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PERIODIC AND SUBHARMONIC SOLUTIONS FOR A CLASS OF

SUPERQUADRATIC FIRST ORDER HAMILTONIAN SYSTEMS

ZHIYONG WANG

(Communicated by L. Kong)

Abstract. In this paper, we investigate the existence of periodic and subharmonic solutions for
the first order Hamiltonian systems. By virtue of auxiliary functions, we obtain some kinds
of new superquadratic growth conditions. Using the minimax methods in critical point theory,
several new existence and multiplicity theorems are established.

1. Introduction and main results

In this paper, we are concerned with the following non-autonomous first order
Hamiltonian systems

− Ju̇−B(t)u = ∇H(t,u), (1.1)

where B(t) is a symmetric 2N× 2N -matrix, continuous and T -periodic in t , T > 0,

H ∈ C1(R×R2N ,R) is a T -periodic function in t , J =
(

0 −IN
IN 0

)
is the standard

2N×2N symplectic matrix.
In the celebrated paper [8], making use of critical point theory, Rabinowitz has

established the existence of periodic solutions of the non-autonomousHamiltonian sys-
tems with a classical superquadratic condition, namely,

(S) there exist μ > 2 and L1 > 0 such that

0 < μH(t,z) � (∇H(t,z),z), ∀(t,z) ∈ R×R
2N with |z| � L1,

where (·, ·) denotes the Euclid’s inner product and | · | denotes the corresponding Eu-
clid’s norm. For results on the existence of periodic and subharmonic solutions of
Hamiltonian systems under condition (S) , we refer the reader to the book of Mawhin
and Willem [6], where an extensive literature is given. After that, generalized su-
perquadratic conditions covering condition (S) were raised in many literature, such
as [1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17]. Particularly, for periodic solution, in
[3], Li, Ou and Tang have proved the following theorem with the aid of the local linking
theorem.
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THEOREM A. (see [3]) Suppose that H ∈C1(R×R2N,R) satisfies the following
conditions:

(H0) H(t,z) is a T -periodic function in t ;

(H1) lim|z|→+∞
H(t,z)
|z|2 = +∞ uniformly for all t ∈ [0,T ];

(H2) lim|z|→0
H(t,z)
|z|2 = 0 uniformly for all t ∈ [0,T ];

(H3) there exist λ > 2 and d1 > 0 such that

|∇H(t,z)| � d1(1+ |z|λ−1) for all (t,z) ∈ [0,T ]×R
2N;

(H4) there exist β > λ −2 such that

liminf
|z|→+∞

(∇H(t,z),z)−2H(t,z)
|z|β > 0, uniformly for all t ∈ [0,T ].

If 0 is an eigenvalue of −J(d/dt)−B(t) (with periodic boundary conditions), assume
also the condition:

(H5) there exists δ > 0 such that

(i) H(t,z) � 0 , ∀|z| � δ , ∀t ∈ [0,T ] , or

(ii) H(t,z) � 0 , ∀|z| � δ , ∀t ∈ [0,T ] .

Then problem (1.1) has at least one non-trivial T -periodic solution.

Instead hypothesis (H5) with the following condition:

(H6) H(t,z) � 0, ∀(t,z) ∈ [0,T ]×R2N ,

they also have considered infinitely many subharmonic solutions of problem (1.1) by
virtue of generalized mountain pass theorem. Specially, they have obtained the follow-
ing results.

THEOREM B. (see [3]) Suppose that H ∈ C1(R×R2N ,R) satisfies (H0)–(H2) ,
(H6) and the following conditions:

(H7) there exist L2 > 0 and d2 > 0 such that

(∇H(t,z),z)−2H(t,z) � d2|z|2, ∀|z| � L2;

(H8) there exist L3 > 0 , d3 > 0 and σ > 1 such that

(∇H(t,z),z)−2H(t,z) � d3
|∇H(t,z)|σ

|z|σ , ∀|z| � L3.

Then there exist infinitely many subharmonic solutions of problem (1.1).
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THEOREM C. (see [3]) Suppose that H ∈ C1(R×R2N ,R) satisfies (H0)–(H4)
and (H6) . Then there exist infinitely many subharmonic solutions of problem (1.1).

