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EXPONENTIAL STABILITY FOR A FLEXIBLE STRUCTURE WITH

FOURIER’S TYPE HEAT CONDUCTION AND DISTRIBUTED DELAY

MADANI DOUIB ∗ , SALAH ZITOUNI AND ABDELHAK DJEBABLA

(Communicated by P. I. Naumkin)

Abstract. In this paper, we study the well-posedness and asymptotic behaviour of solutions to a
flexible structure with Fourier’s type heat conduction and distributed delay. We prove the well-
posedness by using the semigroup theory. Also we establish a decay result by introducing a
suitable Lyaponov functional.

1. Introduction

In this work, we consider a coupled system of a flexible structure with Fourier’s
type heat conduction and distributed delay. The system is written as{

m(x)utt − (p(x)ux +2δ (x)uxt)x + γθx + μ0ut +
∫ τ2

τ1
μ(s)ut (x,t − s)ds = 0,

θt −θxx + γuxt = 0,
(1.1)

where (x, t) ∈ (0,L)× (0,+∞) , with the following initial and boundary conditions⎧⎨
⎩

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , θ (.,0) = θ0 (x) , ∀x ∈ [0,L],
u(0, t) = u(L,t) = 0, θ (0,t) = θ (L,t) = 0, ∀t � 0,
ut (x,−t) = f0(x,t), 0 < t � τ2,

(1.2)

where u = u(x, t) is the displacement of a particle at position x ∈ (0,L) and time t >
0. θ = θ (x, t) is the temperature difference and γ is a constant known as coupling
coefficient. u0,u1,θ0 are initial data, and f0 is the history function. The parameters
m(x), δ (x) and p(x) is responsible for the non-uniform structure of the body, where
m(x) denote mass per unit length of structure, δ (x) coefficient of internal material
damping and p(x) a positive function related to the stress acting on the body at a point
x. We recall the assumptions of the functions m(x),δ (x) and p(x) in [1] such that

m,δ , p ∈W 1,∞(0,L), m(x),δ (x), p(x) > 0, ∀x ∈ [0,L].
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The coefficient μ0 is a positive constant, and μ : [τ1;τ2] −→ R is a bounded function,
where τ1 and τ2 are two real numbers satisfying 0 � τ1 < τ2. Here, we prove the well-
posedness and stability results of solutions for system (1.1)–(1.2) under the assumption

μ0 >
∫ τ2

τ1

|μ (s)|ds. (1.3)

One of the main issues concerning the vibrations in models of flexible structural sys-
tems is the question of the stabilization of the structure, the linear differential equation
describing the vibrations of an inhomogeneous flexible structure with an exterior dis-
turbing force can be described by the following equation

m(x)utt − (p(x)ux +2δ (x)uxt)x = f (x) , on (0,L)×R
+, (1.4)

the distributed force f : (0,L)×R
+ −→ R is the uncertain disturbance appearing in the

model which is assumed to be continuously differentiable for all t � 0. In [8], Gorain
has established uniform exponential stability of the problem (1.4). It is physically rele-
vant to take into account thermal effects in flexible structures, in 2014, M. Siddhartha et
al. [10] showed the exponential stability of the vibrations of a inhomogeneous flexible
structure with thermal effect governed by the Fourier law,{

m(x)utt − (p(x)ux +2δ (x)uxt)x + κθx = f ,
θt −θxx + κutx = 0.

(1.5)

In the above model, the temperature has an infinite velocity of propagation (heat equa-
tion), this property of the model is not consistent with the reality, where the heating or
cooling of a flexible structure will usually take some time. Many researches have thus
been conducted in order to modify the model of thermal effect.

