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DELAY DYNAMIC EQUATIONS ON TIME SCALES
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(Communicated by A. Zafer)

Abstract. The authors show that any semicanonical or noncanonical third-order linear delay dy-
namic equation on a time scale can be written in canonical form without imposing any additional
conditions on the coefficient functions. Since this is true for any time scale, this means it holds
for differential and difference equations. The implication of this is the significant result that any
set of conditions which show that a related equation in canonical form is oscillatory will guaran-
tee that the semicanonical or noncanonical equation is also oscillatory. Several examples of the
application of the results are incorporated into the paper.

1. Introduction

Consider the third-order delay dynamic equation(
a2(t)

(
a1(t)yΔ(t)

)Δ
)Δ

+q(t)y(τ(t)) = 0, t ∈ [t0,∞)T, (E)

where T is a time scale with t0 � 0, supT = ∞ , [t0,∞)T = [t0,∞)∩T , a1 , a2 , q ∈
Crd([t0,∞)T,(0,∞)) , τ ∈ Crd([t0,∞)T,T) , τ(t) � t , and limt→∞ τ(t) = ∞ . The usual
notation and terminology for time scales as can be found in Bohner and Peterson [7]
will be used throughout. A solution y of (E) is said to be oscillatory if it is neither
eventually positive nor eventually negative, and it is said to be nonoscillatory otherwise.
An equation is said to be oscillatory if all of its solutions are oscillatory.

A wide literature has been devoted to the investigation of asymptotic and oscil-
latory properties of solutions to (E), often accomplished by dividing the set of all
nonoscillatory solutions into particular classes. To introduce such a classification, it
is convenient to describe the operator

Ly =
(

a2

(
a1y

Δ
)Δ
)Δ
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on the basis of convergence or divergence of the improper integrals

Ai(t0) :=
∫ ∞

t0

1
ai(s)

Δs, i = 1,2.

We say that the operator L (and consequently, the equation (E)) is in canonical form if

A1(t0) = A2(t0) = ∞ (C)

and it is in noncanonical form if

A1(t0) < ∞, A2(t0) < ∞. (N)

If either
A1(t0) < ∞, A2(t0) = ∞ (S1)

or
A1(t0) = ∞, A2(t0) < ∞, (S2)

then L is in semicanonical form. Generally, the set N of all nontrivial nonoscillatory
solutions of (E) can be divided into the following four classes for t � Ty for some
Ty � t0 :

N0 =
{

y ∈ N : yyΔ < 0, y
(
a1y

Δ
)Δ

> 0

}
,

N2 =
{

y ∈ N : yyΔ > 0, y
(
a1y

Δ
)Δ

> 0

}
,

N∗ =
{

y ∈ N : yyΔ > 0, y
(
a1y

Δ
)Δ

< 0

}
,

N∗∗ =
{

y ∈ N : yyΔ < 0, y
(
a1y

Δ
)Δ

< 0

}
.

This means:

(C) =⇒ N = N0∪N2;

(N) =⇒ N = N0∪N2∪N∗ ∪N∗∗;
(S1) =⇒ N = N0∪N2∪N∗∗;
(S2) =⇒ N = N0∪N2∪N∗.

(1.1)

In view of the above, the obvious advantage of examining equations in canonical form
is that it results in the smallest possible number of classes of nonoscillatory solutions
that result from applying the famous Kiguradze lemma [16, Lemma 1]. Recall that in
the case where T = R , the operator L can be written in an essentially unique canonical
form due to the classical result of Trench [19, Theorem 1]. For a discrete analogue
for the case T = Z , we refer the reader to [14, Theorem 1]. Explicit closed-form
canonical representations of third-order semicanonical and noncanonical differential
operators resulting from the application of Trench’s Lemma 1 and Lemma 2 in [19] can
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be found in [8]. Employing useful identities, less complicated canonical representations
of noncanonical differential operators were presented in [3].

In the recent paper [12] by the first author, it was shown that the semicanonical
dynamic equation (E) with either (S1) or (S2) holding can be rewritten, under certain
integral conditions, in an equivalent canonical form. This work reflected a growing
interest in establishing relations between canonical, semicanonical, and noncanonical
equations separately for the case T = R corresponding to differential equations [3, 8,
10, 17] and for the case T = Z corresponding to difference equations [2, 18].