Motivated by the results of [5, 13, 16, 17, 3, 15, 4], in present paper, introducing
several auxiliary functions, we will present some existence and multiplicity theorems
under new superquadratic growth conditions. For periodic solutions, we have the fol-
lowing theorems.

THEOREM 1. Suppose that H ∈C1(R×R
2N ,R) satisfies (H0)–(H2) and the fol-

lowing conditions:

(H9) there exist d4 > 0 , d5 > 0 , λ > 2 and h ∈C(R+,R+) with h(s) non-decreasing
for all s ∈ R+ , such that

|∇H(t,z)| � d4[1+h(|z|)] for all (t,z) ∈ [0,T ]×R
2N,

where h satisfies the following condition:

h(s) � d5(1+ sλ−1) for all s ∈ R
+;

(H10) there exist σ1 > 1 , M1 > 0 , θ1 ∈ C(R+,R+) with lims→+∞
h(s)

θ1(s)s
= 0 , where

h(s) is defined in (H9) , such that

(∇H(t,z),z)−2H(t,z) � θ σ1
1 (|z|), ∀|z| � M1 and for all t ∈ [0,T ].

Also assume (H5) holds if 0 is an eigenvalue of −J(d/dt)−B(t) (with periodic bound-
ary conditions). Then problem (1.1) has at least one non-trivial T -periodic solution.

REMARK 1. (1) We claim that there exists d6 > 0 such that h(s) � d6s for s large
enough. To see this, by (H2) , one has H(t,0) = 0. Then it follows from (H9) that there
exists α ∈ (0,1) , such that

|H(t,z)| = |H(t,z)−H(t,0)|� |∇H(t,αz)||z|
� d4 [1+h(|αz|)] |z|
� d4h(|z|)|z|+d4|z| for all (t,z) ∈ [0,T ]×R

2N.

Moreover, by (H1) , we infer that there exist d7 > 0 and L4 > 0 such that

d7|z|2 � H(t,z) � d4h(|z|)|z|+d4|z|, ∀|z| � L4 and for all t ∈ [0,T ],

which implies that the conclusion holds.
(2) We confirm that θ1(s)→+∞ as s→+∞ . Indeed, taking account of h(s) � d6s

for s large enough and lims→+∞
h(s)

θ(s)s = 0, then we can find that the assertion holds.

(3) We observe that (H3) and (H4) are special cases of (H9) and (H10) when
β/σ1 > λ −2. In fact, we only need to put d4 = d1,h(s) = sλ−1 and θ1(s) = sβ/σ1 , it
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is not difficult to verify that h(s) � d5(1+ sλ−1) , lims→+∞
h(s)

θ1(s)s
= 0, then (H9) , (H10)

become (H3) and (H4) . So, from this sense, Theorem 1 partly generalizes Theorem A.
(4) From (H10) , the above discussions of (1) and (2), there exist L5 > M1 > 0

such that

|∇H(t,z)|
|z| � (∇H(t,z),z)

|z|2 � 2H(t,z)
|z|2 , ∀|z| � L5 and for all t ∈ [0,T ],

which, by (H1) , leads that

lim
|z|→+∞

|∇H(t,z)|
|z| = +∞ uniformly for all t ∈ [0,T ].

Hence, there exists d8 > 0 such that

|z|
|∇H(t,z)| � d8 for all (t,z) ∈ [0,T ]×R

2N. (1.2)

(5) There exists function H(t,z) satisfying Theorem 1 and not satisfying the cor-
responding results in [8, 5, 3, 15]. For example, let

H(t,z) := g(t)k(z), ∀(t,z) ∈ R×R
2N,

where g(t) ∈C(R,R+) , g(t +T ) = g(t) , T > 0, inft∈[0,T ] g(t) > 0 and

k(z) := |z|2 ln(1+ |z|2)+ sin |z|2 − ln2(1+ |z|2)−|z|2, ∀z ∈ R
2N .

