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MULTIPLE POSITIVE SOLUTIONS OF KIRCHHOFF-TYPE
EQUATIONS WITH CONCAVE TERMS

JiA-LIN XU, YING Lv AND ZENG-Q1 OU*

(Communicated by C.-L. Tang)

Abstract. In this paper, we study the existence of positive solutions for the Kirchhoff equations
with concave terms

- <a+b/ \Vu\zdx) Au=f(xu)—Alu'u,  in Q,
Jo 0.1)

u=0, on 9Q,
where Q is a bounded domain with a C?> -boundary 9Q in RV (N =1,2,3), and a,b >0,

1 < g < 2. By applying variational methods, we show that there exists a constant A* > 0 such
that for any A € (0,A*), problem (0.1) has at least two positive solutions.

1. Introduction

In this paper, we are concerned with the following Kirchhoff-type equation

- (a—i—b/ |Vu|2dx> Au=f(x,u)—Alul"%u, in Q,
Q
u=0, on dQ,

(1.1)

where Q is a bounded domain with a C? -boundary dQ in RY (N =1,2,3), a,b >0,
1 <g<2,A >0 isaparameter. Since 1 < g < 2, the right-hand side of problem (1.1)
contains a concave term given by —2 [u|9">u. The perturbation f: QxR — R is a
Carathéodory function.

The concave terms can be divided into positive concave terms and negative terms,
and they can be regarded as a small perturbation. There are many papers to consider
the multiple of positive solutions for different elliptic equations with the concave terms,
for example, see [1, 2] with positive concave terms, and [7, 8, 9] with negative concave
terms and the references therein. Especially, many peoples studied the existence of
multiple positive solutions for Kirchhoff-type equations with positive concave terms by
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using variational methods, see [3, 4, 6], but as well as we known, there are few papers
to investigate the existence of multiple positive solutions for Kirchhoff-type equations
with negative concave terms. Motivated by these findings, we will consider the exis-
tence of positive solutions for problem (1.1) involving negative concave terms. Let A;
be the first eigenvalue of —A in H& (Q) and y; be the normalized eigenfunction as-
sociated to A; with yq(x) >0 in Q. And let y; be the first eigenvalue of following
eigenvalue problem:

{—b||u||2Au:[.1u3, in Q, 12

u=0, on dQ,
which can be defined by
o = inf {bllul*: u € HY(Q), uli =1}

Now, we are ready to state our main result.

THEOREM 1. Assume that f satisfies the following conditions:
(f1) f: QxR — R isa Carathéodory function such that f(x,s) =0 for s <0,
a.e.x € Q and there is a constant C > 0 such that

|f(x,5)| <C(1+]s]*) fora.excQ, Vs>0.

[0s)

Isf?

(f2) limsup < Uy uniformly for a.e. x € Q and there exists &y > 0 such that

§—> o0 s

F(x,8)s —4F (x,5) = =&

fora.e. x € Q and for all s € R, where F(x,s) = [ f(x,t)dt.
(f3) there exist functions 1,7 € L”(Q) such that

Nn(x) = alAj a.e. in Qwithm #aly, and

n(x) < liminfM < limsup [(x.5)

in < A(x) uniformly fora.e. x € Q,
§— N s—0t s

there exists a constant A* > 0 such that for any A € (0,A*), problem (1.1) admits at
least two positive solutions.

REMARK 1. The condition (f>) is resonant asymptotically at +eo with respect
to Uy, which implies the corresponding functional is coercive. Under (f>), Yang
and Zhang in [10] obtained the existence of nontrivial solutions for the Kirchhoff-type
equations by local linking. Zhang and Perera in [1 1] considered the existence of sign-
changing solutions for the Kirchhoff-type equations by using invariant sets of descent
flow.
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2. Proof of Theorem 1

Let LP(Q)(1 < p < =) be the Lebesgue space with the norm [u[,, = ([q |u\pdx)%

and by H}(Q) the usual Hilbert space with the norm [Ju|| = (g, |Vu|2dx)% . The em-
bedding H}(Q) < LP(Q) is continuous for any 1 < p < 2* and is compact for any
1 < p <2, where 2% := 4o if N <2 and 2" := ]% if N > 2. We will also use the
ordered Banach space

(@) = {ue (@) :ulsn=0},
and its positive cone
clQ). = {u cCHQ) u(x) =0,V xe g‘z}.

This cone has a nonempty interior given by

int(CH(Q)4) = {u €CHQ):u(x) >0V xecQ, and %(x) <0Vxe 89},

where n = n(x) is the outer unit normal at x € dQ. Let X be a Banach space, the
functional @ € C'(X) fulfills the (PS)-condition if every sequence {u,} C X such
that @(u,) is bounded and ¢'(u,) — 0 in X* as n — oo, admits a strongly convergent
subsequence. At last, we recall the Mountain Pass Theorem and an abstract result.

