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INITIAL BOUNDARY VALUE PROBLEM FOR A TIME

FRACTIONAL WAVE EQUATION ON A METRIC GRAPH

Z. A. SOBIROV, O. KH. ABDULLAEV ∗ AND J. R. KHUJAKULOV

(Communicated by C. Goodrich)

Abstract. This work devoted to IBVP problem for a time-fractional differential equation on the
regular metric tree graph. Using the method of separation of variables we find exact solution
of the investigated problem in the form of Fourier series. Special case for these problem are
discussed, moreover in this case eigenvalues and corresponding eigenfunctions are found exactly.
Sufficient classes of given functions, which provides an existence and uniqueness of solution of
the considered problem, are defined. Using a-priori estimates for the solution, uniqueness of
solution is proved.

1. Introduction

In this work we consider following time-fractional equation

CDα
0t u(x,t)−uxx(x,t) = f (x,t) (1)

on the regular metric tree graph. Investigation of differential equations on the metric
graphs is one of the new direction of modern science. The increasing interest on the
study of the various problems on metric graphs is motivated by wide range of practical
problems of the modern physics, biology and others sciences in branched structures
(see [12], [14], [19]). On the other hand, fractional calculus is used for the descrip-
tion of a large class of physical (see [11], [34]) and chemical processes that occur in
media with fractal geometry as well as in the mathematical modeling of economic and
social-biological phenomena [25], nanotechnology [3], viscoelasticity processes [22]
and prediction of extreme events like earthquake [7]. More detailed information on
the fractional order partial differential equations and their applications in other fields
one can find in I. Podlubny [26], A. Kilbas, H. M. Srivastava, J. J. Trujillo [18], S. G.
Samko, A. A. Kilbas, O. I. Marichev [28] and others.
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We consider finite regular tree with root vertex O . In the root vertex O we have
one incident bond. In each interior vertex we have one incoming and two outgoing
bonds (see Fig. 1). We denote the bonds as B1,B2, . . . ,B2n+1−1 . We notice that the
bonds Bk , B2k and B2k+1 , k = 1,2n−1 meet at one inner vertex point, and we denote

graph Γ , as Γ =
⋃2n+1−1

k=1 Bk .
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Figure 1: Tree graph

We define coordinate xk on the the each bond Bk of the graph with isometric
mapping it to the line intervals (0,Lk) , (k = 1,2n+1−1) . Further we will use the
notation x instead of xk . The vertices with coordinate x = 0 of the bond B1 and
with coordinates x = Lk of the bonds Bk , k = 2n,2n+1−1, are called to be boundary
vertices.

Notice, that IBVPs for the PDEs with fractional and integer order derivatives on
metric graphs was investigated by number of authors (see, [1], [10], [13], [17], [20],
[29]). Airy-type evolution equations on star graphs [24]. The Cauchy problem for the
Airy equation with a fractional derivative on a star-graph is solved using by potentials
method [32]. The Schrodinger equation on the metric graphs are investigated by num-
ber of authors (see, [4], [30], [31], [35] and references in them). In the case, IBVP
on metric graph for when one is consider Schrodinger equation with Kirchhoff gluing
conditions and homogeneous boundary conditions, the metric graph is called quantum
graph. G. Khudoyberganov, Z. Sobirov, M. Eshimbetov [15], [16] investigated simi-
lar problem for the heat equation integer order with Fokas method on the general and
simple star metric graph. Using numerical methods V. Mehandiratta, M. Mehra [23]
studied analogical problem for the equation (1) on the star metric graph. In [1] and [17]
direct and inverse problems for equation (1) on metric star graph were investigated.
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2. Preliminaries

2.1. Fractional integro-differential operators

The operator

(Iα
ax f ) (x) :=

1
Γ(α)

x∫
a

f (t)dt
(x− t)1−α , x > a; ℜ(α) > 0,

is called fractional integral operator [18].
The Caputo fractional derivative (CDα

ax f ) (x) of order (α > 0), α /∈ N are defined
by [18]

(CDα
ax f )(x) :=

1
Γ(n−α)

x∫
a

f (n)(t)

(x− t)α−n+1 dt =:
(
In−α
ax Dny

)
(x), x > a,

where D = d/dx and n = [α]+1.