Obviously, H(t,z) does not satisfy the condition (S) . At the same time, ∀ν > 0, we
have

liminf
|z|→+∞

(∇H(t,z),z)−2H(t,z)
|z|ν = 0

uniformly for all t ∈ [0,T ] , which means that (H4) and (H7) do not hold. Therefore,
the results of Theorem A, Theorem B and Theorem C cannot be applied. Neverthe-
less, select h(s) = s ln(1+ s2),θ1(s) = ln3/2(1+ s2),σ1 = 10/9, it is easy to check that
H(t,z) satisfies all conditions of Theorem 1. Then, by Theorem 1, problem (1.1) has at
least one non-trivial T -periodic solution.

THEOREM 2. Suppose that H ∈C1(R×R
2N ,R) satisfies (H0)–(H2) and the fol-

lowing condition:

(H11) there exist M2 > 0 , σ2 > 1 , θ2 ∈ C(R+,R+) with lims→+∞ θ2(s) = +∞ , such
that

(∇H(t,z),z)−2H(t,z)�
(

θ2(|z|) |∇H(t,z)|
|z|

)σ2

, ∀|z|� M2 and for all t ∈ [0,T ].

Also assume (H5) holds if 0 is an eigenvalue of −J(d/dt)−B(t) (with periodic bound-
ary conditions). Then problem (1.1) has at least one non-trivial T -periodic solution.
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REMARK 2. We see that assumptions (H3) and (H4) could imply (H11) . As a
matter of fact, by (H3) , there exists d9 > 0 and L8 > 0 such that

|∇H(t,z)| � d9|z|λ−1, ∀|z| � L8 and for all t ∈ [0,T ]. (1.3)

Let ε1 := 1
2 (β −λ +2) . Note that we have β > λ − 2, hence ε1 > 0. Let θ2(s) =

ln(1 + s),s ∈ R+,σ2 = β−ε1
λ−2 > 1, from (H4) and (1.3), we conclude that there exist

M2 > L8 > 0 and d10 > 0 such that

(∇H(t,z),z)−2H(t,z)) � d10|z|β � dσ2
9

lnσ2(1+ |z|)
|z|ε1

|z|β

= dσ2
9

(
ln(1+ |z|)|z|λ−2

)σ2

�
(

θ2(|z|) |∇H(t,z)|
|z|

)σ2

, ∀|z| � M2 and for all t ∈ [0,T ],

which implies (H11) is true. Hence, Theorem 2 greatly improves Theorem A.

Next, turn our attentions to the subharmonic solutions, we have

THEOREM 3. Suppose that H ∈C1(R×R2N ,R) satisfies (H0)–(H2) , (H6) , (H9)
and (H10) . Then there exist infinitely many subharmonic solutions of problem (1.1).

REMARK 3. By Remark 1 (3), then Theorem 3 partially generalizes Theorem C.

THEOREM 4. Suppose that H ∈C1(R×R2N ,R) satisfies (H0)–(H2) , (H6) and
(H11) . Then there exist infinitely many subharmonic solutions of problem (1.1).

REMARK 4. Clearly, (H11) is stronger than condition (H8) , however, Theorem 4
is a novel contribution that does not rely on assumption (H7) in Theorem B. As such,
it can be regarded as a complementary extension of Theorem B. Furthermore, from
Remark 2, we know Theorem 4 completely extends Theorem C.

Finally, we would like to point out that the idea of introducing auxiliary functions
and obtaining new superquadratic conditions used here is essentially due to [16, 17],
where the authors deal with the existence of periodic solutions to certain second order
Hamiltonian systems. However, we cannot apply the methods of [16, 17] directly,
because problem (1.1) is strongly indefinite, this causes some new difficulties, we need
some crucial modifications for our proofs.

The paper is organized as follows. In Section 2, we set up the basic framework in
which we study the variational problem associated to (1.1), and we also collect some
elementary facts that will be used later. In Section 3, applying local linking theorem and
generalized mountain pass theorem, we discuss the periodic and subharmonic solutions
of problem (1.1) under different types of potential conditions.
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2. Preliminaries

First of all, let ST := R/(TZ) , E := W 1/2,2(ST ,R2N) be the Sobolev space of
T -periodic R

2N -valued functions with the inner product (·, ·)E and ‖ · ‖E defined by

(u,v)E := Ta0b0 +T ∑
k �=0

|k|akbk and ‖u‖E :=

(
T |a0|2 +T ∑

k �=0

|k||ak|2
)1/2

for u,v ∈ E , where

u(t) = ∑
k∈Z

exp

(
i
2kπt
T

)
ak, ak ∈ C

2N ,a−k = ak

and

v(t) = ∑
k∈Z

exp

(
i
2kπt
T

)
bk, bk ∈ C

2N ,b−k = bk.

