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BOUNDED AND UNBOUNDED POSITIVE SOLUTIONS FOR

SINGULAR φ –LAPLACIANS COUPLED SYSTEM ON THE

HALF–LINE WITH FIRST–ORDER DERIVATIVE DEPENDENCE

KAMAL BACHOUCHE, DHEHBIYA BELAL AND ABDELHAMID BENMEZAÏ ∗

(Communicated by C. Goodrich)

Abstract. In this paper we prove by means of expansion and compression of a cone principle,
the existence of a positive solution to the second order boundary value problem⎧⎪⎪⎨⎪⎪⎩

−(φ1(u′))′ (t) = a1(t) f1(t,u(t),v(t),u′(t),v′(t)) t > 0,

−(φ2(v′))′ (t) = a2(t) f2(t,u(t),v(t),u′(t),v′(t)) t > 0,

u(0) = v(0) = lim
t→+∞

u′(t) = 0, lim
t→+∞

v′(t) = 0,

where for i = 1,2, φi : R → R is an increasing homeomorphism such that φi(0) = 0, ai is
a measurable function with ai(t) > 0 a.e. t in some interval of (0,+∞) and the nonlinearity
fi : R

+× (0,+∞)4 →R
+ is continuous, and may exhibit singular at u+v = 0 and u′+v′ = 0.

1. Introduction and main results

Over the past three decades, boundary value problems for ordinary differential
equations have become a rapidly growing branch of applied mathematics. The study of
these types of problems is driven by the theoretical interest as well as by the fact that
several phenomena in engineering and the life sciences are modeled by such problems.
Boundary value problems associated with second-order ordinary differential equations
posed on the half line arise in many real world applications, such is the case when
modeling nonlinear diffusion generated by nonlinear sources, thermal ignition of gases,
and concentration in chemical and biological problems, see [1], [2], [3], [9], [12] and
[15].

The case of these kind of problems involving the second-order differential operator
(φ(u′))′ are commonly called φ -Laplacian boundary value problems and they have
been the subject of many interesting papers, see [8], [16], [17], [21], [23] and [24].
Recall that the typical case where φ(x) = |x|p−2 x with p > 1 corresponds to the so-
called one-dimensional p -Laplacian. Such a class of equations arise in different areas
of physics, mechanics, and more generally in applied mathematics and the unknown
variable u in (1.1) may refer to a density, temperature, etc. . . . This why the study of
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the existence and multiplicity of positive solutions for such problems have become an
important area of investigation in recent years; see [4], [5], [6], [10], [11], [13], [14],
[18], [19], [20], [22] and references therein.

This paper concerns the existence of positive solutions to the second order bound-
ary value problem (bvp for short)⎧⎪⎪⎨⎪⎪⎩

−(φ1(u′))′ (t) = a1(t) f1(t,u(t),v(t),u′(t),v′(t)) t > 0,

−(φ2(v′))′ (t) = a2(t) f2(t,u(t),v(t),u′(t),v′(t)) t > 0,

u(0) = v(0) = lim
t→+∞

u′(t) = 0, lim
t→+∞

v′(t) = 0,

(1.1)

where for i = 1,2, φi : R → R is an increasing homeomorphism such that φi(0) = 0,
ai is a measurable function with ai(t) > 0 a.e. t in some interval of (0,+∞) and
the nonlinearity fi : R

+ × (0,+∞)4 → R
+ is continuous, and may exhibit singular at

u+ v = 0 and u′ + v′ = 0.

By a positive solution to the bvp (1.1), we mean a pair of functions (u,v) such
that u,v ∈ C1 ([0,+∞) ,R) u > 0, v > 0 in (0,+∞) and φ(u′) , φ(v′) are absolutely
continuous on compact intervals of [0,+∞) , satisfying all equations in (1.1).

Throughout this paper, we set ψi : = φ−1
i and we suppose that ai, φi, and fi

satisfy the following conditions:{
there exists α > 0 such that for all t ∈ [0,1]
and u ∈ R

+, φ1(tu) � tαφ1(u),
(1.2)

{
there exists β > 0 such that for all t ∈ [0,1]

and u ∈ R
+, φ2(tu) � tβ φ2(u),

(1.3)

|ai|1 =
∫ +∞

0
ai(τ)dτ < ∞; (1.4)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

For all R > 0 there exists a decreasing function

Ψi,R : (0,+∞) → (0,+∞) such that

fi(t,(1+ t)u,(1+ t)v,w,z) � Ψi,R(u+ v),
for all t,u,v,w,z � 0 with u+ v � R and w+ z > 0,

and
∫ +∞
0 ai(t)Ψi,R (rρ̃(t))dt < ∞ for all r ∈ (0,R]

(1.5)

where

ρ̃(t) =
ρ(t)
1+ t

and ρ(t) =

{
t if t ∈ [0,1]
1
t if t � 1,⎧⎨⎩ lim

t→+∞
tψi

(∫ +∞

t
ai(τ) fi(τ,λ ,μ ,ξ ,η)dτ

)
= +∞

uniformly for λ , μ ξ , η in compact intervals of (0,+∞).
(1.6)
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For all R > 0 there exists a function

χi,R : (0,+∞) → (0,+∞) such that

fi(t,(1+ t)u,(1+ t)v,w,z) � χi,R(t),
for all t,u,v,w,z � 0 with u+ v � R and w+ z > 0,

and
∫ +∞
0 ψi

(∫ +∞
s ai(t)χi,R(t)dr

)
dt < ∞.

