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Abstract. In this paper, we study the existence of positive solutions for the Kirchhoff equations
with concave terms⎧⎪⎨

⎪⎩
−
(

a+b
∫

Ω
|∇u|2 dx

)
Δu = f (x,u)−λ |u|q−2 u, in Ω,

u = 0, on ∂Ω,

(0.1)

where Ω is a bounded domain with a C2 -boundary ∂Ω in RN (N = 1,2,3) , and a,b > 0 ,
1 < q < 2 . By applying variational methods, we show that there exists a constant λ ∗ > 0 such
that for any λ ∈ (0,λ ∗) , problem (0.1) has at least two positive solutions.

1. Introduction

In this paper, we are concerned with the following Kirchhoff-type equation⎧⎪⎨
⎪⎩

−
(

a+b
∫

Ω
|∇u|2 dx

)
Δu = f (x,u)−λ |u|q−2 u, in Ω,

u = 0, on ∂Ω,

(1.1)

where Ω is a bounded domain with a C2 -boundary ∂Ω in RN (N = 1,2,3) , a,b > 0,
1 < q < 2, λ > 0 is a parameter. Since 1 < q < 2, the right-hand side of problem (1.1)
contains a concave term given by −λ |u|q−2 u . The perturbation f : Ω×R → R is a
Carathéodory function.

The concave terms can be divided into positive concave terms and negative terms,
and they can be regarded as a small perturbation. There are many papers to consider
the multiple of positive solutions for different elliptic equations with the concave terms,
for example, see [1, 2] with positive concave terms, and [7, 8, 9] with negative concave
terms and the references therein. Especially, many peoples studied the existence of
multiple positive solutions for Kirchhoff-type equations with positive concave terms by
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using variational methods, see [3, 4, 6], but as well as we known, there are few papers
to investigate the existence of multiple positive solutions for Kirchhoff-type equations
with negative concave terms. Motivated by these findings, we will consider the exis-
tence of positive solutions for problem (1.1) involving negative concave terms. Let λ1

be the first eigenvalue of −Δ in H1
0 (Ω) and ψ1 be the normalized eigenfunction as-

sociated to λ1 with ψ1(x) > 0 in Ω . And let μ1 be the first eigenvalue of following
eigenvalue problem: {

−b‖u‖2Δu = μu3, in Ω,

u = 0, on ∂Ω,
(1.2)

which can be defined by

μ1 = inf
{
b‖u‖4 : u ∈ H1

0 (Ω), |u|44 = 1
}

.

Now, we are ready to state our main result.

THEOREM 1. Assume that f satisfies the following conditions:
( f1) f : Ω×R → R is a Carathéodory function such that f (x,s) = 0 for s � 0 ,

a.e.x ∈ Ω and there is a constant C > 0 such that

| f (x,s)| � C(1+ |s|3) f or a.e.x ∈ Ω, ∀ s � 0.

( f2) limsup
s→+∞

f (x,s)
|s|2s � μ1 uniformly for a.e. x ∈ Ω and there exists ξ0 > 0 such that

f (x,s)s−4F(x,s) � −ξ0

for a.e. x ∈ Ω and for all s ∈ R, where F(x,s) =
∫ s
0 f (x,t)dt .

( f3) there exist functions η , η̂ ∈ L∞(Ω) such that

η(x) � aλ1 a.e. in Ω with η �= aλ1, and

η(x) � liminf
s→0+

f (x,s)
s

� limsup
s→0+

f (x,s)
s

� η̂(x) uniformly for a.e. x ∈ Ω,

there exists a constant λ ∗ > 0 such that for any λ ∈ (0,λ ∗) , problem (1.1) admits at
least two positive solutions.

REMARK 1. The condition ( f2) is resonant asymptotically at +∞ with respect
to μ1 , which implies the corresponding functional is coercive. Under ( f2) , Yang
and Zhang in [10] obtained the existence of nontrivial solutions for the Kirchhoff-type
equations by local linking. Zhang and Perera in [11] considered the existence of sign-
changing solutions for the Kirchhoff-type equations by using invariant sets of descent
flow.
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2. Proof of Theorem 1

Let Lp(Ω)(1 � p < ∞) be the Lebesgue space with the norm |u|p = (
∫

Ω |u|p dx)
1
p

and by H1
0 (Ω) the usual Hilbert space with the norm ‖u‖ = (

∫
Ω |∇u|2 dx)

1
2 . The em-

bedding H1
0 (Ω) ↪→ Lp(Ω) is continuous for any 1 � p � 2∗ and is compact for any

1 � p < 2∗ , where 2∗ := +∞ if N � 2 and 2∗ := 2N
N−2 if N > 2. We will also use the

ordered Banach space

C1
0(Ω) =

{
u ∈C1(Ω) : u |∂Ω= 0

}
,

and its positive cone

C1
0(Ω)+ =

{
u ∈C1

0(Ω) : u(x) � 0, ∀ x ∈ Ω
}

.