Define two self-adjoint operators A , B ∈ L(E) by extending the bilinear forms

(Au,v) =
∫ T

0
(−Ju̇,v)dt, (Bu,v) =

∫ T

0
(B(t)u,v)dt, ∀u,v ∈ E.

Let E+ , E− and E0 be the positive, negative and null eigenspace of the linear operator
A− B , respectively. Then we can consider the splitting E = E− ⊕E0 ⊕E+ and an
equivalent inner product in E , denoted by (·, ·) , for u = u− + u0 + u+ and v = v− +
v0 + v+ ∈ E = E−⊕E0⊕E+ , defined by

(u,v) = ((A−B)u+,v+)E − ((A−B)u−,v−)E +(u0,v0)E .

Then, we have

∫ T

0
(−Ju̇−B(t)u,u)dt = ((A−B)u,u)E = ‖u+‖2−‖u−‖2.

As we know, space E has the following important embedding property.

LEMMA 1. E is compactly embedding in Lγ (ST ,R2N) for γ ∈ [1,+∞) and there
exists τγ > 0 such that

‖u‖Lγ � τγ‖u‖, ∀u ∈ E, (2.1)

where ‖ · ‖Lγ denotes the usual norm on Lγ for all 1 � γ < +∞ .

Now we define a functional ϕ on E by

ϕ(u) : =
1
2

∫ T

0
(−Ju̇−B(t)u,u)dt−

∫ T

0
H(t,u)dt

=
1
2
(‖u+‖2−‖u−‖2)−

∫ T

0
H(t,u)dt. (2.2)
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It is well known that T -periodic solutions of problem (1.1) correspond to the critical
points of ϕ , and

(ϕ ′(u),v) =
∫ T

0
(−Ju̇−B(t)u,v)dt−

∫ T

0
(∇H(t,u),v)dt

= (u+−u−,v)−
∫ T

0
(∇H(t,u),v)dt (2.3)

for any u,v ∈ E .

3. Proofs of main results

In the following, we will denote various positive constants as Ci , i = 1,2 · · · . To
prove Theorem 1, we shall use the following local linking theorem (Theorem 2.2 in
[11]). Let X be a real Banach space with X = X1⊕X2 and X j

0 ⊂ X j
1 ⊂ ·· · ⊂ X j such

that X j =
⋃

n∈N X j
n , j = 1,2. For every multi-index α = (α1,α2) ∈ N2 . Let Xα =

X1
α ⊕X2

α . We say α � β ⇔ α1 � β1,α2 � β2 . A sequence (αn) ∈ N2 is admissible if,
for every α ∈ N2 there is m ∈ N such that n � m ⇒ αn � α .

DEFINITION 1. We say that ϕ ∈ C1(X ,R) satisfies the (C)∗ condition if every
sequence (uαn) such that (αn) is admissible and satisfying

uαn ∈ Xαn , sup
n∈N

ϕ(uαn) < +∞, (1+‖uαn‖)ϕ ′(uαn) → 0

contains a subsequence which converges to a critical point of ϕ .

LEMMA 2. (Luan and Mao [11]) Suppose that ϕ ∈C1(X ,R) satisfies the follow-
ing assumptions:

(a) X1 �= {0} and ϕ has a local linking at 0 , that is, for some r > 0 ,

ϕ(u) � 0, ∀u ∈ X1 with ‖u‖ � r,

ϕ(u) � 0, ∀u ∈ X2 with ‖u‖ � r;

(b) ϕ satisfies (C)∗ condition;

(c) ϕ maps bounded sets into bounded sets;

(d) For every m ∈ N , ϕ(u) →−∞ as ‖u‖→ +∞ on X1
m ⊕X2 .

Then ϕ has at least one non-zero critical point.

The following lemmas give the basic compactness assumptions needed to use min-
imax methods.