2.2. Mittag-Leffler function

The function

Eα ,β (z) =
∞

∑
n=0

zn/Γ(αn+ β )

is called Mittag-Leffler function [26], where α > 0, β ∈ C and z ∈ C .

LEMMA 1. If α < 2 , β is arbitrary real number, μ is such that πα/2 < μ <
min{π ,πα} and C1 is real constant, then

∣∣∣Eα ,β (z)
∣∣∣� C1

1+ |z| , (μ � |arg(z)| � π), |z| � 0

(see [26] Theorem 1.6, p. 35).

For the Mittag-Leffler type functions takes place following easy proven properties,
at α,β ,γ = const > 0:

Eα ,β (z) = 1/Γ(β )+ zEα ,β+α(z),

1
Γ(γ)

z∫
0

(z− t)γ−1Eα ,β (λ tα)tβ−1dt = zβ+γ−1Eα ,β+γ(λ zα),

d
dz

Eα ,1(λ zα) = λ zα−1Eα ,α(λ zα),
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LEMMA 2. If the series f (x) =
∞
∑

n=0
fn(x) , fn(x) ∈C ([a,b]) is uniformly conver-

gent on [a,b] , then its termwise fractional integration is admissible:(
Iα
a+

∞

∑
n=0

fn

)
(x) =

∞

∑
n=0

(
Iα
a+ fn

)
(x), α > 0, a < x < b.

the series on the right-hand side being also uniformly convergent on [a,b] (see [18]
Lemma 15.1, p. 277).

3. Formulation of the problem

On the each bond of the graph Γ , we consider fractional differential equation

CDα
0t u

(k)(x,t)−u(k)
xx (x,t) = f (k)(x,t), (x, t) ∈ (Bk × (0,T )) , (2)

where CDα
0t is Caputo fractional differential operator, 1 < α < 2 and f (k)(x,t) (k =

1,2n+1−1, n ∈ N) are given functions.
We will consider the following problem for equation (2) on the Γ .

PROBLEM. Find the solutions u(k)(x,t) , (k = 1,2n+1−1) of the equations (2), on
the class of functions

u(k)(x, t) ∈C([0,Lk]× [0,T ]), CDα
0tu

(k)(x,t), u(k)
xx (x,t) ∈C ((0,Lk)× (0,T)) ,

u(k)
t (x,0) ∈C ((0,Lk)× [0,T)) , k = 1,2n+1−1,

u(1)
x (x, t) ∈C ((0,L1]× (0,T)) , u(k)

x (x,t) ∈C ([0,Lk]× (0,T )) k = 2,2n−1,

u(k)
x (x,t) ∈C ([0,Lk)× (0,T)) , k = 2n,2n+1−1

which satisfy following initial conditions

u(k) (x,0) = ϕ(k) (x) , u(k)
t (x,0) = ψ(k)(x), x ∈ Bk, k = 1,2n+1−1, (3)

vertex conditions

u(k) (Lk,t) = u(2k) (0,t) = u(2k+1) (0, t) , t ∈ [0,T ], (4)

−u(k)
x (Lk, t)+u(2k)

x (0,t)+u(2k+1)
x (0,t) = 0, t ∈ (0,T ), k = 1,2n−1, (5)

and boundary conditions

u(1) (0, t) = 0, u(k) (Lk,t) = 0, t ∈ [0,T ], k = 2n,2n+1−1. (6)

where ϕ(k) (x) and ψ(k)(x) are sufficiently smooth given functions, besides

ϕ(k) (Lk) = ϕ(2k) (0) = ϕ(2k+1) (0) ,

−ϕ(k)
x (Lk)+ ϕ(2k)

x (0)+ ϕ(2k+1)
x (0) = 0, k = 1,2n−1, (7)