The purpose of the present work is to complement the results in [12] by provid-
ing an equivalent canonical representation of L in noncanonical form (N) and both
semicanonical forms (S1) and (S2), without requiring any additional conditions. The
newly obtained classification scheme enables us to apply known oscillation criteria for
the canonical case (C) to give oscillation criteria for equations in the noncanonical and
semicanonical cases, and thus contributes to the general study of oscillation theory of
canonical dynamic equations on time scales, and by default for ordinary differential and
difference equations.

2. Notation and auxiliary results

We will use the usual time scale notation that for a function f , by f σ we mean
f (σ(t)) for t ∈ T , where σ is the usual forward jump operator. Let

Ai(t) =
∫ ∞

t

1
ai(s)

Δs, i = 1,2,

A12(t) =
∫ ∞

t

1
a1(s)

A2(s)Δs,

A21(t) =
∫ ∞

t

1
a2(s)

Aσ
1 (s)Δs,

provided that the improper integrals are well defined.
In the sequel, we will use the following extended notation:

M[b0,b1,b2]y = b2

(
b1 (b0y)

Δ
)Δ

and

M[b0,b1,b2,b3]y = b3

(
b2

(
b1 (b0y)

Δ
)Δ
)Δ

, (2.1)

i.e.,

M[b0,b1,b2,b3]y =

{
b3 (M[b0,b1,b2]y)

Δ ,

M[b1,b2,b3] (b0y)
Δ ,

where bi ∈Crd([t0,∞)T,R) , i = 0,1,2,3. Therefore, we can rewrite L as

L = M[1,a1,a2,1].

The following auxiliary result will be repeatedly used in our proofs.



4 J. R. GRAEF AND I. JADLOVSKÁ

LEMMA 1. The second-order noncanonical dynamic operator M[b0,b1,b2] with

B1(t0) :=
∫ ∞

t0

1
b1(s)

Δs < ∞

can be rewritten in canonical form

M[b0,b1,b2] = M

[
b0

B1
,b1B1B

σ
1 ,

b2

Bσ
1

]
, (2.2)

such that ∫ ∞

t0

1
b1(s)B1(s)Bσ

1 (s)
Δs = ∞.

Proof. The equivalence in (2.2) can be shown by straightforward differentiation
as in the proof of [12, Theorem 2.1]. A simple computation yields

∫ ∞

t0

1
b1(s)B1(s)Bσ

1 (s)
Δs =

∫ ∞

t0

(
1

B1(s)

)Δ
Δs = lim

t→∞

1
B1(t)

− 1
B1(t0)

= ∞,

which completes the proof of the lemma. �

REMARK 1. In the case T = R , Lemma 1 coincides with Trench’s original result
[19, Lemma 1].

Next, we present a couple of useful identities holding in the noncanonical case
(N).

LEMMA 2. Let (N) hold. Then

A1A2 = A12 +A21 (2.3)

and ∫ ∞

t

A21(s)
a1(s)A1(s)Aσ

1 (s)
Δs =

A12(t)
A1(t)

. (2.4)

Proof. Integrating the identity

(A1A2)
Δ = −A2

a1
− Aσ

1

a2
(2.5)

from t to ∞ gives

A1(t)A2(t) =
∫ ∞

t

1
a1(s)

A2(s)Δs+
∫ ∞

t

1
a2(s)

Aσ
1 (s)Δs = A12(t)+A21(t),

which proves (2.3).
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To prove (2.4), we first show that the integral on the left-hand side is well-defined.
First, notice that by l’Hospital’s rule, we have

lim
t→∞

A12(t)
A1(t)

= lim
t→∞

A2(t) = 0. (2.6)

From (2.3) and (2.6), we see that

lim
t→∞

A21(t)
A1(t)

= lim
t→∞

A1(t)A2(t)−A12(t)
A1(t)

(2.7)

= lim
t→∞

A2(t)− A12(t)
A1(t)

= lim
t→∞

A2(t)−A2(t) = 0. (2.8)