LEMMA 3. Assume that (H9) and (H10) hold. Then ϕ satisfies (C)∗ condition.
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Proof. Set X = E,X1 = E+ ⊕E0 and X2 = E− . Choose Hilbert basis {en}n�1

for X1 and {en}n�−1 for X2 , define

X1
n := span{e1, · · · ,en}, n ∈ N,

X2
n := span{e−1, · · · ,e−n}, n ∈ N,

X j :=
⋃
n∈N

X j
n , j = 1,2.

Let (uαn) be a sequence in E such that (αn) is admissible and satisfying

uαn ∈ Xαn , sup
n∈N

ϕ(uαn) < +∞, (1+‖uαn‖)ϕ ′(uαn) → 0. (3.1)

By a standard argument, we only need to prove that (uαn) is a bounded sequence in X .
Otherwise, going if necessary to a subsequence, we can assume that ‖uαn‖ → +∞ as
n → +∞ .

Since lims→+∞
h(s)

θ1(s)s
= 0, then, ∀ε2 > 0, we can easily get that there exists M3 �

M1 > 0 such that
h(s)
θ1(s)

� ε2s, ∀s � M3. (3.2)

Denote Ω1n := {t ∈ [0,T ]||uαn |> M3} and Ω2n := {t ∈ [0,T ]||uαn |� M3} . Using (2.2),
(2.3), (3.1) and (H10) , for n ∈ N , we deduce that

C1 � 2ϕ(uαn)− (ϕ ′(uαn),uαn)

=
∫ T

0
[(∇H(t,uαn),uαn)−2H(t,uαn)]dt

=
∫

Ω1n

[(∇H(t,uαn),uαn)−2H(t,uαn)]dt +
∫

Ω2n

[(∇H(t,uαn),uαn)−2H(t,uαn)]dt

�
∫

Ω1n

θ σ1
1 (|uαn |)dt−C0, (3.3)

which implies that ∫
Ω1n

θ σ1
1 (|uαn |)dt � C2. (3.4)

Applying Hölder’s inequality, (2.1), (3.2) and (3.4), it follows that

∫
Ω1n

h(|uαn |)|u+
αn
|dt =

∫
Ω1n

θ1(|uαn |)
h(|uαn |)
θ1(|uαn |)

|u+
αn
|dt

�
(∫

Ω1n

θ σ1
1 (|uαn |)dt

) 1
σ1

[∫
Ω1n

(
h(|uαn |)
θ1(|uαn |)

|u+
αn
|
) σ1

σ1−1

dt

] σ1−1
σ1

� C
1

σ1
2

⎡
⎣∫

Ω1n

(
h(|uαn |)
θ1(|uαn |)

) 2σ1
σ1−1

dt

⎤
⎦

σ1−1
2σ1 (∫

Ω1n

|u+
αn
|

2σ1
σ1−1 dt

) σ1−1
2σ1
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� ε2C
1

σ1
2 ‖uαn‖

L
2σ1

σ1−1
‖u+

αn
‖

L
2σ1

σ1−1

� ε2C
1

σ1
2 τ2

2σ1
σ1−1

‖uαn‖‖u+
αn
‖ (3.5)

for all n ∈ N . Obviously, we have

∫
Ω2n

h(|uαn |)|u+
αn
|dt � C3‖u+

αn
‖L1 � C3τ1‖u+

αn
‖ (3.6)

for all n ∈ N . As a consequence, for all n ∈ N , (2.1), (2.3), (3.1), (3.5), (3.6) and (H9)
give that

(ϕ ′(uαn),u
+
αn

) = ‖u+
αn
‖2−

∫ T

0
(∇H(t,uαn),u

+
αn

)dt

� ‖u+
αn
‖2−

∫ T

0
|∇H(t,uαn)||u+

αn
|dt

� ‖u+
αn
‖2−d4

∫ T

0
h(|uαn |)|u+

αn
|dt−d4

∫ T

0
|u+

αn
|dt

� ‖u+
αn
‖2− ε2d4C

1
σ1
2 τ2

2σ1
σ1−1

‖uαn‖‖u+
αn
‖−d4C3τ1‖u+

αn
‖−d4τ1‖u+

αn
‖,

which implies that
‖u+

αn
‖

‖uαn‖
→ 0 as n → +∞. (3.7)