(1.7)

Notice that Hypothesis (1.2) is equivalent to{
there exists α > 0 such that for all t ∈ [0,1]
and u ∈ R

+, tψ1(u) � ψ1(tαu),
(1.8)

then to {
there exists α > 0 such that for all t ∈ [0,1]

and u ∈ R
+, ψ1(tu) � t

1
α ψ1(u).

(1.9)

Our approach in this work is based on a fixed point formulation and since the
weight a and the nonlinearity f will supposed to be nonnegative functions, we will use
in this work an adapted version of the Guo-Krasnoselskii’s expansion and compression
of a cone principle. Because of the singular nature of the nonlinearity f as well as
its dependance on the first derivative and the boundary conditions in (1.1), we look for
solutions in the cone of nonnegative and concave function belonging to the linear space
E of all functions u ∈C1 ([0,+∞)) , satisfying u(0) = lim

t→+∞
u′(t) = 0.

Notice that functions u in E can be bounded, such is the case for u0(t) = t
1+t , or

unbounded as u1(t) = ln(1+ t) . we provide in this study conditions which guarantee
the boundedness or the unboundedness of the obtained solution. The main assumption
giving existence of a positive solution to the bvp (1.1) looks like that in [6]. Under
assumptions on the behavior of the ratio f (t,u)/φ(u) at 0 and +∞, authors in [6]
use the Guo-Krasnosel’skii’s fixed point theorem to prove existence of at least one
unbounded positive solution.

The statement of the main result in this paper needs to introduce the following
notations. For θ > 1, σ ∈ (0,1) and η ∈ [0,1] set Iθ = [1/θ ,θ ] ,

f 0
i = limsup

|(u+v,w+z)|→0

(
sup
t�0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v+w+ z)

)
,

f ∞
i = limsup

|(u+v,w+z)|→+∞

(
sup
t�0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v+w+ z)

)
,

fi,0 (θ ) = liminf
|(u+v,w+z)|→0

(
min
t∈Iθ

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v)

)
,

fi,∞ (θ ) = liminf
|(u+v,w+z)|→+∞

(
min
t∈Iθ

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v)

)
,

Θ1(θ ,η) = η−α θ α(1+ θ )2α
(∫ θ

1
θ

a1(r)dr
)−1

, Γ1(σ) = σα |a1|−1
1 ,

Θ2(θ ,η) = (1−η)−β θ β (1+ θ )2β
(∫ θ

1
θ

a2(r)dr
)−1

, Γ2(σ) = (1−σ)β |a2|−1
1 ,
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where |(w,z)| = sup(|w| , |z|) .

THEOREM 1. Assume that Hypotheses (1.2)–(1.5) hold and there exists θ > 1 ,
σ ∈ (0,1) and η ∈ [0,1] such that one of the following conditions

f 0
i < Γi(σ) and Θi(θ ,η) < fi,∞ (θ ) for i = 1 and i = 2 (1.10)

and
f ∞
i < Γi (σ) and Θi(θ ,η) < fi,0 (θ ) for i = 1 and i = 2, (1.11)

is satisfied. Then the bvp (1.1) has at least one positive solution (u,v) . Moreover, if
Hypothesis (1.7) holds then the solution (u,v) is bounded and if Hypothesis (1.6) holds,
then the solution (u,v) is unbounded (i.e. lim

t→+∞
(u,v)(t) = +∞).

Since for all t,u,v,w,z > 0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v+w+ z)

� fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v)

we have

f 0
i � f 0

i,+ = limsup
u+v→0

(
sup

t,w,z>0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v+w+ z)

)
,

fi,0 (θ ) � f−i,0 (θ ) = liminf
u+v→0

(
inf

t∈Iθ ,w,z>0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v)

)
,

f ∞
i � f ∞

i,+ = limsup
u+v→+∞

(
sup

t,w,z>0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v+w+ z)

)
,

fi,∞ (θ ) � f−i,∞ (θ ) = liminf
u+v→+∞

(
inf

t∈Iθ ,w,z>0

fi(t,(1+ t)u,(1+ t)v,w,z)
φi(u+ v)

)
.