Using the integration by parts formula on time scales ([7, Theorem 1.77]), (N), and
(2.7), we obtain

∫ ∞

t0

A21(s)
a1(s)A1(s)Aσ

1 (s)
Δs =

∫ ∞

t0
A21(s)

(
1

A1(s)

)Δ
Δs

=
A21(t)
A1(t)

∣∣∣∣∞
t0

+
∫ ∞

t0

1
a2(s)

Δs < ∞. (2.9)

Now, from (2.3), we have∫ ∞

t

A21(s)
a1(s)A1(s)Aσ

1 (s)
Δs = −A21(t)

A1(t)
+A2(t)

=
A12(t)−A1(t)A2(t)

A1(t)
+A2(t) =

A12(t)
A1(t)

,

so (2.4) holds, and this completes the proof of the lemma. �

3. Canonical representation of L

In this section, we provide closed-form canononical representations for the opera-
tor L in the cases where (S1), (S2), and (N) hold, respectively. Our first result applies to
the operator L in the semicanonical form (S1), and it extends [12, Theorem 2.1] to the
case A21(t0) < ∞ .

THEOREM 1. Let (S1) hold. The operator Ly can be written in the canonical form

Ly =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝ a2

Aσ
1

(
a1A1A

σ
1

(
y
A1

)Δ
)Δ
⎞⎠Δ

, if A21(t0) = ∞,

1
Aσ

21

⎛⎝ a2

Aσ
1

A21A
σ
21

(
a1A1Aσ

1

A21

(
y
A1

)Δ
)Δ
⎞⎠Δ

, if A21(t0) < ∞.

(3.1)
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Proof. Since A1(t0) < ∞ , applying Lemma 1, we can rewrite the operator L as

Ly = M[1,a1,a2,1]y

= (M[1,a1,a2]y)
Δ

=
(

M

[
1
A1

,a1A1A
σ
1 ,

a2

Aσ
1

]
y

)Δ

= M

[
1
A1

,a1A1A
σ
1 ,

a2

Aσ
1

,1

]
y

(3.2)

with ∫ ∞

t0

1
a1(s)A1(s)Aσ

1 (s)
Δs =

∫ ∞

t0

(
1

A1(s)

)Δ
Δs = ∞.

Hence, if A21(t0) = ∞ , then the operator (3.1) is in canonical form. If A21(t0) < ∞ , we
again apply Lemma 1 to obtain

M

[
1
A1

,a1A1A
σ
1 ,

a2

Aσ
1

,1

]
y = M

[
a1A1A

σ
1 ,

a2

Aσ
1

,1

](
y
A1

)Δ

= M

[
a1A1Aσ

1

A21
,
a2A21Aσ

21

Aσ
1

,
1

Aσ
21

](
y
A1

)Δ

= M

[
1
A1

,
a1A1Aσ

1

A21
,
a2A21Aσ

21

Aσ
1

,
1

Aσ
21

]
y

(3.3)

with ∫ ∞

t0

1
A21(s)Aσ

21(s)
Aσ

1 (s)
a2(s)

Δs =
∫ ∞

t0

(
1

A21(s)

)Δ
Δs = ∞.

Since

∫ ∞

t0

A21(s)
a1(s)A1(s)Aσ

1 (s)
Δs =

∫ ∞

t0
A21(s)

(
1

A1(s)

)Δ
Δs

=
A21(t)
A1(t)

∣∣∣∣∞
t0

+
∫ ∞

t0

1
a2(s)

Aσ
1 (s)

1
Aσ

1 (s)
Δs

�
∫ ∞

t0

1
a2(s)

Δs = ∞,

the operator (3.1) is in canonical form. The proof is now complete. �

Our second result applies to the operator L in the semicanonical form (S2); it
extends [12, Theorem 3.1] to the case A12(t0) < ∞ .
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THEOREM 2. Let (S2) hold. The operator Ly can be written in the canonical form

Ly =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
Aσ

2

(
a2A2A

σ
2

(
a1

A2
yΔ
)Δ
)Δ

, if A12(t0) = ∞,

1
Aσ

2

⎛⎝a2A2Aσ
2

Aσ
12

(
a1

A2
A12A

σ
12

(
y

A12

)Δ
)Δ
⎞⎠Δ

, if A12(t0) < ∞.