THEOREM 2. Let X be a Banach space, ¢ € C'(X,R) satisfies the (PS)-condition,
let uy,uy € X with ||up —uyl|y >p >0. If

mp = inf{@(u): u—wully = p}>max{e(u), ¢(u)},

and ¢ = infyer maxog;<1 @(¥(¢)) with T' ={y € C([0,1],X) : y(0) = u1,y(1) = uz}, ¢
is a critical value of @ with ¢ > my.

THEOREM 3. (see [5]) Let it € H}(Q) be a local C)(Q)-minimizer of the func-
tional @, then i is also a local H}(Q)-minimizer of @.

We define the energy functional I; on H}(Q) by

a 2 b 4 A
DG = 3+ 5l + % [t dx— [ Flxas,
qJo Q

where u* = max {+u,0}. Clearly I; € C'(H;(),R), and for any u,v € H}(Q), we
have

(I, (u),v) = (a+b||u||2)/QVqudx—/g)f(xm)vdx—f—?t/g|u+\q_2u+vdx.

For the sake of convenience, let /1y (x,u) = f(x,u) — A |u* |7 *u" and Hj (x,u) =
Jo hy (x,t)dt . Using the definition of i, we derive the following result.
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LEMMA 1. If v e L*(Q)4 satisfies v(x) <ty a.e.on Q and v # W, then there
exists a constant & > 0 such that

llall* = [ viuttdx> & |ull*, ¥ ue ().

Proof. Suppose that the lemma is not true. We set @(u) = b ||ul|* — [ v|u|*dx,
note that ¢ > 0. Exploiting the homogeneity of ¢, we can find {u,} C H}(Q) with
||lun|| = 1 such that ¢(u,) — 0. Going if necessary to a subsequence, we have

Uy — u in HY(Q) and u, — u in L7(Q).

Since ¢ is weakly lower semi-continuous on H{ (), we have ¢(u) < 0, that is

plul < [ viul*ax < [ Jul*ax. @.1)
Q Q

which implies # = 0 or u = +¢;, where ¢, is the principal eigenfunction associated to
uy. If u=0, then |lu,|| — O, which is a contradiction from the fact that ||u,| =1 for
all n > 1. If u= +¢;, note that |u(x)| > 0 for all x € Q, from (2.1), we obtain

4 4
bllull™ < g fuly,
which contradicts the definition of y;. [

LEMMA 2. Let (f1)—(f3) be satisfied and A > 0, the functional I, is coercive
and satisfies the (PS)-condition.

Proof. 1f I, is not coercive, there exists a sequence {u,} C Hj(€2) and a constant
M; > 0 such that
[[unl| — oo and I (un) < M.

Hence, we have

a b
ol - /QH,I()@un)dx <M, Vn>1. 2.2)

Un
([l >

Let y, =

then ||y,|| = 1, and we may assume that
ya—y in H}(Q) and y, —y in LP(Q)

with some y € Hé (Q). Applying the representation of y,, it follows from (2.2) that

b 4 Hj (x,uy) M,
Tl = [ ZEar <

dx < ——, Vn>1. (2.3)
4 [[un | [[un|

Because of hypothesis (f;) we have that

Hy (- u (-
(%) C L'(Q) is uniformly integrable.
Up
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Taking into account the Dunford-Pettis Theorem along with (f>), we have that

a4

% ~ DO in (@),

with v € L”(Q) satisfying v(x) < y; a.e. in Q. Passing to the limit in (2.3) as n — oo
and applying the above equality, we have

bIbI* < [ voh)iax, 4
which implies
4
byl </Qv(y+)4dx. (2.5)

If v # uy, then from (2.5) and Lemma 1, we get y© = 0. Hence from (2.4), we have
y~ =0, thatis y = 0. Then using (2.3), we see that

ya— 0 in H}(Q),

which contradicts the fact that ||y,|| =1 forall n > 1.
If v(x) =y a.e. in Q, then (2.5) implies that

Iyt = w5,

which means that
yt =&.¢ for some &, > 0.

If & =0, then y* =0 and due to (2.4) y = 0. Hence, because of (2.3), we have
ya — 0 in H}(Q), which is a contradiction.
If & >0, then y* € int (Cé (Q)+> ,80 yT(x) >0 forall x€ Q. Since y" is the

u

limit of y, in H}(Q) and y,} = HM}Z 7 we can know that

+

Uy

(x) — +oo for ae. x € Q. (2.6)

Thanks to (f>), for all # > 0 and for a.e.x € Q, we have

iHQL(‘x7u> _ f(x7u)u_x’uq_4F(x7u)+4%uq . _50

= > —=. 2.7
du u* ud ud 27
For a.e.x € Q and for all y > u > 0, we have that
H}L(X,y) H?L(x7u) gO 1 1
- > = —-—=|. 2.8
v e 4 \yF ot (2.8)
From (f>) we can see that
limsupF(x’s> < lu
X S M1
e T4
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uniformly for a.e. x € Q. Then, passing in (2.8) to the limit as y — oo, for all u >0
and for a.e. x € Q, we derive

o Hyw o Gl
4 ut T 4wt
which implies that
4\ 4
4F (x,u) — —u? — u* < & foraexeQ and Vu > 0. (2.9)
q