Time delays arise in many applications because most phenomena naturally depend
not only on the present state but also on some past occurrences. We know the dynamic
systems with delay terms have become a major research subject in differential equation
since the 1970 s of the last century. Introducing the delay term makes the problem
different from those considered in the literatures (e.g. [2, 3, 6, 7, 9, 12, 13, 14, 15]). It
was shown that delay is a source of instability unless additional conditions or control
terms are used, see [4]. On the other hand, it may not only destabilize a system which
is asymptotically stable in the absence of delay but may also lead to well posedness
(see [5, 17] and the references therein). Therefore, the stability issue of systems with
delay is of theoretical and practical great importance. In [7], the authors consider the
vibrations of an inhomogeneous flexible structure system with a constant internal delay
under Cattaneo’s law of heat condition⎧⎨

⎩
m(x)utt − (p(x)ux +2δ (x)uxt)x + ηθx + μut (x,t− τ0) = 0,
θt + κqx + ηutx = 0,
τqt + βq+ κθx = 0,

(1.6)

where (x, t) ∈ (0,L)× (0,+∞) , with boundary condition and initial condition⎧⎨
⎩

u(0,t) = u(L,t) = 0, θ (0,t) = θ (L,t) = 0, t � 0,
u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x ∈ [0,L] ,
θ (x,0) = θ0 (x) , q(x,0) = q0 (x) , x ∈ [0,L] ,

(1.7)



Differ. Equ. Appl. 15, No. 1 (2023), 61–72. 63

and proved the well-posedness and the exponential stability. M. S. Alves et al. [1] con-
sider the system (1.6)–(1.7) without delay term, and obtained an exponential stability
result for one set of boundary conditions, and at least polynomial for another set of
boundary conditions.

Motivated by the above results, in the present work, we study well-posedness and
exponential stability for a flexible structure where the heat flux is given by Fourier’s
law with distributed delay. The paper is organized as follow. In Section 2, we state
and prove the well-posedness of system (1.1)–(1.2) by using semigroup method and
Lumer-Philips theorem. In Section 3, we establish an exponential stability by using the
perturbed energy method and construct some Lyapunov functionals.

2. Well-posedness

In this section, we prove the existence and uniqueness of solutions for (1.1)–(1.2)
using the semigroup theory [16]. As in [14], we introduce the new variable

z(x,ρ , t,s) = ut (x,t −ρs) , x ∈ (0,L) , ρ ∈ (0,1) , t ∈ (0,+∞) , s ∈ (τ1,τ2) . (2.1)

It is straight forward to check that z satisfies

szt (x,ρ , t,s)+zρ(x,ρ ,t,s) = 0, x∈ (0,L) , ρ ∈ (0,1) , t ∈ (0,+∞) , s∈ (τ1,τ2) . (2.2)

Therefore, problem (1.1) takes the form⎧⎨
⎩

m(x)utt − (p(x)ux +2δ (x)uxt)x + γθx + μ0ut +
∫ τ2

τ1
μ(s)z(x,1,t,s)ds = 0,

θt −θxx + γuxt = 0,
szt (x,ρ , t,s)+ zρ(x,ρ ,t,s) = 0,

(2.3)

with the following initial and boundary conditions⎧⎪⎪⎨
⎪⎪⎩

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , θ (.,0) = θ0 (x) , ∀x ∈ [0,L],
u(0, t) = u(L,t) = 0, θ (0,t) = θ (L,t) = 0, ∀t � 0,
z(x,0, t,s) = ut (x,t) on (0,L)× (0,∞)× (τ1,τ2) ,
z(x,ρ ,0,s) = f0 (x,ρs) on (0,L)× (0,1)× (τ1,τ2) .