Moreover, notice that if the following hypothesis⎧⎪⎨⎪⎩
for all R > 0 there exists a function ωi,R : (0,+∞) → (0,+∞)
such that fi(t,u,v,w,z) � ωi,R (t) for all t,u,v,w,z > 0 with u+ v � R

and lim
t→+∞

tψi
(∫ +∞

t ai(τ)ωi,R (τ)dτ
)

= +∞,

(1.12)

holds, then the nonlinearity fi satisfies (1.6).
The above remarks and Theorem 1 lead to the following corollary:

COROLLARY 1. Assume that Hypotheses (1.2)–(1.5) hold and there exists θ > 1
such that one of the following conditions

f 0
i,+ < Γi(σ) and Θi(θ ,η) < f−i,∞ (θ ) for i = 1 and i = 2

and
f ∞
i,+ < Γi (σ) and Θi(θ ,η) < f−i,0 (θ ) for i = 1 and i = 2,

is satisfied. Then the bvp (1.1) has at least one positive solution (u,v) . Moreover, if
Hypothesis (1.7) holds then the solution (u,v) is bounded and if Hypothesis (1.6) holds,
then the solution (u,v) is unbounded.
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2. Abstract background

Let X be a linear space and let ‖·‖N and p be respectively a norm and a semi-norm
on X such that (X ,‖·‖) is a Banach space, where for x ∈ X , ‖x‖ = max(‖x‖N , p(x)) .
Let K be a cone in X , that is: K is nonempty closed and covex such that K∩(−K) = /0
and tK ⊂ K for all t � 0. The main result of this work will be proved by means of the
following theorem:

THEOREM 2. ([21], Theorem 2.8) Let r1,r2 be two positive real numbers such
that r1 < r2 and let T : K∩(Ω2 �Ω1) → K be a compact mapping where for i = 1,2,
Ωi = {u ∈ E,‖u‖N < ri}. If one of the following conditions

(a) ‖Tu‖ � ‖u‖ for u ∈ K ∩∂Ω1 and ‖Tu‖N � ‖u‖N for u ∈ K∩∂Ω2 ,

(b) ‖Tu‖N � ‖u‖N for u ∈ K∩∂Ω1 and ‖Tu‖ � ‖u‖ for u ∈ K∩∂Ω2 .

is satisfied, then T has at least a fixed point in K∩ (Ω2 \Ω1) .

The above theorem is a new version of expansion and compression of a cone prin-
cipal in a Banach space. Its improvement consists in the fact that it does not require
bounded sets.

3. Fixed point formulation

Let F be the linear space defined by

F =
{

u ∈C1(R+,R) : lim
t→+∞

u′(t) = 0

}
By the mean value theorem for all u ∈ F , we have lim

t→+∞
u(t)
1+t = 0. Therefore, equiped

with the norm‖.‖ , where for u ∈ F, ‖u‖ = max{‖u‖1 ,‖u‖2} , where ‖u‖1 = sup
t�0

|u(t)|
1+t

and ‖u‖2 = sup
t�0

|u′(t)|, F becomes a Banach space.

Let E be the subspace of F defined by E : = {u ∈ F, u(0) = 0}. By the mean
value theorem for all u ∈ E and t > 0, we have

|u(t)|
1+ t

� |u(t)|
t

=
|u(t)−u(0)|

t
= |u′(η)|

for some η ∈ (0, t) . This shows that for all u ∈ E , we have ‖u‖1 � ‖u‖2 and ‖u‖ =
‖u‖2 . Hence, (E,‖u‖2) is a Banach space. Let the Banach space Y = E ×E endowed
with the sup-norm

‖(u,v)‖ = max(‖(u,v)‖1,‖(u,v)‖2),

where
‖(u,v)‖1 = ‖u‖1 +‖v‖1 and ‖(u,v)‖2 = ‖u‖2 +‖v‖2



166 K. BACHOUCHE, D. BELAL AND A. BENMEZAÏ

Since ‖u‖1 � ‖u‖2 , then
‖(u,v)‖ = ‖u‖2 +‖v‖2,

Thus
‖(u,v)‖ = ‖u‖+‖v‖= ‖u‖2 +‖v‖2,

As usually the use of the fixed point theory needs a compactness criterion. The fol-
lowing lemma is an adapted version to the case of the space E of Corduneanu’s com-
pactness criterion ([7], p. 62). It will be used in this work to prove that the operator
associated with the fixed point formulation of the bvp (1.1) is completely continuous.

LEMMA 1. ([16]) A nonempty subset M of E is relatively compact if the follow-
ing conditions hold:

(a) M is bounded in E ,

(b) the sets
{

u : u(t) = x(t)
1+t , x ∈ M

}
and {u : u(t) = x′(t), x ∈ M} are almost

equicontinuous on R
+ , that is, equicontinuous on every compact interval of R

+,

(c) the sets
{

u : u(t) = x(t)
1+t , x ∈ M

}
and

{
u : u(t) = x

′
(t), x ∈ M

}
are equicon-

vergent at +∞ , that is, given ε > 0 , there corresponds T (ε) > 0 such that
∣∣∣ x(t)1+t − x(t∞)

1+t∞

∣∣∣
< ε and |x′(t)− x′(t∞)| < ε for any t � T (ε) and x ∈ M.

Throughout this paper P is the cone of Y defined by

P = {(u,v) ∈Y,u � 0,v � 0 on (0,+∞) and u, v are concave in (0,+∞)} (3.1)

LEMMA 2. For all (u,v) ∈ P and t > 0 , we have

u(t)+ v(t) � ρ(t)‖(u,v)‖1 .

