y|N

)
, Ψ(u) =

∫
Ω

F(x,u)dx,

M̂(t) =
∫ t

0
M(ξ )dξ , ∀ t ∈ R

+

and

F(x,t) =
∫ t

0
f (x,τ)dτ, ∀ (x,t) ∈ Ω×R.

We see that

〈I′(u),v〉 = M

(∫
Ω

∫
Ω

Φ
( |u(x)−u(y)|

|x− y|s
)

dxdy
|x− y|N

)∫
Ω

∫
Ω

a(
|u(x)−u(y)|

|x− y|s )

× |u(x)−u(y)|
|x− y|s

|v(x)− v(y)|
|x− y|s

dxdy
|x− y|N −

∫
Ω

f (x,u)vdx

for every u,v ∈Ws
0 LΦ.

In the sequel, we will mention some auxiliary results used through the paper.
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DEFINITION 2. Let X be a real reflexive Banach space. If any sequence {uk} ⊂
X for which {I(uk)} is bounded and I′(uk) → 0 as k → 0 possesses a convergent
subsequence, then we say I satisfies Palais-Smale condition.

THEOREM 3. [22, Theorem 4.10] Let I ∈ C1(X ,R), and I satisfies the Palais-
Smale condition. Assume that there exist u0,u1 ∈ X and a bounded neighborhood Ω
of u0 satisfying u1 /∈ Ω and

inf
ν∈∂Ω

ϕ(ν) > max{I(u0), I(u1)},

then there exists a critical point u of I, i.e. I′(u) = 0 with I(u) > max{I(u0),ϕ(u1)}.

THEOREM 4. [24, Theorem 9.12] Let X be an infinite dimensional real Banach
space. Let I ∈C1(X ,R) be an even functional which satisfies the (PS) condition, and
I(0) = 0 . Suppose that X = V

⊕
E, where V is finite dimensional, and I satisfies that

(i) There exist α > 0 and ρ > 0 such that I(u) � α for all u ∈ E with ‖ u ‖= ρ ,

(ii) For any finite dimensional subspace W ⊂X there is R = R(W ) such that I(u) � 0
on W \BR.

Then I possesses an unbounded sequence of critical values.

THEOREM 5. [25, Theorem 38] For the functional F : M ⊆X −→ [−∞,+∞] with
M �= /0,minu∈M F(u) = α has a solution in case the following conditions hold:

(h1) X is a real reflexive Banach space,

(h2) M is bounded and weak sequentially closed,

(h3) F is weak sequentially lower semi-continuous on M , i.e., by definition, for each
sequence {un} in M such that un ⇀ u as n→∞ , we have F(u)� limn→∞ infF(un)
holds.

We refer to the paper [9, 26, 20] in which Theorems 3 and 4 have been success-
fully employed to prove the existence of multiple solutions for some boundary value
problems.

3. Main results

Throughout this paper, we utilize the following assumptions.

(M0) There is a positive constant m0,m1 such that m0 � M(t) � m1 for all t � 0;

(A1) there exists a constant ν > ϕ+m1
m0

and 0 < νF(x, t) � t f (x,t) , |t| > L ;
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( f0) f : Ω×R −→ R satisfies Carath éodory condition and

| f (x,t)| � c(1+ |t|q−1) for t � L;

where q > ϕ+m1
m0

,

( f1) f (x, t) = O(|t|ϕ+−1) , for x ∈ Ω uniformly.

Let

ρ(u) =
∫

Ω

∫
Ω

Φ
( |u(x)−u(y)|

|x− y|s
)

dxdy
|x− y|N .

To obtain main results is needed that we prove the following Lemma.

LEMMA 1. ([27], Lemma 2.2) If condition (A1) holds, then for every x ∈ Ω , the
following inequalities hold:

F(x,t) � F

(
x,

t
|t|
)
|t|ν , if 0 < |t| � 1,

F(x,t) � F

(
x,

t
|t|
)
|t|ν , if |t| � 1.

In view Lemma 1, (A1) implies that for every x ∈ Ω ,

F(x,t) � a3|t|ν , if |t| � 1,

F(x,t) � a1|t|ν , if |t| � 1, (3.1)

where a3 = maxx∈Ω,|t|=1 F(x,t) and a1 = minx∈Ω,|t|=1 F(x, t) . By assumption ( f0) , we
observe that a1,a3 > 0. In addition, since F(x,t)−a1|t|ν is continuous on Ω× [0,T ] ,
there exists a constant a2 > 0 such that

F(x,t) � a1|t|ν −a2 for all (x,t) ∈ Ω× [0,T ]. (3.2)

so it follows from (3.1) and (3.2) that

F(x,t) � a1|t|ν −a2 for all (x,t) ∈ Ω×R. (3.3)

The main result of this paper are the following theorems.