(2.4)

Introducing the vector function U = (u,v,θ ,z)T , where v = ut , system (2.3)–(2.4) can
be written as {

U ′ (t) = A U (t) , t > 0,
U (0) = U0 = (u0,u1,θ0, f0)T ,

(2.5)

where the operator A is defined by

A U =

⎛
⎜⎜⎜⎝

v
1

m(x)

[
(p(x)ux +2δ (x)vx)x − γθx − μ0v−

∫ τ2
τ1

μ(s)z(x,1, t,s)ds
]

θxx − γvx

−s−1zρ

⎞
⎟⎟⎟⎠ .
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Let
H = H1

0 (0,L)×L2 (0,L)×L2 (0,L)×L2 ((0,L)× (0,1)× (τ1,τ2)) ,

be the Hilbert space equipped with the inner product

〈
U,Ũ

〉
H

=
∫ L

0
p(x)uxũxdx+

∫ L

0
m(x)vṽdx+

∫ L

0
θ θ̃dx

+
∫ L

0

∫ 1

0

∫ τ2

τ1

s |μ (s)| z(x,ρ ,s) z̃ (x,ρ ,s)dsdρdx.

Then, the domain of A is given by

D(A ) =

⎧⎨
⎩U ∈ H

∣∣∣∣∣∣
u,θ ∈ H2 (0,L)∩H1

0 (0,L) , v ∈ H1
0 (0,L) ,

p(x)ux +2δ (x)vx ∈ H1(0,L), θx + γv ∈ H1(0,L),
z,zρ ∈ L2 ((0,L)× (0,1)× (τ1,τ2)) , z(x,0,s) = v(x)

⎫⎬
⎭ .

Clearly, D(A ) is dense in H . We have the following existence and uniqueness result.

THEOREM 1. Assume that U0 ∈ H and (1.3) holds, then there exists a unique
solution U ∈C (R+;H ) of problem (2.5). Moreover, if U0 ∈ D(A ) , then

U ∈C
(
R

+;D(A )
)∩C1 (

R
+;H

)
.

Proof. We use the semigroup approach to prove that A is a maximal monotone
operator, which means A is dissipative and Id−A is surjective.

First, we prove that A is dissipative. For any U = (u,v,θ ,z)T ∈ D(A ) , by using
the inner product and integrating by parts, we obtain

〈A U,U〉H = −2
∫ L

0
δ (x)v2

xdx−
(

μ0 − 1
2

∫ τ2

τ1

|μ (s)|ds

)∫ L

0
v2dx−

∫ L

0
θ 2

x dx

− 1
2

∫ L

0

∫ τ2

τ1

|μ (s)| z2 (x,1,s)dsdx−
∫ L

0
v
∫ τ2

τ1

μ(s)z(x,1,t,s)dsdx.

(2.6)

Using Young’s inequality, the last term in (2.6), we can estimate

−
∫ L

0
v
∫ τ2

τ1

μ(s)z(x,1,t,s)dsdx

� 1
2

∫ τ2

τ1

|μ (s)|ds
∫ L

0
v2dx+

1
2

∫ L

0

∫ τ2

τ1

|μ (s)| z2 (x,1,t,s)dsdx.

(2.7)

Substituting (2.7) in (2.6), and using (1.3), we obtain

〈A U,U〉H � −2
∫ L

0
δ1(x)v2

xdx−
(

μ0 −
∫ τ2

τ1

|μ (s)|ds

)∫ L

0
v2dx−

∫ L

0
θ 2

x dx � 0.

Hence, A is a dissipative operator.
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Next, we prove that the operator Id− A is surjective.
Given F = ( f1, f2, f3, f4)

T ∈ H , we prove that there exists U = (u,v,θ ,z)T ∈
D(A ) satisfying

(Id−A )U = F, (2.8)

that is⎧⎪⎪⎨
⎪⎪⎩

u− v = f1,
(m(x)+ μ0)v− (p(x)ux +2δ (x)vx)x + γθx +

∫ τ2
τ1

μ(s)z(x,1,t,s)ds = m(x) f2,
θ −θxx + γvx = f3,

sz+ zρ = s f4.
(2.9)