ϕ(1)(0) = 0, ϕ(k)(Lk) = 0, k = 2n,2n+1−1. (8)
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4. Solution of the problem

Using the method of separation of variables for the homogeneous equation we get

d2

dx2 X (k)(x)+ λ 2X (k)(x) = 0, k = 1,2n+1−1, (9)

and
CDα

0tT (t)+ λ 2T (t) = 0, 1 < α < 2. (10)

Moreover, from the conditions (4)–(6), we receive

X (k)(Lk) = X (2k)(0) = X (2k+1)(0), (11)

− d
dx

X (k)(Lk)+
d
dx

X (2k)(0)+
d
dx

X (2k+1)(0) = 0, k = 1,2n−1, (12)

X (1)(0) = 0, X (k) (Lk) = 0, k = 2n,2n+1−1. (13)

The spectral problem (9), (11)–(13) in the case of general metric graphs was in-
vestigated in [5], [6], [8], [9]. In this case the graph is called “quantum” graph and
the operator d2

dx2 , defined in each edge of the graph together with conditions (11)–(13),
called to be “edge-based” Laplacian (see [8]).

Next, we need to constitute some results from [5] and [8].
Let us define the eigenvalue counting function NΓ(k) as a number of eigenvalues

of the quantum graph Γ which are smaller than k ,

NΓ(k) = �{λ ∈ σ(Γ) : λ � k} .

This number is guaranteed to be finite since the spectrum of a quantum graph
is discrete and bounded from below ([5], [6]). We count the eigenvalues in terms of
k =

√
λ as this is more convenient and can be easily related back to λ . The counting

function NΓ(k) grows linearly in k , with the slope proportional to the total lengths of
the graph. This type of result is known as the Weyl’s law.

LEMMA 3. [4] Let Γ be a graph with Neumann or Dirichlet conditions at every
boundary vertex. Then

N(k) =
L̂
π

k+O(1),

where L̂ = L1 +L2 + . . .+Lm is the total length the graph’s edges and the remainder
term is bounded above and below by constants independent of k .

We put Xm(x) =

⎛
⎜⎜⎜⎝

X (1)
m (x)

X (2)
m (x)
. . .

X (22n+1−1)
m (x)

⎞
⎟⎟⎟⎠ be vector eigenfunctions of the problems (9),

(11)–(13) corresponding to λm . From the above lemma it follows that λm ∼ const ·m
at m → +∞ .
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By C∞ (Γ) , the set of infinitely differentiable functions on Γ , we mean the set of
continuous functions on Γ whose restriction to each edge interior is j -times uniformly
continuously differentiable (as a function on that real interval) for any j=1,2, . . .

C∞
Dir(Γ) = { f ∈C∞(Γ) : f |∂Γ = 0},

where ∂Γ is the set of boundary vertices. L2
Dir(Γ) be the closure of C∞

Dir under the
norm

‖u‖2
Γ = ∑

k

∫ Lk

0

∣∣∣u(k)
∣∣∣2 dx.

Now we formulate theorem on completeness of eigenfunctions of the “edge-based”
graph Laplacian (or quantum graph) from [8].

THEOREM 1. (See Proposition 3.2. in [8]).
Let Γ is finite graph. There exists eigenpairs (Xm,λm) , m = 1,2, . . . for the edge

based Laplacian, such that:
(1) 0 � λ1 � λ2 � . . . ,
(2) the Xm satisfy the Dirichlet condition,
(3) the Xm form a complete orthonormal basis for L2

Dir(Γ) , and
(4) λm → ∞ .