Proof. Let (u,v) ∈ P , h(t) = u(t)
1+t and θ � 1. Since h(0) = lim

t→+∞
h(t) = 0, h

achieves its maximum at some t0 > 0. Because that u is concave on (0,+∞) , we have

u

(
1
θ

)
= u

(
θ −1+ θ t0

θ + θ t0

1
θ −1+ θ t0

+
t0

θ + θ t0

)
� θ −1+ θ t0

θ + θ t0
u

(
1

θ −1+ θ t0

)
+

1
θ + θ t0

u(t0)

� 1
θ

u(t0)
1+ t0

=
1
θ
‖u‖1 .

Similarly,

v

(
1
θ

)
� 1

θ
‖v‖1 .

For t � 0 we distinguish the following cases:
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1. t = 0, in this case we have u(0) = 0 = ρ(0)‖u‖1 and v(0) = 0 = ρ(0)‖v‖1 ,

2. t � 1, since u,v are nondecreasing we have in this case

u(t) � u

(
1
t

)
� 1

t
‖u‖1 ;

and

v(t) � v

(
1
t

)
� 1

t
‖v‖1 ;

Then

u(t)+ v(t) � 1
t
‖(u,v)‖1 .

3. 0 < t < 1, we have in this case

u(t) = u

(
1
1
t

)
� 1

1
t

‖u‖1 = t ‖u‖1 .

and

v(t) = v

(
1
1
t

)
� 1

1
t

‖v‖1 = t ‖v‖1 .

Then
u(t)+ v(t) � t ‖(u,v)‖1 .

The claim of the lemma is proved. �

LEMMA 3. Assume that (1.4) and (1.5) hold, then there exists a continuous oper-
ator T : P�{(0,0)} → P such that fixed points of T are positive solutions to the bvp
(1.1).

Proof. Let (u,v) ∈ P � {(0,0)} and R = ‖(u,v)‖1 For all s > 0, we have by
hypothesis (1.5)∫ +∞

s
ai(τ) fi(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

=
∫ +∞

s
ai(τ) fi(τ,(1+ τ)

u(τ)
1+ τ

,(1+ τ)
v(τ)
1+ τ

,u′(τ),v′(τ))dτ

�
∫ +∞

0
ai(τ)Ψi,R(Rρ̃(τ))dτ < ∞.

Therefore, for all t � 0∫ t

0
ψi

(∫ +∞

s
ai(τ) fi(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

� tψi

(∫ +∞

0
ai(τ)Ψi,R(Rρ̃(τ))dτ

)
< ∞
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and set

wi(t) =
∫ t

0
ψi

(∫ +∞

s
ai(τ) fi(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds.

Notice that wi is continuously differentiable on R
+ and

w′
i(t) = ψi

(∫ +∞

t
ai(τ) fi(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
. (3.2)

Moreover, we have wi(0) = 0, wi(t) � 0 for all t � 0 and from (3.2), we see that w′
i is

nonincreasing, that is wi is concave, and

w′
i(t) � ψi

(∫ +∞

t
ai(τ)Ψi,R(Rρ̃(τ))dτ

)
→ 0 as t → +∞.

All the above show that (w1,w2) ∈ P and the operator Ti : P�{(0,0)}→ P where for
(u,v) ∈ P�{(0,0)}

Ti(u,v)(t) =
∫ t

0
ψi

(∫ +∞

s
ai(τ) fi(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

is well defined.
In order to prove that Ti is continuous, let (un,vn)n ⊂ P � {(0,0)} be such that

lim
n→+∞

(un,vn) = (u,v) in Y with (u,v) ∈ P � {(0,0)} . Let 0 < R < R be such that

R � ‖(un,vn)‖ � R , for all n � 1. We have

sup
s�0

∣∣∫+∞
s ai(τ)Fi,n

(
un(τ),vn(τ)

)
dτ − ∫+∞

s ai(τ)Fi
(
u(τ),v(τ)

)
dτ
∣∣ �

∫ +∞
0 gi,n(τ)dτ

where
Fi,n
(
un(τ),vn(τ)

)
= fi(τ,un(τ),vn(τ),u′n(τ),v′n(τ)),

Fi
(
u(τ),v(τ)

)
= fi(τ,u(τ),v(τ),u′(τ),v′(τ))

and
gi,n(τ) = ai(τ)

∣∣Fi,n
(
un(τ),vn(τ)

)−Fi
(
u(τ),v(τ)

)∣∣.
Clearly, for a.e. τ > 0, gi,n(τ) → 0 and

gi,n(τ) � 2ai (τ)Ψi,R (Rρ̃(τ))

where Ψi,R is the function given by Hypothesis (1.5). Since
∫ +∞
0 aiΨi,R (Rρ̃(τ))dτ

< ∞ , we coclude by Lebesgue dominated convergence theorem that∫ +∞

s
ai(τ) fi(τ,un(τ),vn(τ),u′n(τ),v′n(τ))dτ

converge uniformly to
∫ +∞
s ai(τ) fi(τ,u(τ),v(τ),u′(τ),v′(τ))dτ.
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Therefore, the uniform continuity of ψi on compact intervals leads to

lim
n→∞

‖Ti(un,vn)−Ti(u,v)‖ = lim
n→∞

‖Ti(un,vn)−Ti(u,v)‖2

= lim
n→∞

(sups�0

∣∣(Ti(un,vn))′ (s)− (Ti(u,v))′ (s)
∣∣) = 0.