Suppose that we have found u . Then, Equation (2.9)1 yield

v = u− f1, (2.10)

it is clear that v ∈ H1
0 (0,L) . Equation (2.9)4 with (2.10) and recall z(x,0,t,s) = v

yield

z(x,ρ ,s) = u(x)e−ρs− f1 (x)e−ρs + se−ρs
∫ ρ

0
f4(x,τ,s)eτsdτ, (2.11)

clearly, z,zρ ∈ L2 ((0,L)× (0,1)× (τ1,τ2)) . Inserting (2.10) and (2.11) into (2.9)2 , and
inserting (2.10) into (2.9)3,we get⎧⎨

⎩
η1u− (p(x)ux +2δ (x)vx)x + γθx = g1,
−θxx + θ + γux = g2,
ux − vx = g3,

(2.12)

where
η1 = m(x)+ μ0 +

∫ τ2
τ1

μ(s)e−sds,

g1 = η1 f1 +m(x) f2 −
∫ τ2

τ1
se−sμ(s)

∫ 1
0 f4(x,τ,s)eτsdτds,

g2 = f3 + γ f1x,
g3 = f1x.

The variational formulation corresponding to Equation (2.12) takes the form

B

(
(u,θ )T ,

(
ũ, θ̃

)T
)

= F
(
ũ, θ̃

)T
, (2.13)

where B :
[
H1

0 (0,L)×L2 (0,L)
]2 −→ R is the bilinear form given by

B

(
(u,θ )T ,

(
ũ, θ̃

)T
)

= η1

∫ L

0
uũdx+

∫ L

0
(p(x)+2δ (x))uxũxdx+ γ

∫ L

0
θxũdx

+
∫ L

0
θxθ̃xdx+

∫ L

0
θ θ̃dx+ γ

∫ L

0
uxθ̃dx,

and F :
[
H1

0 (0,L)×L2 (0,L)
]−→ R is the linear form defined by

F
(
ũ, θ̃

)T
=

∫ L

0
g1ũdx+

∫ L

0
g2θ̃dx+

∫ L

0
2δ (x)g3ũxdx.
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It is easy to verify that B is continuous and coercive, and F is continuous. Conse-
quently, by the Lax-Milgram theorem, problem (2.13) has a unique solution (u,θ ) ∈
H1

0 (0,L)× L2 (0,L) . Applying the classical elliptic regularity, it follows from (2.12)

that (u,θ ) ∈ (
H1

0 (0,L)∩H2 (0,L)
)2

. Hence, there exists a unique U = (u,v,θ ,z)T ∈
D(A ) such that (2.8) is satisfied, the operator Id− A is surjective. At last, the result
of Theorem 1 follows from the Lumer-Phillips theorem. �

3. Exponential stability

In this section, we prove the exponential decay for system (2.3)–(2.4). It will be
achieved by using the perturbed energy method. We define the energy functional E (t)
as

E (t) =
1
2

∫ L

0

[
m(x)u2

t + p(x)u2
x + θ 2]dx+

1
2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |μ (s)|z2 (x,ρ , t,s)dsdρdx.

(3.1)
We have the following exponentially stable result.

THEOREM 2. Let (u,v,θ ,z) be the solution of (2.3)–(2.4) and assume (1.3) holds.
Then there exist two positive constants λ0 and λ1 such that the energy functional (3.1)
satisfies

E (t) � λ0e
−λ1t , t � 0. (3.2)

To prove our this result, we will state some useful lemmas in advance.

LEMMA 1. (Poincaré-type Scheeffer’s inequality, [11]) Let h ∈ H1
0 (0,L) . Then

it holds ∫ L

0
|h|2 dx � L2

π2

∫ L

0
|hx|2 dx. (3.3)

LEMMA 2. (Mean value theorem, [1]) Let (u,v,θ ,z) be the solution to system
(1.1)–(1.2), with an initial datum in D(A ) . Then, for any t > 0 , there exists a sequence
of real numbers (depending on t ), denoted by ζi ∈ [0,L] (i = 1, . . . ,6) , such that∫ L

0
p(x)u2

xdx = p(ζ1)
∫ L

0
u2

xdx,
∫ L

0
m(x)u2

t dx = m(ζ2)
∫ L

0
u2
t dx,

∫ L

0
m(x)u2dx = m(ζ3)

∫ L

0
u2dx,

∫ L

0
δ (x)u2dx = δ (ζ4)

∫ L

0
u2dx,

∫ L

0
δ (x)u2

xdx = δ (ζ5)
∫ L

0
u2

xdx,
∫ L

0
δ (x)u2

xtdx = δ (ζ6)
∫ L

0
u2

xtdx.

