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EXPONENTIAL AND HYERS––ULAM STABILITY OF

IMPULSIVE LINEAR SYSTEM OF FIRST ORDER

DILDAR SHAH, USMAN RIAZ ∗ AND AKBAR ZADA

Abstract. In this manuscript, we study the exponential stability and Hyers–Ulam stability of
the linear first order impulsive differential system. We prove that the homogeneous impulsive
system is exponentially stable if and only if the solution of the corresponding non-homogeneous
impulsive system is bounded. Moreover, we prove that the system is Hyers–Ulam stable if and
only if it is uniformly exponentially dichotomic. We obtain our results by using the spectral
decomposition theorem. To illustrate our theoretical results, at the end we give an example.

Mathematics subject classification (2020): 34D20, 34D09, 34K20, 34A37.
Keywords and phrases: Differential equation, impulsive system, exponential stability, exponential di-

chotomy, Hyers–Ulam stability.

RE F ER EN C ES

[1] A. ZADA, A characterization of dichotomy in terms of boundedness of solutions for some Cauchy
problems, Electron J. Differ. Eq., 2008, 94 (2008), 1–5.

[2] A. ZADA AND U. RIAZ, Kallman–Rota type inequality for discrete evolution families of bounded
linear operators, Fractional Differ. Calc., 7, 2 (2017), 311–324.

[3] T. AOKI, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2, 1–2
(1950), 64–66.

[4] T. BERGER AND A. ILCHMANN, On stability of time-varying linear differential-algebraic equations,
Int. J. Control, 86, 6 (2013), 1060–1076.

[5] D. H. HYERS, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA, 27, 4
(1941), 222–224.

[6] D. H. HYERS, G. ISAC AND TH. M. RASSIAS, Stability of functional equations in several variables,
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