Let us demonstrate one specific example. Let n = 2, i.e. we consider metric graph
with 7 edges we introduce E = {Bk}7

k=1 and V = {νk}3
k=1 set of edges and set of

vertices, respectively.
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We assume, that L1 = L2 = . . . = L7 = L . IBVP for the wave equation (α = 2) on
similar tree graphs with equal bonds is considered in [33].

In our case we get eigenvalues λ1,m = λ2,m = λ3,m = λ4,m = πm/L , λ5,m = (2m−
1)π/2L , m ∈ N . We will define scalar product of the functions

f (x) =

⎛
⎜⎜⎝

f (1)(x1)
f (2)(x2)

. . .

f (7)(x7)

⎞
⎟⎟⎠ , g(x) =

⎛
⎜⎜⎝

g(1)(x1)
g(2)(x2)

. . .

g(7)(x7)

⎞
⎟⎟⎠
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defined on the graph in the form:

( f (x),g(x))Γ = ∑
k

Lk∫
0

f (k)(xk)g(k)(xk)dxk

and the norm in the form:
‖ f‖Γ =

√
( f , f )Γ .

Orthonormal system of eigenfunctions for the eigenvalues λ = πm
L are

X5m−4(x) =
2√
10L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
1
1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

sin
πm
L

x, X5m−3(x) =
1√
3L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1
1
−1
1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

sin
πm
L

x,

X5m−2(x) =
1√
6L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
1
2
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

sin
πm
L

x, X5m−1(x) =
1√
6L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
−1
2
1
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

sin
πm
L

x,m ∈ N.

Eigenfunctions corresponding to eigenvalues λ = (2m−1)π/L is

X5m(x) =
1√
3L

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
1
1
−1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

cos
(2m−1)π

2L
x.

It is clear, that the Problem has another eigenvalues λ±,m = 1
2 arccos 5

9 + πm , too.
Corresponding eigenfunctions X±,m(x) can be found similarly.In general case we get
following theorem.

THEOREM 2. If ϕ(k)(x) , ψ(k)(x) ∈ C1[0,Lk] , ∂
∂x f (k)(x,t) ∈ C ([0,Lk]× (0,T ))

besides d2

dx2 ϕ(k)(x), d2

dx2 ψ(k)(x) and ∂ 2

∂x2 f (k)(x,t) are absolute integrable functions in
(0,Lk) and (Bk × (0,T )) respectively, additionally, following conditions

−∂ f (k)

∂x
(Lk, t)+

∂ f (2k)

∂x
(0,t)+

∂ f (2k+1)

∂x
(0,t)= 0, f (k)(Lk, t)= f (2k)(0, t)= f (2k+1)(0,t),
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ψ(k) (Lk)= ψ(2k) (0)= ψ(2k+1) (0) , ψ(k)
x (Lk)−ψ(2k)

x (0)−ψ(2k+1)
x (0)= 0, k = 1,2n−1,

ψ(1)(0) = 0, ψ(k)(Lk) = 0, k = 2n,2n+1−1,

f (1)(0,t) = 0, f (k)(Lk,t) = 0, k = 2n,2n+1−1

are hold. Then the problem (2)–(8) has a unique solution.

Proof. We expand f (x,t) into Fourier series in terms of eigenfunctions, i.e.

f (x,t) =
∞

∑
m=0

fm(t)Xm(x). (14)

Let the solution of equation (2) is in the form

u(x,t) =
∞

∑
m=0

Xm(x)Wm(t). (15)

From equation (2), we obtain

CDα
0tWm(t)+ λ 2

mWm(t) = fm(t). (16)

We use a general solution of equation (16) at 1 < α < 2, which has a form [27]:

Wm(t) =
∫ t

0
(t− z)α−1Eα ,α

[
−λ 2

m(t− z)α
]
fm(z)dz

+C0
mEα ,1(−λ 2

mtα)+C1
mtEα ,2(−λ 2

mtα), 1 < α < 2 (17)