LEMMA 3. Let (u,v,θ ,z) be the solution of (2.3)–(2.4) and assume (1.3) holds.
Then the energy functional defined by (3.1), satisfies the estimate

E ′ (t) � −2
∫ L

0
δ (x)u2

xtdx−
∫ L

0
θ 2

x dx−
(

μ0−
∫ τ2

τ1

|μ (s)|ds

)∫ L

0
u2
t dx � 0, (3.4)

for all t � 0 .
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Proof. A simple multiplication of Equations (2.3)1 and (2.3)2 by ut and θ , re-
spectively, and integrating over (0,L) , using integration by parts and the boundary
conditions in (2.4), we get

1
2

d
dt

∫ L

0

[
m(x)u2

t + p(x)u2
x + θ 2]dx

= −2
∫ L

0
δ (x)u2

xtdx−
∫ L

0
θ 2

x dx− μ0

∫ L

0
u2
t dx−

∫ L

0
ut

∫ τ2

τ1

μ(s)z(x,1,t,s)dsdx.

(3.5)

On the other hand, multiplying (2.3)3 by |μ (s)| z , integrating the product over (0,L)×
(0,1)× (τ1,τ2) , and recall that z(x,0,t,s) = ut , yield

1
2

d
dt

∫ L

0

∫ 1

0

∫ τ2

τ1

s |μ (s)|z2 (x,ρ ,t,s)dsdρdx

= −1
2

∫ L

0

∫ τ2

τ1

|μ (s)| z2 (x,1,t,s)dsdx+
1
2

∫ L

0
u2
t

∫ τ2

τ1

|μ (s)|dsdx.

(3.6)

A combination of (3.5) and (3.6) gives

E ′ (t) = −2
∫ L

0
δ (x)u2

xtdx−
∫ L

0
θ 2

x dx−
(

μ0− 1
2

∫ τ2

τ1

|μ (s)|ds

)∫ L

0
u2
t dx

− 1
2

∫ L

0

∫ τ2

τ1

|μ (s)|z2 (x,1,t,s)dsdx−
∫ L

0
ut

∫ τ2

τ1

μ(s)z(x,1,t,s)dsdx.

(3.7)

Meanwhile, using Young’s inequality, we have

−
∫ L

0
ut

∫ τ2

τ1

μ(s)z(x,1,t,s)dsdx

� 1
2

∫ τ2

τ1

|μ (s)|ds
∫ L

0
u2
t dx+

1
2

∫ L

0

∫ τ2

τ1

|μ (s)|z2 (x,1,t,s)dsdx.

(3.8)

Simple substitution of (3.8) into (3.7) and using (1.3) give (3.4), which concludes the
proof. �

Before defining a Lyapunov functional, we need some lemmas as follows.

LEMMA 4. Let (u,v,θ ,z) be the solution of (2.3)–(2.4). Then the functions

I1 (t) :=
∫ L

0
δ (x)u2

xdx+
∫ L

0
m(x)utudx, (3.9)

satisfies, for all ε1,ε2,ε3 > 0, the estimate

I′1 (t) � −
(

p(ζ1)− L2μ2
0

2π2 ε1 − γε2− L2ε3

π2

)∫ L

0
u2

xdx+
γ
ε2

∫ L

0
θ 2dx

+
(

m(ζ2)+
1

2ε1

)∫ L

0
u2
t dx+

μ0

4ε3

∫ L

0

∫ τ2

τ1

|μ (s)|z2 (x,1,t,s)dsdx.