Combining with the definition of u;, (2.2) and (2.9), we have
+1|2 Ay +14
2a||uf||” < 4Mi+ 4F (x,u, ) — —(u, )T — g (u, )" ) dx < My,
Q q

where My = 4M; + &y|Q| > 0 and for all n > 1. This implies

M.
P <22, V1. (2.10)

2a

Comparing (2.6) and (2.10), we obtain a contradiction. Hence, I is coercive. Using a
standard argument, it is easy to prove that the (PS)-condition is satisfied. [J

LEMMA 3. If (f1)—(f3) hold, then we can find A* > 0 such that for all A €
(0,A%), there exists t* =1*(A) > 0 such that

L (£ y) <O.

Proof. Forany € > 0, from (f1) and (f3), there exists ¢; = ¢;(€) > 0 such that

1
F(x,s) > E(n(x)—e)sz—cl Is|* for a.e. x€Q and Vs >0. (2.11)

By means of (2.11), we have for t > 0

a b A
L (ry) =52 v I+ 3¢ v |+ 2oty g — [ Pxrnax
q Q
t2

<5 (flan—nepwiasse ) +er e+ 200,

2.12)

where ¢, :max{g Hu/1||47}1\1//1|27c1 |u/1\i}. From (f3) and y; € int <C(1)(Q)+> , we
have

é* = /Q(Tl(x) —a?h)(l{/l)zdx > 0.
Let € € (0,£%), we have

L(tyr) < —c3t® +er (1P 4+ A1) = (PP + M97%) — ¢3) 12 (2.13)
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for some ¢3 > 0 and for all 7 > 0.
Let By (t) = 1>+ At772 for all + > 0. Clearly, B; € C'(0,) and since ¢ < 2, it
follows that
By (t) — +eo as t — 0" and t — oo

1
Hence, we can find a constant 1* =1*(1) = (@) 7 Such that

By (t*) =inf{B, (1) : 1 >0} > 0.

We can see that 3 (*(A)) — 0 as A — 0. Hence, there exists a constant A* > 0 such
that B
Brlrr) < VA€ (0,47,
2

Inequality (2.13) implies that I, (£z*y) <0. O

LEMMA 4. If (fi) — (f3) hold and let A > 0, then u=0 is a local minimizer of
the functional I,.

Proof. From (f3), there exists ¢4 > 0 and 0 > 0 such that
F(x,s) < cas® for ae. xeQ and Vs e [0,6]. (2.14)

Let u € C}(Q) satisfy HuHC(l)(Q) < 0, from (2.14), we have

a b
D) = S P+ 5l = [ Hy e

a o b4 (A 2 44
> P+ G+ (% —calblZy ) o @.15)

a 2, b 4 A 2— +14
> P+ G+ (% —cudto) e

1
2—q

We choose 0 < 6 < (q’%) and from (2.15) we have

I(1) >0=1,(0) forall ucCH(Q) with |lu <0,

HC&@)

which implies that « = 0 is a local Cé (Q) -minimizer of I, , and from Theorem 3, u =0
is also a local Hj (€2)-minimizer of ;. [J

Proof of Theorem 1. By applying the Sobolev embedding theorem, I, is weakly
lower semi-continuous. From Lemma 2, I, is coercive for all A > 0. Therefore, there
exists an element i € H(} (Q), which is a critical point of I, , such that

L (@) = inf {I) (u) 1 u € Hy(Q)}. (2.16)
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From Lemma 3, for any A € (0,A%), we obtain I (i) < 0 =1, (0), which implies that
ii # 0. Since i is a critical point of I , we have

(a+bH11||2)/QV1ZVhdx:/Qh;t(x,zl)hdx, VheH\(Q). 2.17)

Taking h = —i~ € H}(Q) as test function in (2.17), we have # > 0. By the maximum
principles we can see that i > 0.

From Lemma 4, u = 0 is a local minimizer of I . Then we can find a number
p € (0,]|i||) sufficiently small such that

L (i) <0=1(0) <inf{l) (u) : [[ul| =p} =m,. (2.18)
So due to Theorem 2, we obtain an element 4 € H} () \ {0,4} such that
(1) (2) =0 and I (@) > m,. (2.19)

i.e.

(a+buﬁ||2)/QVﬁVhdx=/th(x,ﬁ)hdx, VheH Q). (2.20)

Once again, we set h = —i~ € H} (Q) as test function in (2.20) gives ||~ | =0. Thus,
>0, from (2.18) and (2.19), # is a positive solution of problem (1.1). [
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