So, general solution of the equation (2) can be written in the following form

u(k)(x, t) =
∞

∑
m=0

[∫ t

0
(t− z)α−1Eα ,α

[
−λ 2

m(t− z)α
]
fm(z)dz

+C0
mEα ,1(−λ 2

mtα)+C1
mtEα ,2(−λ 2

mtα)
]
X (k)

m (x), (k = 1,2n+1−1). (18)

We assume, that

ϕ(x) =
∞

∑
m=0

ϕmXm(x), ψ(x) =
∞

∑
m=0

ψmXm(x). (19)

The solution (18) should satisfy initial conditions (3), so we have

C0
m = ϕm, C1

m = ψm. (20)

Integrating by parts and taking to account the conditions (7)–(8), (11)–(13) and condi-
tions of the theorem we obtain

ϕm = ∑
k

∫ Lk

0
ϕ(k)(x)X (k)

m (x)dx = − 1
λ 2

m
∑
k

∫ Lk

0

d2

dx2 ϕ(k)(x)X (k)
m (x)dx, (21)
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ψm = ∑
k

∫ Lk

0
ψ(k)(x)X (k)

m (x)dx = − 1
λ 2

m
∑
k

∫ Lk

0

d2

dx2 ψ(k)(x)X (k)
m (x)dx. (22)

Now, it is required to prove the convergence of the Fourier series corresponding to the

functions u(k)(x, t) , u(k)
xx (x,t) , CDα

0t u
(k)(x,t) in the domain Bk × (0,T ) . For further

investigations we need the following lemma.

LEMMA 4. ∣∣∣X (k)
m (x)

∣∣∣= ∣∣∣am,k cosλmx+bm,k sinλmx
∣∣∣�√2/Lk. (23)

Proof. Easy to see, that

‖Xm(x)‖2
Γ = ∑

k

Lk∫
0

(
X (k)

m (x)
)2

dxk = 1,

and
Lk∫
0

(
am,k cosλmx+bm,k sinλmx

)2
dx

=
a2

m,k +b2
m,k

2
Lk +

a2
m,k +b2

m,k

4λm
sin2λmLk − am,kbm,k

4λm

(
cos2λmLk −1

)
� 1.

From the last relation, considering taking to account lemma 3 and asymptotic behaviour
of each term at m → ∞ , we get a2

m,k +b2
m,k � 2/Lk . Hence, we infer∣∣∣X (k)

m (x)
∣∣∣= ∣∣∣am,k cosλmx+bm,k sinλmx

∣∣∣�√a2
m,k +b2

m,k �
√

2/Lk.

The lemma is proved. �
From (20)–(22), we find∣∣∣C0

m

∣∣∣= ∣∣∣ϕm

∣∣∣� M1/λ 2
m,

∣∣∣C1
m

∣∣∣= ∣∣∣ψm

∣∣∣� M2/λ 2
m, (24)

where M1,M2 = const > 0. Similarly, from (14) we will deduce, that∣∣∣ fm(t)
∣∣∣ =

∣∣∣∑
k

∫ Lk

0
f (k)(x,t)X (k)

m (x)dx
∣∣∣

=
∣∣∣ 1
λ 2

m
∑
k

∫ Lk

0

∂ 2

∂x2 f (k)(x,t)X (k)
m (x)dx

∣∣∣� const
λ 2

m
. (25)

From (18) and (23)–(25) we obtain∣∣∣u(k)(x, t)
∣∣∣ =

∣∣∣ ∞

∑
m=0

(∫ t

0
(t− z)α−1Eα ,α

[
−λ 2

m(t− z)α
]
fm(z)dz

+C0
mEα ,1(−λ 2

mtα)+C1
mtEα ,2

(
−λ 2

mtα
))

X (k)
m (x)

∣∣∣
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�
∞

∑
m=0

∣∣∣∫ t

0
(t − z)α−1Eα ,α

[
−λ 2

m(t − z)α
]
fm(z)dz+C0

mEα ,1(−λ 2
mtα)