This cone has a nonempty interior given by

int(C1
0(Ω)+) =

{
u ∈C1

0(Ω) : u(x) > 0 ∀ x ∈ Ω, and
∂u
∂n

(x) < 0 ∀ x ∈ ∂Ω
}

,

where n = n(x) is the outer unit normal at x ∈ ∂Ω . Let X be a Banach space, the
functional ϕ ∈ C1(X) fulfills the (PS)-condition if every sequence {un} ⊆ X such
that ϕ(un) is bounded and ϕ ′(un) → 0 in X∗ as n → ∞ , admits a strongly convergent
subsequence. At last, we recall the Mountain Pass Theorem and an abstract result.

THEOREM 2. Let X be a Banach space, ϕ ∈C1(X ,R) satisfies the (PS)-condition,
let u1,u2 ∈ X with ‖u2−u1‖X > ρ > 0 . If

mρ := inf{ϕ(u) : ‖u−u1‖X = ρ} > max{ϕ(u1),ϕ(u2)} ,

and c = infγ∈Γ max0�t�1 ϕ(γ(t)) with Γ = {γ ∈C([0,1] ,X) : γ(0) = u1,γ(1) = u2} , c
is a critical value of ϕ with c � mρ .

THEOREM 3. (see [5]) Let u ∈ H1
0 (Ω) be a local C1

0(Ω)-minimizer of the func-
tional ϕ , then u is also a local H1

0 (Ω)-minimizer of ϕ .

We define the energy functional Iλ on H1
0 (Ω) by

Iλ (u) =
a
2
‖u‖2 +

b
4
‖u‖4 +

λ
q

∫
Ω

∣∣u+∣∣q dx−
∫

Ω
F(x,u)dx,

where u± = max{±u,0} . Clearly Iλ ∈C1(H1
0 (Ω),R) , and for any u,v ∈ H1

0 (Ω) , we
have

〈I′λ (u),v〉 = (a+b‖u‖2)
∫

Ω
∇u∇vdx−

∫
Ω

f (x,u)vdx+ λ
∫

Ω
|u+|q−2u+vdx.

For the sake of convenience, let hλ (x,u) = f (x,u) − λ |u+|q−2 u+ and Hλ (x,u) =∫ u
0 hλ (x, t)dt . Using the definition of μ1 , we derive the following result.
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LEMMA 1. If v ∈ L∞(Ω)+ satisfies v(x) � μ1 a.e.on Ω and v �= μ1 , then there
exists a constant ξ > 0 such that

b‖u‖4−
∫

Ω
v |u|4 dx � ξ ‖u‖4 , ∀ u ∈ H1

0 (Ω).

Proof. Suppose that the lemma is not true. We set ϕ(u) = b‖u‖4 − ∫Ω v |u|4 dx ,
note that ϕ � 0. Exploiting the homogeneity of ϕ , we can find {un} ⊆ H1

0 (Ω) with
‖un‖ = 1 such that ϕ(un) → 0. Going if necessary to a subsequence, we have

un ⇀ u in H1
0 (Ω) and un → u in Lp(Ω).

Since ϕ is weakly lower semi-continuous on H1
0 (Ω) , we have ϕ(u) � 0, that is

b‖u‖4 �
∫

Ω
v |u|4 dx � μ1

∫
Ω
|u|4 dx, (2.1)

which implies u = 0 or u = ±φ1 , where φ1 is the principal eigenfunction associated to
μ1 . If u = 0, then ‖un‖ → 0, which is a contradiction from the fact that ‖un‖ = 1 for
all n � 1. If u = ±φ1 , note that |u(x)| > 0 for all x ∈ Ω , from (2.1), we obtain

b‖u‖4 < μ1 |u|44 ,

which contradicts the definition of μ1 . �

LEMMA 2. Let ( f1)–( f3) be satisfied and λ > 0 , the functional Iλ is coercive
and satisfies the (PS)-condition.

Proof. If Iλ is not coercive, there exists a sequence {un} ⊆ H1
0 (Ω) and a constant

M1 > 0 such that
‖un‖→ ∞ and Iλ (un) � M1.