(3.4)

Proof. Since A2(t0) < ∞ , we can rewrite Ly using Lemma 1 as

Ly = M[1,a1,a2,1]y

= M[a1,a2,1]yΔ

= M

[
a1

A2
,a2A2A

σ
2 ,

1
Aσ

2

]
yΔ

= M

[
1,

a1

A2
,a2A2A

σ
2 ,

1
Aσ

2

]
y

with ∫ ∞

t0

1
a2(s)A2(s)Aσ

2 (s)
Δs = ∞.

Hence, if A12(t0) = ∞ , then the operator (3.4) is in canonical form.
If A12(t0) < ∞ , we again apply Lemma 1 to obtain

M

[
1,

a1

A2
,a2A2A

σ
2 ,

1
Aσ

2

]
y =

1
Aσ

2

(
M

[
1,

a1

A2
,a2A2A

σ
2

]
y

)Δ

=
1

Aσ
2

(
M

[
1

A12
,
a1

A2
A12A

σ
12,

a2A2Aσ
2

A12

]
y

)Δ

= M

[
1

A12
,
a1

A2
A12A

σ
12,

a2A2Aσ
2

A12
,

1
Aσ

2

]
y

with ∫ ∞

t0

A2(s)
a1(s)A12(s)Aσ

12(s)
Δs = ∞.

Finally, ∫ ∞

t0

Aσ
12(s)

a2(s)A2(s)Aσ
2 (s)

Δs =
∫ ∞

t0
Aσ

12(s)
(

1
A2(s)

)Δ
Δs

=
A12(t)
A2(t)

∣∣∣∣∞
t0

+
∫ ∞

t0

1
a1(s)

Δs = ∞

by (S2), so (3.4) is in canonical form, and this completes the proof. �
Our third result applies to the operator L if it is in noncanonical form (N). The

particular case T = R can be found in [3, Theorem 2.1].



8 J. R. GRAEF AND I. JADLOVSKÁ

THEOREM 3. Let (N) hold. The operator Ly can be written in the canonical form

Ly =
1

Aσ
21

⎛⎝a2A21Aσ
21

Aσ
12

(
a1A12Aσ

12

A21

(
y

A12

)Δ
)Δ
⎞⎠Δ

. (3.5)

Proof. Since A1(t0) < ∞ , by (3.2),

Ly = M

[
1
A1

,a1A1A
σ
1 ,

a2

Aσ
1

,1

]
y.

In view of (N), clearly A21(t0) < ∞ , and so we arrive at (3.3), i.e.,

Ly = M

[
1
A1

,
a1A1Aσ

1

A21
,
a2A21Aσ

21

Aσ
1

,
1

Aσ
21

]
y

with ∫ ∞

t0

1
A21(s)Aσ

21(s)
Aσ

1 (s)
a2(s)

Δs = ∞.

Since by (2.4),
A12(t0)
A1(t0)

=
∫ ∞

t0

A21(s)
a1(s)A1(s)Aσ

1 (s)
Δs < ∞

(see (2.9)), we then apply Lemma 1 to obtain

M

[
1
A1

,
a1A1Aσ

1

A21
,

a2A21Aσ
21

Aσ
1

,
1

Aσ
21

]
y

=
1

Aσ
21

(
M

[
1
A1

,
a1A1Aσ

1

A21
,
a2A21Aσ

21

Aσ
1

]
y

)Δ

=
1

Aσ
21

(
M

[
1

A12
,
a1A12Aσ

12

A21
,
a2A21Aσ

21

Aσ
12

]
y

)Δ

= M

[
1

A12
,
a1A12Aσ

12

A21
,
a2A21Aσ

21

Aσ
12

,
1

Aσ
21

]
y

with ∫ ∞

t0

A21(s)
a1(s)A12(s)Aσ

12(s)
Δs = ∞.