+C1
mtEα ,2

(
−λ 2

mtα
)∣∣∣∣∣∣X (k)

m (x)
∣∣∣

�
∞

∑
m=0

(∣∣∣∫ t

0
(t− z)α−1Eα ,α

[
−λ 2

m(t− z)α
]
fm(z)dz

∣∣∣
+
∣∣∣C0

mEα ,1

(
−λ 2

mtα
)∣∣∣+ ∣∣∣C1

mtEα ,2

(
−λ 2

mtα
)∣∣∣)√2/Lk

�
∞

∑
m=0

(∫ t

0
|t − z|α−1

∣∣∣Eα ,α

[
−λ 2

m(t − z)α
]∣∣∣| fm(z)|dz

)√
2/Lk

+
∞

∑
m=0

( M4

λ 2
m(1+ λ 2

m)
+

M5

λ 2
m(1+ λ 2

m)

)

�
∞

∑
m=0

M3

λ 2
n (1+ λ 2

m)
+

∞

∑
m=0

M6

λ 2
m(1+ λ 2

m)

�
∞

∑
m=0

M7

λ 2
m(1+ λ 2

m)
(26)

for (k = 1,2n+1−1) . Where Mi = const > 0, i = 3,7 and M4 +M5 = M6, M3 +M6 =
M7. Similarly, we get

∣∣∣u(k)
xx (x, t)

∣∣∣ =
∣∣∣− ∞

∑
m=0

λ 2
m

[∫ t

0
(t − z)α−1Eα ,α

[
−λ 2

m(t − z)α
]
fm(z)dz

+C0
mEα ,1(−λ 2

mtα)+C1
mtEα ,2(−λ 2

mtα)
]
X (k)

m (x)
∣∣∣

�
∞

∑
m=0

M7

1+ λ 2
m

.

Now, we find formal expression for u(k)
tt (x,t) :

u(k)
tt (x, t) =

∞

∑
m=0

(
−
∫ t

0
(t− z)α−2Eα ,α−1

[
−λ 2

m(t− z)α
]
f ′m(z)dz

−tα−2Eα ,α−1

[
−λ 2

mtα
]
fm(0)−C0

mλ 2
mEα ,α−1(−λ 2

mtα)

+C1
mtα−1Eα ,α

(
−λ 2

mtα
))

X (k)
m (x),∣∣∣u(k)

tt (x, t)
∣∣∣ =

∣∣∣ ∞

∑
m=0

(
−
∫ t

0
(t− z)α−2Eα ,α−1

[
−λ 2

m(t− z)α
]
f ′m(z)dz

−tα−2Eα ,α−1

[
−λ 2

mtα
]
fm(0)−C0

mλ 2
mEα ,α−1(−λ 2

mtα)

+C1
mtα−1Eα ,α

(
−λ 2

mtα
))

X (k)
m (x)

∣∣∣
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�
∞

∑
m=0

∣∣∣−∫ t

0
(t− z)α−2Eα ,α−1

[
−λ 2

m(t − z)α
]
f ′m(z)dz

−tα−2Eα ,α−1

[
−λ 2

mtα
]
fm(0)

−C0
mλ 2

mEα ,α−1(−λ 2
mtα)+C1

mtα−1Eα ,α

(
−λ 2

mtα
)∣∣∣∣∣∣X (k)

m (x)
∣∣∣

�
∞

∑
m=0

(∣∣∣∫ t

0
(t− z)α−2Eα ,α−1

[
−λ 2

m(t − z)α
]
f ′m(z)dz

∣∣∣
+
∣∣∣tα−2Eα ,α−1

[
−λ 2

mtα
]
fm(0)

