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C –SYMMETRIC SECOND ORDER DIFFERENTIAL

OPERATORS WITH LARGE LEADING COEFFICIENT

HORST BEHNCKE AND DON HINTON ∗

Abstract. We continue the spectral analysis of Sturm-Liouville operators with ccmplex coef-
ficients. By means of asymptotic integration the Titchmarsh-Weyl m -function is determined
without the nesting circle analysis. With it the resolvent is constructed. The primary case is
that of a dominant leading coefficient, but Euler type cases are also considered. This leads to
resolvents that are compact and even Hilbert-Schmidt.
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