THEOREM 6. Assume that the assumptions (M0) , (A1) , ( f0) and ( f1) hold.
Then: if f (x, t) � 0 for all (x,t) ∈ Ω×R , the problem (1.1) has at least two solu-
tions.

THEOREM 7. Assume that the assumptions (M0) and (A1) hold. Then: if f (x,t)
is odd about t , the problem (1.1) has infinitely many solutions.
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We need the following lemma to prove our main results.

LEMMA 2. Assume that (A1) and (M0) hold. Then I(u) satisfies the (PS)-
condition.

Proof. Assume that {un}n∈N ⊂ Ws
0 LΦ(Ω) such that {I(un)}n∈N is bounded and

I′(un) → 0 as n → +∞. Then, there exists a positive constant c0 such that |I(un)| � c0

and |I′(un)|� c0 for all n ∈ N . Therefore, from the definition of I′ and the assumption
(A1) and for some c1 > 0 we have,

c0 + c1‖un‖ � νI(un)− I′(un)(un)

� νM̂(ρ(un))−ϕ+M(ρ(un))ρ(un)− (ν
∫

Ω
F(x,un)dx−

∫
Ω

f (x,un)undx)

� νm0ρ(un)−ϕ+m1ρ(un)

� (νm0 −m1ϕ+)ρ(un) � (m0ν −m1ϕ+)‖un‖ϕ+
.

Since ν > m1ϕ+

m0
this implies that (un) is bounded. Now using the same argument as

in [10, Lemma 2.4], we can prove {un} converges strongly to u in Ws
0LΦ(Ω). Conse-

quently, I satisfies the (PS)-condition. �

3.1. The proof of Theorem 6

Proof. In our case it is clear that I(0) = 0. Lemma 2 shows that I satisfies the
(PS)-condition.

Step 1. We will show that there exists M > 0 such that the functional I has a local
minimum u0 ∈ BM = {u ∈Ws

0LΦ;‖u‖ < M}. Let {un} ⊆ BM and un ⇀ u as n → ∞,
by Mazur Theorem [21], there exists a sequence of convex combinations

vn =
n

∑
j=1

anju j,
n

∑
j=1

anj = 1, anj � 0, j ∈ N

such that vn → u in Ws
0LΦ. Since BM is a closed convex set, we have {vn} ⊆ BM and

u∈ BM. Noting that I is weak sequentially lower semi-continuous on BM and Ws
0LΦ is

a reflexive Banach space. Then by Theorem 5 we can know that I has a local minimum
u0 ∈ BM. We assume that I(u0) = minu∈BM

I(u). Now we will show that

I(u0) < in fu∈∂BM
I(u).

By Theorem 2, c2 > 0 exists such that

‖u‖∞ � c2‖u‖, ∀ u ∈Ws
0LΦ.

Let ε > 0 be small enough such that mesur(Ω)εc2 � m0
2 , from ( f0) and ( f1) we have

F(x,t) � ε|t|ϕ+
+ c|t|ϕ+

. (3.4)
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Then, from (M0) and (3.4) one has

I(u) � m0ρ(u)− ε
∫

Ω
|u|ϕ+

dx− c
∫

Ω
|u|qdx

� m0ρ(u)− ε
∫

Ω
‖u‖ϕ+

∞ dx− c
∫

Ω
‖u‖q

∞dx

� m0‖u‖ϕ+ −mesur(Ω)εc2‖u‖ϕ+ −mesur(Ω)c2c‖u‖q

� m0

2
‖u‖ϕ+ −mesur(Ω)c2c‖u‖q

when ‖u‖< 1. Since q > m1ϕ+

m0
> ϕ+ , there exist r > 0, δ > 0 such that I(u) � δ > 0

for every ‖u‖= r, We choosing M = r, so I(u) > 0 = I(0) � I(u0) for u∈ ∂BM. Hence
u0 ∈ BM and I′(u0) = 0.

Step 2. Since u0 is a minimum point of I on Ws
0LΦ, we can consider M > 0

sufficiently large such that I(u0) � 0 < infu∈∂BM
I(u), where BM = {u ∈Ws

0 LΦ;‖u‖ <
M}. Now we will illustrate that there exists u1 with ‖u1‖ > M such that I(u1) <
inf∂BM

I(u). For this, consider the function e1(x) ∈ Ws
0LΦ such that ‖e1‖ = 1. Let

u1 = re1,r > 0. By [9, Remark 3.1] and (A0) there exist constants a1,a2 > 0 such that
F(x,t) � a1|t|ν −a2 for all x ∈ Ω, |t| � T. Thus

I(u1) = M̂(ρ(re1))−
∫

Ω
F(x,re1)dx

� m1ρ(re1)−
∫

Ω
(a1|re1|ν −a2)dx

� m1‖re1‖ϕ+ − rνa1

∫
Ω
|e1|νdx+

∫
Ω

a2dx.