∣∣∣
+
∣∣∣C0

mλ 2
mEα ,α−1(−λ 2

mtα)
∣∣∣+ ∣∣∣C1

mtα−1Eα ,α

(
−λ 2

mtα
)∣∣∣)
√

2
Lk

�
∞

∑
m=0

(∫ t

0
|t− z|α−2

∣∣∣Eα ,α−1

[
−λ 2

m(t − z)α
]∣∣∣| f ′m(z)|dz

+Tα−2
∣∣∣Eα ,α−1

[
−λ 2

mtα
]∣∣∣∣∣∣ fm(0)

∣∣∣)
√

2
Lk

+
∞

∑
m=0

( M4

1+ λ 2
m

+
M5

λ 2
m

(
1+ λ 2

m

))

�
∞

∑
m=0

M3

λ 2
m

+
∞

∑
m=0

M6

λ 2
m

�
∞

∑
m=0

M7

λ 2
m

According to the asymptotes of λm ∼ c ·m (c is const) we conclude, that the series

for u(k)(x, t) , u(k)
xx (x,t) , u(k)

tt (x,t) are uniformly convergent. Now, we will calculate
CDα

0t u
(k)(x, t)

CDα
0t u

(k)(x, t) = I2−αu(k)
tt (x,t)

= I2−α
∞

∑
m=0

(
−
∫ t

0
(t − z)α−2Eα ,α−1

[
−λ 2

m(t − z)α
]
f
′
m(z)dz

−tα−2Eα ,α−1

[
−λ 2

mtα
]
fm(0)

−C0
mλ 2

mEα ,α−1(−λ 2
mtα)+C1

mtα−1Eα ,α

(
−λ 2

mtα
))

X (k)
m (x)

=
∞

∑
m=0

I2−α
(
−
∫ t

0
(t− z)α−2Eα ,α−1

[
−λ 2

m(t − z)α
]
f
′
m(z)dz

−tα−2Eα ,α−1

[
−λ 2

mtα
]
fm(0)

−C0
mλ 2

mEα ,α−1(−λ 2
mtα)+C1

mtα−1Eα ,α

(
−λ 2

mtα
))

X (k)
m (x).

According to estimates above and the lemma 2 the series in the last equation are uni-
formly convergent and termwise fractional integration is admissible. Thus, we will
conclude that the function (19) satisfies the equation (2).
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Now we need to show uniqueness of the solution.

LEMMA 5. For the solution of the problem, following estimates are hold

∥∥∥ux(x, t)
∥∥∥2

Γ
�
∫ t

0

(∥∥∥uτ(x,τ)
∥∥∥2

Γ
+
∥∥∥ f
∥∥∥2

Γ

)
dτ + c1

∥∥∥ψ(x)
∥∥∥2

Γ
+ c2

∥∥∥ϕ
′
(x)
∥∥∥2

Γ
,

∫ t

0

∥∥∥uτ(x,τ)
∥∥∥2

Γ
dτ � m1D

−α
0t

∥∥∥ f
∥∥∥2

Γ
+ c3

∥∥∥ψ(x)
∥∥∥2

Γ
+ c4

∥∥∥ϕ
′
(x)
∥∥∥2

Γ
.

where c3 , c4 and m1 are positive constants.

Proof. We multiply equation (2) by u(k)
t (x,t) and integrate the resulting relation

with respect to x from 0 to Lk

∫ Lk

0
u(k)
t (x,t)CDα

0tu
(k)(x,t)dx−

∫ Lk

0
u(k)
t (x,t)u(k)

xx (x,t)dx

=
∫ Lk

0
u(k)
t (x,t) f (k)(x,t)dx. (27)

Transforming the terms occurring in identity (27) and according to the lemma 1 in [2]
we obtain

∫ Lk

0
u(k)
t (x,t)CDα

0tu
(k)(x,t)dx =

∫ Lk

0
u(k)
t (x,t)CDα−1

0t u(k)
t (x, t)dx

�
∫ Lk

0

1
2CDα−1

0t

(
u(k)
t (x,t)