Hence, we have

a
2
‖un‖2 +

b
4
‖un‖4 −

∫
Ω

Hλ (x,un)dx � M1, ∀ n � 1. (2.2)

Let yn = un
‖un‖ , then ‖yn‖ = 1, and we may assume that

yn ⇀ y in H1
0 (Ω) and yn → y in Lp(Ω)

with some y ∈ H1
0 (Ω) . Applying the representation of yn , it follows from (2.2) that

b
4
‖yn‖4 −

∫
Ω

Hλ (x,un)
‖un‖4 dx � M1

‖un‖4 , ∀ n � 1. (2.3)

Because of hypothesis ( f1) we have that(
Hλ (·,un(·))

‖un‖4

)
⊆ L1(Ω) is uniformly integrable.
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Taking into account the Dunford-Pettis Theorem along with ( f2) , we have that

Hλ (·,un(·))
‖un‖4 ⇀

1
4
v(y+)4 in L1(Ω),

with v ∈ L∞(Ω) satisfying v(x) � μ1 a.e. in Ω . Passing to the limit in (2.3) as n → ∞
and applying the above equality, we have

b‖y‖4 �
∫

Ω
v(y+)4dx, (2.4)

which implies

b
∥∥y+∥∥4 �

∫
Ω

v(y+)4dx. (2.5)

If v �= μ1 , then from (2.5) and Lemma 1, we get y+ = 0. Hence from (2.4), we have
y− = 0, that is y = 0. Then using (2.3), we see that

yn → 0 in H1
0 (Ω),

which contradicts the fact that ‖yn‖ = 1 for all n � 1.
If v(x) = μ1 a.e. in Ω , then (2.5) implies that

b
∥∥y+∥∥4 = μ1

∣∣y+∣∣4
4 ,

which means that
y+ = ξ∗φ1 for some ξ∗ � 0.

If ξ∗ = 0, then y+ = 0 and due to (2.4) y = 0. Hence, because of (2.3), we have
yn → 0 in H1

0 (Ω) , which is a contradiction.

If ξ∗ > 0, then y+ ∈ int
(
C1

0(Ω)+
)

, so y+(x) > 0 for all x ∈ Ω . Since y+ is the

limit of y+
n in H1

0 (Ω) and y+
n = u+

n
‖un‖ we can know that

u+
n (x) → +∞ for a.e. x ∈ Ω. (2.6)

Thanks to ( f2) , for all u > 0 and for a.e.x ∈ Ω , we have

d
du

Hλ (x,u)
u4 =

f (x,u)u−λuq−4F(x,u)+4 λ
q uq

u5 � −ξ0

u5 . (2.7)

For a.e.x ∈ Ω and for all y � u > 0, we have that

Hλ (x,y)
y4 − Hλ (x,u)

u4 � ξ0

4

(
1
y4 −

1
u4

)
. (2.8)

From ( f2) we can see that

limsup
s→+∞

F(x,s)

|s|4 � 1
4

μ1
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uniformly for a.e. x ∈ Ω . Then, passing in (2.8) to the limit as y → +∞ , for all u > 0
and for a.e. x ∈ Ω , we derive

μ1

4
− Hλ (x,u)

u4 � −ξ0

4
1
u4 ,

which implies that

4F(x,u)− 4λ
q

uq− μ1u
4 � ξ0 for a.e.x ∈ Ω and ∀ u � 0. (2.9)

Combining with the definition of μ1 , (2.2) and (2.9), we have

2a
∥∥u+

n

∥∥2 � 4M1 +
∫

Ω

(
4F(x,u+

n )− 4λ
q

(u+
n )q− μ1(u+

n )4
)

dx � M2,

where M2 = 4M1 + ξ0 |Ω| > 0 and for all n � 1. This implies

∥∥u+
n

∥∥2 � M2

2a
, ∀ n � 1. (2.10)

Comparing (2.6) and (2.10), we obtain a contradiction. Hence, Iλ is coercive. Using a
standard argument, it is easy to prove that the (PS)-condition is satisfied. �

LEMMA 3. If ( f1)–( f3) hold, then we can find λ ∗ > 0 such that for all λ ∈
(0,λ ∗) , there exists t∗ = t∗(λ ) > 0 such that

Iλ (±t∗ψ1) < 0.

Proof. For any ε > 0, from ( f1) and ( f3) , there exists c1 = c1(ε) > 0 such that

F(x,s) � 1
2

(η(x)− ε)s2 − c1 |s|4 f or a.e. x ∈ Ω and ∀s � 0. (2.11)

By means of (2.11), we have for t > 0

Iλ (tψ1) =
a
2
t2 ‖ψ1‖2 +

b
4
t4‖ψ1‖4 +

λ
q

tq |ψ1|qq−
∫

Ω
F(x,tψ1)dx

� t2

2

(∫
Ω
(aλ1−η(x))ψ2

1dx+ ε
)

+ c2
(
t4 + λ tq

)
,

(2.12)

where c2 = max
{

b
4 ‖ψ1‖4 , 1

q |ψ1|qq ,c1 |ψ1|44
}

. From ( f3) and ψ1 ∈ int
(
C1

0(Ω)+
)

, we

have
ξ ∗ =

∫
Ω
(η(x)−aλ1)(ψ1)2dx > 0.