It is easy to see that if (u,v)∈ P�{(0,0)} is a fixed point of T, then (u,v) is a positive
solution to the bvp (1.1), Ending the proof. �

LEMMA 4. Assume that (1.4) and (1.5) hold, then for all R1,R2 with 0 < R1 < R2,
T (BR1,R2) is relatively compact in Y , where BR1,R2 = {(u,v)∈P, R1 � ‖(u,v)‖1 � R2}.

Proof. Let R1,R2 be such that 0 < R1 < R2 and let Φi be the function defined by
Φi(t) = ai(t)Ψi,R2 (R1ρ̃(t)) , where Ψi,R2 is the function given by Hypothesis (1.5) for
R = R1. Therefore, for all (u,v) ∈ BR1,R2 and t > 0, we have

ai(t) fi(t,u(t),v(t),u′(t),v′(t)) � Φi(t)

and

‖Ti(u,v)‖ = ‖Ti(u,v)‖2 � ψi

(∫ +∞

0
Φi(τ)dτ

)
< ∞.

Proving that Ti(BR1R2) is bounded.
Let A > 0 and t1, t2 ∈ [0,A] with t1 < t2. We have∣∣∣∣Ti(u,v)(t2)

(1+ t2)
− Ti(u,v)(t1)

(1+ t1)

∣∣∣∣ �
∣∣∣∣ 1
(1+ t2)

− 1
(1+ t1)

∣∣∣∣∫ t1

0
ψi

(∫ +∞

s
Φi(τ)dτ

)
ds

+
1

(1+ t2)

∫ t2

t1
ψi

(∫ +∞

s
Φi(τ)dτ

)
ds

� Φi |t2 − t1|+ |gi (t2)−gi (t1)| ,

and ∣∣φi
(
(Ti(u,v))′

)
(t1)−φi

(
(Ti(u,v))′

)
(t2)
∣∣� |hi(t2)−hi(t1)| ,

where

Φi =
∫ A

0
ψi

(∫ +∞

s
Φi(τ)ds

)
dτ

gi (t) =
∫ t

0
ψi

(∫ +∞

s
Φi(τ)dτ

)
ds and

hi(t) =
∫ +∞

t
Φi(τ)dτ.

Let ε > 0. Since the functions g, h and ψ are continuous, there exists δ1 > 0
such that

|gi(s)−gi(τ)| < ε/2 for |s− τ| < δ1,

|ψi(s)−ψi(τ)| < ε for |s− τ| < δ1,
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and there exists δ2 > 0 such that

|hi (s)−hi (r)| < δ1 for |s− r| < δ2.

Therefore, for |t2 − t1| < inf
(
δ1,δ2,ε/2Φi

)
, we have∣∣∣ Ti(u,v)(t2)

(1+t2)
− Ti(u,v)(t1)

(1+t1)

∣∣∣< ε and |(Ti(u,v))′(t1)− (Ti(u,v))′(t2)| < ε.

At this stage, for all (u,v) ∈ BR1R2 we have

(Ti(u,v))′(t) � ψi

(∫ +∞

t
Φi(τ)dτ

)
and L’Hopital’s rule leads to

lim
t→+∞

Ti(u,v)(t)
(1+ t)

= lim
t→+∞

(Ti(u,v))′ (t) � lim
t→+∞

ψi

(∫ +∞

t
Φi(τ)dτ

)
= 0.

In view of Lemma 1, Ti(BR1R2) is relatively compact in Y , ending the proof. �

4. Proof of Theorem 1

Step 1. Existence in the case where (1.10) holds
Let ε > 0 be such that ( f 0

i +ε) < Γi (σ) . For such a positive real number ε , there
exists R1 > 0 such that{

fi(t,(1+ t)u,(1+ t)v,w,z) � ( f 0
i + ε)φi(u+ v+w+ z)

for all u,v,w,z with sup(|u+ v|, |w+ z|) � R1.

Thus, for all (u,v) ∈ P∩∂Ω1 , where Ω1 = {(u,v) ∈ Y, ‖(u,v)‖1 < R1} , the fol-
lowing estimates hold

‖T1(u,v)‖ = ‖T1(u,v)‖2

= sup
t∈R+

∣∣∣∣ψ1

(∫ +∞

t
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)∣∣∣∣
� ψ1

(∫ +∞

0
a1(τ)( f 0

1 + ε)φ1

(
u(τ)+ v(τ)

1+ τ
+u′(τ)+ v′(τ)

)
dτ
)

� ψ1
(|a|1 ( f 0

1 + ε)φ1 (‖(u,v)‖1 +‖(u,v)‖2)
)

� ψ1 (|a|1 Γ1 (σ)φ1(‖(u,v)‖))
� ψ1

(
(σ)α φ1(‖(u,v)‖))

� ψ1 (φ1(σ ‖(u,v)‖))
= σ ‖(u,v)‖ .