)2
dx. (28)

2n+1−1

∑
k=1

∫ Lk

0

1
2CDα−1

0t

(
u(k)
t (x,t)

)2
dx =

1
2CDα−1

0t

∥∥∥ut(x,t)
∥∥∥2

Γ
,

−
2n+1−1

∑
k=1

∫ Lk

0
u(k)
t (x,t)u(k)

xx (x,t)dx =
1
2

2n+1−1

∑
k=1

∂
∂ t

∫ Lk

0

(
u(k)

x (x,t)
)2

dx

=
1
2

∂
∂ t

∥∥∥ux(x,t)
∥∥∥2

Γ
,

∣∣∣∫ Lk

0
u(k)
t (x, t) f (k)(x,t)dx

∣∣∣� 1
2

∫ Lk

0

(
u(k)
t (x,t)

)2
dx+

1
2

∫ Lk

0

(
f (k)(x,t)

)2
dx.

Taking into account the performed transformations from identity (28), we obtain the
inequality

CDα−1
0t

∥∥∥ut(x,t)
∥∥∥2

Γ
+

∂
∂ t

∥∥∥ux(x,t)
∥∥∥2

Γ
�
∥∥∥ut(x, t)

∥∥∥2

Γ
+
∥∥∥ f (x,t)

∥∥∥2

Γ
. (29)
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Next, integrating this relation from 0 to t , we obtain the inequality

Dα−2
0t

∥∥∥ut(x,t)
∥∥∥2

Γ
+
∥∥∥ux(x,t)

∥∥∥2

Γ

�
∫ t

0

(∥∥∥uτ(x,τ)
∥∥∥2

Γ
+
∥∥∥ f (x,τ)

∥∥∥2

Γ

)
dτ + c1

∥∥∥ψ(x)
∥∥∥2

Γ
+ c2

∥∥∥ϕx(x)
∥∥∥2

Γ
, (30)

here c1 , c2 are positive constants. Based on (30) we get

∥∥∥ux(x, t)
∥∥∥2

Γ
�
∫ t

0

(∥∥∥uτ(x,τ)
∥∥∥2

Γ
+
∥∥∥ f (x,t)

∥∥∥2

Γ

)
dτ + c1

∥∥∥ψ(x)
∥∥∥2

Γ
+ c2

∥∥∥ϕx(x)
∥∥∥2

Γ
,

Dα−2
0t

∥∥∥ut(x, t)
∥∥∥2

Γ
�
∫ t

0

∥∥∥uτ(x,τ)
∥∥∥2

Γ
dτ +

∫ t

0

∥∥∥ f (x,τ)
∥∥∥2

Γ
dτ + c1

∥∥∥ψ(x)
∥∥∥2

Γ
+ c2

∥∥∥ϕx(x)
∥∥∥2

Γ
.

(31)

Now, using generalised fractional order Gronwall-Bellman inequality, we have (see [2],
[21])

∫ t

0

∥∥∥uτ(x, t)
∥∥∥2

Γ
dτ � m1D

−α
0t

∥∥∥ f (x,t)
∥∥∥2

Γ
+ c3

∥∥∥ψ(x)
∥∥∥2

Γ
+ c4

∥∥∥ϕx(x)
∥∥∥2

Γ
,

where c3 , c4 and m1 are positive constants. This proves the lemma. �

The uniqueness of the solution follows from lemma 5. This finishes the proof of
the Theorem 2 �

Conclusion. In this work, we investigated the Initial-Boundary Value Problem for
time-fractional wave equation on the tree graph, which has one root vertex with valency
one, and other vertices have the valency equal to three. We construct the solution of
the equation using method of separation of variables (the Fourier method). It is also
shown, that the Fourier series, representing the solution and its derivatives involved in
the equation, uniformly converge in the given domain. The uniqueness of the solution
was obtained using a-priori estimates.
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