Similarly for u−αn
, one has

‖u−αn
‖

‖uαn‖
→ 0 as n → +∞. (3.8)

On the other hand, from (3.2) and Remark 1 (1), for ε2 > 0 mentioned above and
n ∈ N , we conclude

∫
Ω1n

|uαn |2dt =
∫

Ω1n

θ1(|uαn |)
|uαn |2

θ1(|uαn |)
dt

�
(∫

Ω1n

θ σ1
1 (|uαn |)dt

) 1
σ1

⎡
⎣∫

Ω1n

( |uαn |2
θ1(|uαn |)

) σ1
σ1−1

dt

⎤
⎦

σ1−1
σ1

� ε2

d6
C

1
σ1
2 ‖uαn‖2

L
2σ1

σ1−1

� ε2

d6
C

1
σ1
2 τ2

2σ1
σ1−1

‖uαn‖2. (3.9)
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Moreover, we know, for n ∈ N ,

∫
Ω2n

|uαn |2dt � C4. (3.10)

Then, noting dimE0 < +∞ , for n large enough, (3.9) and (3.10) ensure that

C5‖u0
αn
‖2 �

∫ T

0
|u0

αn
|2dt

�
∫ T

0
|uαn |2dt

� ε2

d6
C

1
σ1
2 τ2

2σ1
σ1−1

‖uαn‖2 +C4,

which implies that

‖u0
αn
‖

‖uαn‖
→ 0 as n → +∞. (3.11)

Consequently, together with (3.7), (3.8) and (3.11), we obtain

1 =
‖uαn‖
‖uαn‖

�
‖u0

αn
‖+‖u−αn

‖+‖u+
αn‖

‖uαn‖
→ 0 as n → +∞,

a contradiction. Therefore, (uαn) is bounded. Then we conclude that the (C)∗ condi-
tion is satisfied. �

LEMMA 4. Assume that (H11) holds. Then ϕ satisfies (C)∗ condition.

Proof. Let (uαn) be a sequence in E such that (αn) is admissible and satisfying
(3.1). Now we will prove that (uαn) is bounded. Otherwise, without loss of generality,
we may assume that ‖uαn‖→ +∞ as n → +∞ . In view of lims→+∞ θ2(s) = +∞ , then
∀ε3 > 0, there exists M4 > 0 such that

1
θ2(s)

< ε3, ∀s � M4. (3.12)

Let Ω∗
1n := {t ∈ [0,T ]||un(t)| > M4} , Ω∗

2n := {t ∈ [0,T ]||un(t)| � M4} . Using the
similar way of (3.3), by (H11) , one has

∫
Ω∗

1n

(
θ2(|uαn |)

|∇H(t,uαn)|
|uαn |

)σ2

dt � C6, (3.13)
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By (3.12), (3.13), (2.1) and Hölder’s inequality, for n ∈ N , we derive that∫
Ω∗

1n

|∇H(t,uαn)|u+
αn
|dt

=
∫

Ω∗
1n

θ2(|uαn |)
|∇H(t,uαn)|

|uαn |
|uαn |

θ2(|uαn |)
|u+

αn
|dt

�
[∫

Ω∗
1n

(
θ2(|uαn |)

|∇H(t,uαn)|
|uαn |

)σ2

dt

] 1
σ2

[∫
Ω∗

1n

( |uαn |
θ2(|uαn |)

|u+
αn
|
) σ2

σ2−1

dt

]σ2−1
σ2

� C
1

σ2
5 ε3

(∫
Ω∗

1n

|uαn |
2σ2

σ2−1 dt

) σ2−1
2σ2
(∫

Ω∗
1n

|u+
αn
|

2σ2
σ2−1 dt

)σ2−1
2σ2

� C
1

σ2
5 ε3τ2

2σ2
σ2−1

‖uαn‖‖u+
αn
‖. (3.14)