(3.10)



68 M. DOUIB, S. ZITOUNI AND A. DJEBABLA

Proof. By differentiating I1 (t) with respect to t , using the Equation (2.3)1 and
integrating by parts, we obtain

I′1 (t) = −
∫ L

0
p(x)u2

xdx− μ0

∫ L

0
utudx+ γ

∫ L

0
θuxdx+

∫ L

0
m(x)u2

t dx

−
∫ L

0
u
∫ τ2

τ1

μ (s) z(x,1,t,s)dsdx.

By using Young’s inequality, Lemma 1 and (1.3), we get for ε1,ε2,ε3 > 0

− μ0

∫ L

0
utudx � L2μ2

0

2π2 ε1

∫ L

0
u2

xdx+
1

2ε1

∫ L

0
u2
t dx, (3.11)

γ
∫ L

0
θuxdx � γε2

∫ L

0
u2

xdx+
γ
ε2

∫ L

0
θ 2dx, (3.12)

−
∫ L

0
u
∫ τ2

τ1

μ (s) z(x,1,s,t)dsdx � L2ε3

π2

∫ L

0
u2

xdx+
μ0

4ε3

∫ L

0

∫ τ2

τ1

|μ (s)| z2 (x,1,t,s)dsdx.

(3.13)
Consequently, using Lemma 2, (3.11), (3.12) and (3.13), we establish (3.10). �

LEMMA 5. Let (u,v,θ ,z) be the solution of (2.3)–(2.4). Then the functions

I2 (t) :=
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |μ(s)|z2(x,ρ ,t,s)dsdρdx, (3.14)

satisfies, for some positive constant n1 , the estimate

I′2 (t) � −n1

∫ L

0

∫ 1

0

∫ τ2

τ1

s |μ(s)| z2(x,ρ , t,s)dsdρdx

−n1

∫ L

0

∫ τ2

τ1

|μ(s)|z2(x,1,t,s)dsdx+ μ0

∫ L

0
u2
t dx. (3.15)

Proof. Differentiating I2 (t) with respect to t and using the Equation (2.3)3 , we
obtain

I′2(t) = −2
∫ L

0

∫ 1

0

∫ τ2

τ1

e−sρ |μ(s)| z(x,ρ ,t,s)zρ (x,ρ ,t,s)dsdρdx

= − d
dρ

∫ L

0

∫ 1

0

∫ τ2

τ1

e−sρ |μ(s)| z2(x,ρ ,t,s)dsdρdx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |μ(s)|z2(x,ρ ,t,s)dsdρdx.

Hence

I′2(t) = −
∫ L

0

∫ τ2

τ1

|μ(s)| [e−sz2(x,1,t,s)− z2(x,0,t,s)]dsdx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |μ(s)|z2(x,ρ ,t,s)dsdρdx.
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Using the fact that z(x,0,t,s) = ut and e−s � e−sρ � 1, for all ρ ∈ [0,1] , we obtain

I′2(t) � −
∫ L

0

∫ τ2

τ1

e−s |μ(s)| z2 (x,1,t,s)dsdx+
∫ τ2

τ1

|μ(s)|ds
∫ L

0
u2
t dx

−
∫ L

0

∫ 1

0

∫ τ2

τ1

se−sρ |μ(s)| z2(x,ρ ,t,s)dsdρdx.

Because −e−s is an increasing function, we have −e−s � −e−τ2 , for all s ∈ [τ1,τ2] .
Finally, setting n1 = e−τ2 and recalling (1.3), we obtain (3.15). �

Now, we define a Lyapunov functional L and show that it is equivalent to the
energy functional E .

LEMMA 6. Let N,N2 > 0 , the functional defined by

L(t) := NE (t)+ I1(t)+N2I2(t). (3.16)

For two positive constants α and β , we have

αE (t) � L(t) � βE (t) ,∀t � 0. (3.17)

Proof. Now, let
L (t) := I1(t)+N2I2(t).