Similarly, we obtain for all (u,v) ∈ P∩∂Ω1,

‖T2(u,v)‖ = ‖T2(u,v)‖2 � (1−σ)‖(u,v)‖ .
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Thus, for all (u,v) ∈ P∩∂Ω1 we have

‖T (u,v)‖ =
∥∥(T1(u,v),T2(u,v)

)∥∥
= ‖T1(u,v)‖+‖T2(u,v)‖
� σ ‖(u,v)‖+(1−σ)‖(u,v)‖
= ‖(u,v)‖ .

Now let ε > 0 be such that ( fi,∞ (θ )− ε) > Θi(θ ,η) . There exists R2 > R1 such that{
fi(t,(1+ t)u,(1+ t)v,w,z) > ( fi,∞ (θ )− ε)φi(u+ v)
for all u+ v � R2, t ∈ Iθ and w,z � 0

Let
Ω2 = {(u,v) ∈Y : ‖(u,v)‖1 < θ (1+ θ )R2} .

For all (u,v) ∈ P∩∂Ω2 , we have from (1.8),

‖T1(u,v)‖1 � T1(u,v)(1/θ )
1+(1/θ )

� η2 θ
1+ θ

T1(u,v)
( 1

θ

)
= η2 θ

1+ θ

∫ 1/θ

0
ψ1

(∫ +∞

s
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

� η2 θ
1+ θ

∫ 1/θ

0
ψ1

(∫ θ

1/θ
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

= η
η

1+ θ
ψ1

(∫ θ

1/θ
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
� ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
� ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)( f1,∞ (θ )− ε)φ1

(u(τ)+ v(τ)
1+ τ

)
dτ
)

� ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)( f1,∞ (θ )− ε)φ1

( ‖(u,v)‖1

θ (1+ θ )

)
dτ
)

> ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)Θ1(θ ,η)

1
θ α(1+ θ )α φ1 (‖(u,v)‖1)dτ

)
= ηψ1

(
φ1(‖(u,v)‖1)Θ1(θ ,η)

ηα

θ α (1+ θ )2α

∫ θ

1/θ
a1(τ)dτ

)
= ηψ1 (φ1(‖(u,v)‖1)η

α) � ηψ1 (φ1(‖(u,v)‖1)) = η ‖(u,v)‖1 .

Similarly, we obtain for all (u,v) ∈ P∩∂Ω2,

‖T2(u,v)‖ � (1−η)‖(u,v)‖1 .

Thus, for all (u,v) ∈ P∩∂Ω2 we have

‖T (u,v)‖ =
∥∥(T1(u,v),T2(u,v)

)∥∥
= ‖T1(u,v)‖+‖T2(u,v)‖
� η ‖(u,v)‖+(1−η)‖(u,v)‖ = ‖(u,v)‖ .
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Therfore, we deduce from Theorem 2, that T admits a fixed point (u,v) ∈ P with
R1 � ‖(u,v)‖1 � θ (1+θ )R2 which is, by Lemma 3 a positive solution to the bvp (1.1).

Step 2. Existence in the case where (1.11) holds
Let ε > 0 be such that ( fi,0 (θ )− ε) > Θi(θ ,η). There exists R̃1 > 0 such that{

fi(t,(1+ t)u,(1+ t)v,w,z) > ( fi,0 (θ )− ε)φi(u+ v+w+ z)

for |(u+ v,w+ z)| � R̃1 and t ∈ Iθ

Thus, for all (u,v) ∈ P∩∂Ω1 , where

Ω1 =
{

(u,v) ∈ Y : ‖(u,v)‖1 < θ (1+ θ )R̃1

}
we have

‖T1(u,v)‖1 � η2 T1(u,v)(1/θ )
1+(1/θ )

= η2 θ
1+ θ

T1(u,v)(
1
θ

)

= η2 θ
1+ θ

∫ 1/θ

0
ψ1

(∫ +∞

s
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

� η2 θ
1+ θ

∫ 1/θ

0
ψ1

(∫ θ

1/θ
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

= η
η

1+ θ
ψ1

(∫ θ

1/θ
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
� ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
� ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)( f1,0 (θ )− ε)

×φ1

( u(τ)
1+ τ

+
v(τ)
1+ τ

+u′(τ)+ v′(τ)
)
dτ

)

� ψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)( f1,0 (θ )− ε)φ1

(u(τ)+ v(τ)
1+ τ

)
dr

)
� ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)( f1,0 (θ )− ε)φ1

( ‖(u,v)‖1

θ (1+ θ )

)
dτ
)

> ηψ1

(
ηα

(1+ θ )α

∫ θ

1/θ
a1(τ)Θ1(θ ,η)

1
θ α(1+ θ )α φ1 (‖(u,v)‖1)dτ

)
= ηψ1

(
φ1(‖(u,v)‖1)Θ1(θ ,η)

ηα

θ α (1+ θ )2α

∫ θ

1/θ
a1(τ)dτ

)
= ηψ1(φ1(‖(u,v)‖1)Θ1(θ ,η)Θ1(θ ,η)−1) = η ‖(u,v)‖1 .