In addition, we obtain∫
Ω∗

2n

|∇H(t,uαn)|u+
αn
|dt � C7‖u+

αn
‖L1 � C7τ1‖u+

αn
‖ (3.15)

for n ∈ N . It follows (3.14), (3.15) and (2.3), for all n ∈ N , that

(ϕ ′(uαn),u
+
αn

) = ‖u+
αn
‖2−

∫ T

0
(∇H(t,uαn),u

+
αn

)dt

� ‖u+
αn
‖2−

∫ T

0
|∇H(t,uαn ||u+

αn
|dt

� ‖u+
αn
‖2−C

1
σ2
5 ε3τ2

2σ2
σ2−1

‖uαn‖‖u+
αn
‖−C7τ1‖u+

αn
‖, (3.16)

which implies that
‖u+

αn
‖

‖uαn‖
→ 0 as n → +∞. (3.17)

Similarly for u−αn
, one has

‖u−αn
‖

‖uαn‖
→ 0 as n → +∞. (3.18)

Furthermore, by (1.2), (2.1), (3.12), (3.14) and Hölder’s inequality, for n∈ N , we know∫
Ω∗

1n

|uαn |2dt =
∫

Ω∗
1n

θ2(|uαn |)
|∇H(t,uαn)|

|uαn |
1

θ2(|uαn |)
|uαn |

|∇H(t,uαn)|
|uαn |2dt

� ε3d8

[∫
Ω∗

1n

(
θ2(|uαn |)

|∇H(t,uαn)|
|uαn |

)σ2

dt

] 1
σ2
(∫

Ω∗
1n

|uαn |
2σ2

σ2−1 dt

)σ2−1
σ2

� ε3d8C
1

σ2
6 τ2

2σ2
σ2−1

‖uαn‖2. (3.19)
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Moreover, for n ∈ N , one has ∫
Ω∗

2n

|uαn |2dt � C8. (3.20)

Combing (3.19) with (3.20), for n ∈ N , we have

C5‖u0
αn
‖2 �

∫ T

0
|u0

αn
|2dt �

∫ T

0
|uαn |2dt � ε3d8C

1
σ2
6 τ2

2σ2
σ2−1

‖uαn‖2 +C8,

which implies that
‖u0

αn
‖

‖uαn‖
→ 0 as n → +∞. (3.21)

So, together with (3.17), (3.18) and (3.21), one has

1 =
‖uαn‖
‖uαn‖

�
‖u0

αn
‖+‖u−αn

‖+‖u+
αn‖

‖uαn‖
→ 0 as n → +∞,

a contradiction. Therefore, (uαn) is bounded. Then (C)∗ condition holds. �
Now, we can prove our main results.

Proof of Theorem 1. From (H9) , we can obtain there exists d13 > 0 such that

|∇H(t,z)| � d13(1+ |z|λ−1), ∀(t,z) ∈ [0,T ]×R
2N.

Then, using the same arguments of Theorem 1 in [3], we know ϕ satisfies conditions
(a) , (c) and (d) of Lemma 2. What’s more, by Lemma 3, we see that condition (b)
of Lemma 2 is also satisfied. Thus, from Lemma 2, problem (1.1) has at least one
non-trivial T -periodic solution. �

Proof of Theorem 2. Noting that (H11) implies (H8) , then, using Lemma 4 and
the proof of Theorem 1, we infer that problem (1.1) has at least one non-trivial T -
periodic solution. �

Proof of Theorem 3. For a given k ∈N , making the change of variables ξ = k−1t ,
thus, if u(t) is a kT -periodic solution of problem (1.1), η(ξ ) = u(kξ ) satisfies

− Jη̇(ξ )− kB(kξ )η = k∇H(kξ ,η). (3.22)

Hence, finding a kT -periodic solution of problem (1.1) is equivalent to finding a T -
periodic solution of problem (3.22). Certainly, kH(kξ ,η) satisfies the conditions of
our Theorem 1, there is a solution ηk(ξ ) of problem (3.22), which is a critical point of

ϕk(η) =
1
2

∫ T

0
(−Jη̇ − kB(kξ )η ,η)dξ − k

∫ T

0
H(kξ ,η)dξ .

Using Lemma 3, the arguments of [3] and the generalized mountain pass theorem in
[9], we can easily get problem (3.22) has infinitely many T -periodic solution, that is,
problem (1.1) has infinitely many subharmonic solutions. �
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Proof of Theorem 4. From Lemma 4 and the proof of Theorem 3, we see that there
exist infinitely many subharmonic solutions of problem (1.1). �
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