Let ε ∈ (0,ξ ∗) , we have

Iλ (tψ1) � −c3t
2 + c2

(
t4 + λ tq

)
=
(
c2(t2 + λ tq−2)− c3

)
t2 (2.13)
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for some c3 > 0 and for all t > 0.
Let βλ (t) = t2 + λ tq−2 for all t > 0. Clearly, βλ ∈ C1(0,∞) and since q < 2, it

follows that
βλ (t) → +∞ as t → 0+ and t → +∞.

Hence, we can find a constant t∗ = t∗(λ ) =
(

λ (2−q)
2

) 1
4−q

such that

βλ (t∗) = inf{βλ (t) : t > 0} > 0.

We can see that βλ (t∗(λ ))→ 0 as λ → 0+ . Hence, there exists a constant λ ∗ > 0 such
that

βλ (t∗) <
c3

c2
, ∀ λ ∈ (0,λ ∗).

Inequality (2.13) implies that Iλ (±t∗ψ1) < 0. �

LEMMA 4. If ( f1)− ( f3) hold and let λ > 0 , then u = 0 is a local minimizer of
the functional Iλ .

Proof. From ( f3) , there exists c4 > 0 and δ > 0 such that

F(x,s) � c4s
2 for a.e. x ∈ Ω and ∀ s ∈ [0,δ ] . (2.14)

Let u ∈C1
0(Ω) satisfy ‖u‖C1

0(Ω) � δ , from (2.14), we have

Iλ (u) =
a
2
‖u‖2 +

b
4
‖u‖4−

∫
Ω

Hλ (x,u)dx

� a
2
‖u‖2 +

b
4
‖u‖4 +

(
λ
q
− c4‖u‖2−q

C1
0(Ω)

)∣∣u+∣∣q
q

� a
2
‖u‖2 +

b
4
‖u‖4 +

(
λ
q
− c4δ 2−q

)∣∣u+∣∣q
q .

(2.15)

We choose 0 < δ <
(

λ
qc4

) 1
2−q

and from (2.15) we have

Iλ (u) � 0 = Iλ (0) for all u ∈C1
0(Ω) with ‖u‖C1

0 (Ω) � δ ,

which implies that u = 0 is a local C1
0(Ω)-minimizer of Iλ , and from Theorem 3, u = 0

is also a local H1
0 (Ω)-minimizer of Iλ . �

Proof of Theorem 1. By applying the Sobolev embedding theorem, Iλ is weakly
lower semi-continuous. From Lemma 2, Iλ is coercive for all λ > 0. Therefore, there
exists an element ũ ∈ H1

0 (Ω) , which is a critical point of Iλ , such that

Iλ (ũ) = inf
{
Iλ (u) : u ∈ H1

0 (Ω)
}

. (2.16)
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From Lemma 3, for any λ ∈ (0,λ ∗) , we obtain Iλ (ũ) < 0 = Iλ (0), which implies that
ũ �= 0. Since ũ is a critical point of Iλ , we have

(a+b‖ũ‖2)
∫

Ω
∇ũ∇hdx =

∫
Ω

hλ (x, ũ)hdx, ∀ h ∈ H1
0 (Ω). (2.17)

Taking h = −ũ− ∈ H1
0 (Ω) as test function in (2.17), we have ũ � 0. By the maximum

principles we can see that ũ > 0.

From Lemma 4, u = 0 is a local minimizer of Iλ . Then we can find a number
ρ ∈ (0,‖ũ‖) sufficiently small such that

Iλ (ũ) < 0 = Iλ (0) < inf{Iλ (u) : ‖u‖ = ρ} = mρ . (2.18)

So due to Theorem 2, we obtain an element û ∈ H1
0 (Ω)\ {0, ũ} such that

(Iλ )′(û) = 0 and Iλ (û) � mρ . (2.19)

i.e.

(a+b‖û‖2)
∫

Ω
∇û∇hdx =

∫
Ω

hλ (x, û)hdx, ∀ h ∈ H1
0 (Ω). (2.20)

Once again, we set h =−û− ∈H1
0 (Ω) as test function in (2.20) gives ‖û−‖2 = 0. Thus,

û � 0, from (2.18) and (2.19), û is a positive solution of problem (1.1). �
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