Similarly we obtain for all (u,v) ∈ P∩∂Ω1,

‖T2(u,v)‖ � (1−η)‖(u,v)‖1 .
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Thus, for all (u,v) ∈ P∩∂Ω1,

‖T (u,v)‖1 =
∥∥(T1(u,v),T2(u,v)

)∥∥
1

= ‖T1(u,v)‖1 +‖T2(u,v)‖1

� η ‖(u,v)‖1 +(1−η)‖(u,v)‖1

= ‖(u,v)‖1 .

Let ε > 0 be such that ( f ∞
i + ε) < Γi (σ) , there exists Ri,ε > 0 such that

fi(t,(1+t)u,(1+t)v,w,z)� ( f ∞
i +ε)φi(u+v+w+z)+Ψi,Rε(u+v) for all u,v,w,z > 0,

where Ψi,Rε is the function given by Hypothesis (1.5) for R = Ri,ε .
Let

Φi,ε (t) = Ψi,Rε (Ri,ε ρ̃(t))

Φi,ε =
∫ +∞

0
ai(r)Φi,ε (r)dr

Ri,2 = ψi

(
Γi (σ)Φi,ε

Γi (σ)− ( f ∞
i + ε)

)
Notice that for all R > 2Ri,2,

( f ∞
i + ε)Γi (σ)−1 φi(R/2)+ Φi,ε � φi(R/2)

and let R̃2 > max(θ (1+ θ )R̃1,2Ri,2,Ri,ε ). Thus for all (u,v) ∈ P∩∂Ω2 , where Ω2 ={
(u,v) ∈Y : ‖(u,v)‖1 < R̃2

}
, we have

‖T1(u,v)‖ = ‖T1(u,v)‖2 � ψ1

(∫ +∞

0
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
� ψ1

(∫ +∞

0
a1(τ)

(
( f ∞

1 + ε)φ1

(
u(τ)+ v(τ)

1+ τ
+u′(τ)+ v′(τ)

)
+Ψ1,Rε

(
u(τ)+ v(τ)

1+ τ

))
dτ
)

� ψ1

(∫ +∞

0
a1(τ)(( f ∞

1 + ε)φ1 (‖(u,v)‖)+ Φ1,ε (τ))dτ
)

� ψ1
((

( f ∞
1 + ε)φ1(‖(u,v)‖) |a1|1 + Φ1,ε

))
= ψ1

((
( f ∞

1 + ε)(σ)α Γ1 (σ)−1 φ1(‖(u,v)‖)+ Φ1,ε

))
� ψ1

(
( f ∞

1 + ε)Γ1 (σ)−1 φ1(σ‖(u,v)‖)+ Φ1,ε

)
� σ‖(u,v)‖.

Similarly, we obtain for all (u,v) ∈ P∩∂Ω2,

‖T2(u,v)‖ = ‖T2(u,v)‖2 � (1−σ)‖(u,v)‖ .
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Thus, for all (u,v) ∈ P∩∂Ω2

‖T (u,v)‖ =
∥∥(T1(u,v),T2(u,v)

)∥∥
= ‖T1(u,v)‖+‖T2(u,v)‖
� σ ‖(u,v)‖+(1−σ)‖(u,v)‖
= ‖(u,v)‖ .

We deduce from ii) of Theorem 2 that T admits a fixed point (u,v) ∈ P with
θ (1 + θ )R̃1 � ‖(u,v)‖1 � R̃2 which is, by Lemma 3, a positive solution to the bvp
(1.1).

Step 3. Boundedness of the solution

Let (u,v) be a positive solution of the bvp (1.1) and set R0 = ‖(u,v)‖1 . Then for
all t > 0 we have from Hypothesis (1.7)

u(t) =
∫ t

0
ψ1

(∫ +∞

s
a1(τ) f1(τ,(1+ τ)

u(τ)
1+ τ

,(1+ τ)
v(τ)
1+ τ

,u′(τ),v′(τ))dτ
)

ds

�
∫ t

0
ψ1

(∫ +∞

s
a1(τ)χ1,R0(τ)dτ

)
ds

�
∫ +∞

0
ψ1

(∫ +∞

s
a1(τ)χ1,R0 (τ)dτ

)
ds < ∞,

and

v(t) =
∫ t

0
ψ2

(∫ +∞

s
a2(τ) f2(τ,(1+ τ)

u(τ)
1+ τ

,(1+ τ)
v(τ)
1+ τ

,u′(τ),v′(τ))dτ
)

ds

�
∫ t

0
ψ2

(∫ +∞

s
a2(τ)χ2,‖(u,v)‖1

(τ)dτ
)

ds

�
∫ +∞

0
ψ2

(∫ +∞

s
a2(τ)χ2,‖(u,v)‖1

(τ)dτ
)

ds < ∞.