Since ν > ϕ+, there exists sufficiently large r > M > 0 so that I(re1) < 0. Hence,
max{I(u0), I(u1)} < inf∂BM

I(u). Then, Theorem 3 gives the critical point u∗ . There-
fore, u0 and u∗ are two critical points of I , which are two solutions of the problem
(1.1). �

We now present the following example to illustrate Theorem 6.

EXAMPLE 1. Consider Ω = {(x1,x2) ∈ R
2 : x2

1 + x2
2 < 1}, M(t) = 2+ cost, for

t ∈ R
+, ϕ(t) = log(1+ |t|)|t|2t and f (x,t) = 17t16 for (x,t) ∈ Ω×R. By the expres-

sion of f ,M and ϕ , we have
F(x,t) = t17,

Φ(t) =
1
4

log(1+ |t|)|t|2− 1
4

∫ |t|

0

τ2

1+ τ
dτ,

and
M̂(t) = 2t− sin(t).

We observe that ϕ+ = supt�0
tϕ(t)
Φ(t) = 5, ϕ− = inft�0

tϕ(t)
Φ(t) = 4 and M satisfies the con-

dition (M0) with m0 = 1, m1 = 3. Also, M and f are continuous functions, f (x,t) � 0
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for all (x, t) ∈ Ω×R, and limξ→0
f (x,ξ )

ξ ϕ+−1
= limξ→0

17ξ 16

ξ 4 = 0. By taking q = 16 and

c = 2 then | f (x, t)| < 2(1 + |t|15), for |t| � 1. By choosing ν = 17 > 15 = ϕ+m1
m0

,

17F(x, t) � t f (x, t), for |t| > 1. So we see that all conditions (A1),( f0) and ( f1) are
satisfied therefore, by applying Theorem 6, the problem{

(2+ cos(ρ(u)))(−Δ)s
logu = f (x,u), in Ω,

u = 0, in R
N \Ω,

has at least two weak solutions.

3.2. The proof of Theorem 7

Proof. According to definitions of the functional I, it is clear that I(u) is even and
I(0) = 0.

Step 1. We will depict that I satisfies condition (i) in Theorem 4. Since, I is
coercive and also satisfies (PS)-condition, by the minimization theorem [22, Theorem
4.4] the functional I has a minimum critical point u with I(u) � α > 0 and ‖u‖ = ρ
for ρ > 0 small enough.

Step 2. We will show that I satisfies condition (ii) in Theorem 4. Let W ⊂Ws
0LΦ

be a finite dimensional subspace. By [9, Remark 3.1] there exist constants a1,a2 > 0
such that F(x,u(x)) � a1|u(x)|ν − a2 for all x ∈ Ω . Now, For every r > 0 and u ∈
W \ {0} with ‖u‖ = 1, one has

I(ru) = M̂(ρ(ru))−
∫

Ω
F(x,ru)dx

� m1‖ru‖ϕ+ −
∫

Ω
(a1|u(x)|ν −a2)dx

� m1r
ϕ+‖u‖ϕ+ − rνa1

∫
Ω
|u|νdx+

∫
Ω

a2dx.

Since ν > ϕ+ , the above inequality implies that there exists r0 such that ‖ru‖ > ρ
and I(ru) < 0 for every r � r0 > 0. Since W is a finite dimensional subspace, there
exists R = R(W ) > 0 such that I(u) � 0 on W \BR(W). According to Theorem 4, the
functional I(u) possesses infinitely many critical points, i.e., the problem (1.1) has
infinitely many solutions. �

Finally, we present the following example in which the hypotheses of Theorem 7
are satisfied.

EXAMPLE 2. Consider Ω = {(x1,x2,x3) ∈ R
3 : x2

1 + x2
2 + x2

3 < 2}, M(t) = 2 +
sin t, for t ∈ R

+, ϕ(t) = log(1+ |t|)|t|3t and f (x,t) = 20t19 for (x,t) ∈ Ω×R. By the
expression of f ,M and ϕ , we have

F(x,t) = t20,



Differ. Equ. Appl. 14, No. 4 (2022), 597–608. 607

M̂(t) = 3t + cos(t)

and

Φ(t) =
1
5

log(1+ |t|)|t|5− 1
5

∫ |t|

0

τ4

1+ τ
dτ.

We observe that ϕ+ = supt�0
tϕ(t)
Φ(t) = 6, ϕ− = inft�0

tϕ(t)
Φ(t) = 5 and M satisfies the con-

dition (M0) with m0 = 1, m1 = 3. Also, M and f are continuous functions, f (x,t) is

odd about t . By choosing ν = 20 > 18 = ϕ+m1
m0

, 20F(x,t) � t f (x,t), for |t| > 1. So
we see that all conditions (A1) and (M0) are satisfied, hence, by using Theorem 7, for
every λ > 0 the problem{

(2+ sin(ρ(u)))(−Δ)s
logu = f (x,u), in Ω,

u = 0, in R
N \Ω,

(3.5)

has infinitely many weak solutions.
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