Then

|L (t)| �
∫ L

0
δ (x)u2

xdx+
∫ L

0
m(x) |utu|dx

+N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s
∣∣μ(s)e−sρ ∣∣z2(x,ρ ,s,t)dsdρdx.

Exploiting Cauchy-Schwarz inequality, Lemma 1, Lemma 2, (3.1) and the fact that
e−sρ � 1 for all ρ ∈ [0,1] , we obtain

|L (t)| � c0E (t) ,

where

c0 = 1+
L2m(ζ3)
π2p(ζ1)

+
2δ (ζ5)
p(ζ1)

+2N2.

Consequently, |L(t)−NE(t)| � c0E(t), which yields

(N− c0)E(t) � L(t) � (N + c0)E(t).

Choosing N large enough, we obtain estimate (3.17). �

Now, we prove our main result in this section.
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Proof (of Theorem 2). By differentiating (3.16) and recalling (3.4), (3.10) and
(3.15), we obtain

L′ (t) � −
[(

μ0−
∫ τ2

τ1

|μ (s)|ds

)
N−

(
m(ζ2)+

1
2ε1

)
− μ0N2

]∫ L

0
u2
t dx

−
[(

p(ζ1)− L2μ2
0

2π2 ε1 − γε2− L2ε3

π2

)]∫ L

0
u2

xdx−N
∫ L

0
θ 2

x dx

−2N
∫ L

0
δ (x)u2

xtdx−n1N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |μ(s)| z2(x,ρ , t,s)dsdρdx

+
γ
ε2

∫ L

0
θ 2dx−

[
n1N2− μ0

4ε3

]∫ L

0

∫ τ2

τ1

|μ(s)| z2(x,1,t,s)dsdx,

using Lemma 1 and Lemma 2 gives

L′ (t) � −
[

ηN− L2

π2

(
m(ζ2)+

1
2ε1

)
− L2μ0

π2 N2

]∫ L

0
u2
txdx

−
[(

p(ζ1)− L2μ2
0

2π2 ε1 − γε2− L2

π2 ε3

)]∫ L

0
u2

xdx

−
[
n1N2 − μ0

4ε3

]∫ L

0

∫ τ2

τ1

|μ(s)|z2(x,1,t,s)dsdx

−n1N2

∫ L

0

∫ 1

0

∫ τ2

τ1

s |μ(s)| z2(x,ρ ,t,s)dsdρdx−
(

N− L2γ
π2ε2

)∫ L

0
θ 2

x dx,

(3.18)

where

η =
L2

π2

(
μ0−

∫ τ2

τ1

|μ (s)|ds

)
+2δ (ζ6) > 0.

At this point, we need to choose our constants very carefully. First, we choose ε1 <
π2

2L2μ2
0

p(ζ1) and ε3 <
π2

4L2 p(ζ1) so that p(ζ1)− L2μ2
0

2π2 ε1 − L2

π2 ε3 >
p(ζ1)

2
. Next, we

select N2 large enough so that n1N2 − μ0

4ε3
> 0. Then, we choose ε2 small enough so

that
p(ζ1)

2
− γε2 > 0. Finally, we then choose N large enough so that

ηN− L2

π2

(
m(ζ2)+

1
2ε1

)
− L2μ0

π2 N2 > 0, N− L2γ
π2ε2

> 0.

By (3.1), we deduce that there exist positive constant c1 such that (3.18) becomes

L′ (t) � −c1E(t), ∀t � 0. (3.19)

Using (3.17), we have
L′ (t) � −λ1L(t) , ∀t � 0, (3.20)
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where λ1 = c1/β . Then, a simple integration of (3.20) over (0,t) leads to

L(t) � L(0)e−λ1t , ∀t � 0. (3.21)

Combining (3.17) and (3.21) we obtain (3.2) with λ0 =
βE (0)

α
, which completes the

proof. �
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