Step 4. Unboundedness of the solution

Let (u,v)∈ P be a positive solution of the bvp (1.1). We have from, Lemma 3 that

u(t) =
∫ t

0
ψ1

(∫ +∞

s
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

�
∫ t

0
ψ1

(∫ +∞

t
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

= tψ1

(∫ +∞

t
a1(τ) f1(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
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and

v(t) =
∫ t

0
ψ2

(∫ +∞

s
a2(τ) f2(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

�
∫ t

0
ψ2

(∫ +∞

t
a2(τ) f2(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
ds

= tψ2

(∫ +∞

t
a2(τ) f2(τ,u(τ),v(τ),u′(τ),v′(τ))dτ

)
.

Suppose that (u,v) is bounded and let (u∞,v∞) = lim
t→+∞

(
u(t),v(t)

)
> (0,0) ; that is

lim
t→+∞

u(t) > 0 and lim
t→+∞

v(t) > 0. Let ε0 > 0 be such that u∞−ε0 > 0 and v∞−ε0 > 0.

There exists t∞ > 0 such that

u(t) � u∞ − ε0 and v(t) � v∞ − ε0, for all t � t∞.

Therefore, we obtain from Hypothesis (1.6) and the above inequalities the contradiction

+∞ > u∞ � lim
t→+∞

tψ1

(∫ +∞

t
a1(τ) f1(τ,u(τ),u′(τ))dτ

)
= +∞

and

+∞ > v∞ � lim
t→+∞

tψ2

(∫ +∞

t
a2(τ) f2(τ,u(τ),u′(τ))dτ

)
= +∞.

The proof of the main theorem is complete.

5. Example

Consider the case of the bvp (1.1) where for i∈ {1,2} φi(x) = |x|pi−2 x+ |x|qi−2 x ,
ai(t) = t (1+ t)−ξi and

fi(t,u,v,w,z) =
(

Ai(1+ t)
u+ v

+
Bi(u+ v)

1+ t

)
×
(

1+
w

1+w
+

z
1+ z

+ sin

(
1+ t
u+ v

+
1

w+ z

))

where
2 < pi < qi, pi −1 > ξi > 4 and Ai,Bi > 0.

For all x � 0, t ∈ [0,1] , we have

tqi−1φi (x) � φi (tx) � t pi−1φi (x) .

Then α = q1−1 and β = q2−1. For all x � 0, s � 1, we have

ψi
(
spi−1x

)
� sψi (x) � ψi

(
sqi−1x

)
. (5.1)
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We have

|ai|1 =
1

(ξi −1)(ξi−2)
, Γi =

(ξi −1)(ξi−2)
4qi−1 ,

for all θ > 1

Θi (θ ) = θ qi−1(1+ θ )2(qi−1)
(∫ θ

1
θ

ai(r)dr

)−1

,

where ∫ θ

1/θ
ai(s)ds =

1
ξi −2

θ ξi−2−1

(1+ θ )ξi−2
− 1

ξi −1
θ ξi−1−1

(1+ θ )ξi−1
.

For all t,u,v,w,z > 0 with u+ v < R,

fi(t,(1+ t)u,(1+ t)v,w,z)

=
( Ai

u+ v
+Bi(u+ v)

)(
1+

w
1+w

+
z

1+ z
+ sin

(
1+ t
u+ v

+
1

w+ z

))
� 4

(
Ai

u+ v
+BiR

)
= Ψi,R (u+ v)

Thus, for all r ∈ (0,R] , we have∫ +∞

0
ai(s)Ψi,R (rρ̃(s)) ds =

4Ai

r

∫ +∞

0

sds

(1+ s)ξi ρ̃(s)
+BiR

∫ +∞

0

sds

(1+ s)ξi
< ∞.

Now, we have
f ∞
i,+ = 0 f−i,0(θ ) = +∞.

Let us prove that u and v are unbounded. By (5.1), we have

tψi

(∫ +∞

t
ai(τ) fi

(
τ,u(τ),v(τ),u′(τ),v′(τ)

)
dτ
)

� ψi

(
t pi−1

∫ +∞

t
ai(τ) fi

(
τ,u(τ),v(τ),u′(τ),v′(τ)

)
dτ
)

� ψi

(
t pi−1

∫ +∞

t
ai(r)

4Bi(u+ v)(1)
1+ τ

dτ
)

= ψi

(
4Bi(u+ v)(1)t pi−1

∫ +∞

t

dτ
(1+ τ)ξi+1

)

= ψi

(
4Bi(u+ v)(1)

ξi

t pi−1

(1+ t)ξi

)
,

leading to

lim
t→+∞

tψi

(∫ +∞

t
ai(τ) fi

(
τ,u(τ),v(τ),u′(τ),v′(τ)

)
dτ
)

= +∞.
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We conclude from Corollary 1 that the bvp (1.1) admits at least one positive solu-
tion (u,v) where each of u and v is unbounded.
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