Using (2.3) and integration by parts ([7, Theorem 1.77]), we see that∫ ∞

t0

Aσ
12(s)

a2(s)A21(s)Aσ
21(s)

Δs =
∫ ∞

t0

Aσ
1 (s)Aσ

2 (s)−Aσ
21(s)

a2(s)A21(s)Aσ
21(s)

Δs

=
∫ ∞

t0

(
1

A21(s)

)Δ
Aσ

2 (s)− 1
a2(s)A21(s)

Δs

=
A2(t)
A21(t)

∣∣∣∣∞
t0

= ∞,
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where by l’Hospital’s rule,

lim
t→∞

A2(t)
A21(t)

= lim
t→∞

1
Aσ

1 (t)
= ∞.

since A1(t) → 0 as t → ∞ . This proves the theorem. �
In a recent work [11], the authors pointed out that in the continuous case T =

R , the noncanonical operator can be rewritten in a simplified canonical form without
needing to compute the integrals A12 and A21 if the functions ai are of the same type,
e.g., they are both of the form tα or exp(αt) . In the sequel, we provide an analogue of
this observation on a time scale T .

COROLLARY 1. Let (N) hold and

a2(t)A2(t)
a1(t)Aσ

1 (t)
= � for some � ∈ R. (3.6)

Then the operator Ly can be written in the canonical form

Ly =
1

Aσ
1 Aσ

2

⎛⎝a2A1A2

(
a1A

σ
1 Aσ

2

(
y

A1A2

)Δ
)Δ
⎞⎠Δ

.

Proof. It suffices to note that using (3.6) in (2.5) and integrating gives

A12 =
�

1+ �
A1A2 and A21 =

1
1+ �

A1A2.

In view of Theorem 3, the conclusion is immediate. �

4. Applications

The simplest way to illustrate our results is to begin with the continuous case
T = R , where σ(t) = t , yΔ(t) = y′(t) and

∫ b
a f (t)Δt =

∫ b
a f (t)dt .

EXAMPLE 1. Consider the third-order differential operator

Ly(t) =
(
eβ t (eαty′(t)

)′)′
, t ∈ R, α,β ∈ R. (4.1)

Notice that if α � 0 and β � 0, then L is already in canonical form. Hence, it makes
sense to consider the following three cases.

If α > 0 and β � 0, then L is in the semicanonical form (S1), and by Theorem 1,
it can be written in the canonical form

Ly(t) =

⎧⎨⎩
(
e(α+β )t (e−αt (eαty(t))′

)′)′
, if α + β � 0,

e(α+β )t
(
e−(α+β )t (eβ t (eαty(t))′

)′)′
, if α + β > 0.
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If α � 0 and β > 0, then L is in the semicanonical form (S2), and by Theorem 2,
it can be written in the canonical form

Ly(t) =

⎧⎪⎪⎨⎪⎪⎩
eβ t

(
e−β t

(
e(α+β )ty′(t)

)′)′
, if α + β � 0,

eβ t

(
eαt

(
e−(α+β )t

(
e(α+β )ty(t)

)′)′)′
, if α + β > 0.

If α > 0 and β > 0, then L is in noncanonical form (N), and by Theorem 3, it
can be written in the canonical form

Ly(t) = e(α+β )t
(

e−αt
(

e−β t
(
e(α+β )ty(t)

)′)′)′
.

It should be noted that the semicanonical cases with α + β > 0 as well as the
noncanonical case are not covered by the previous results in [12].

The following example, which can be seen as a discrete analogue of Example
1, shows how Theorems 1–3 apply in case T = N . In this situation, σ(t) = t + 1,
yΔ(t) = Δy(t) = y(t +1)− y(t) , and

∫ b
a f (t)Δt = ∑b−1

i=a f (i) .

EXAMPLE 2. Consider the third-order difference operator

Ly(t) = Δ
(
β tΔ

(
αtΔy(t)

))
, t ∈ N, α,β > 0. (4.2)

First note that L is in canonical form if α � 1 and β � 1.
If α > 1 and β � 1, then L is in the semicanonical form (S1), and by Theorem 1,

it can be written in the canonical form

Ly(t) =

{
Δ((αβ )tΔ(α−tΔ(αt y(t)))) , if αβ � 1,

(αβ )tΔ((αβ )−tΔ(β tΔ(αt y(t)))) , if αβ > 1.

If α � 1 and β > 1, then L is in the semicanonical form (S2), and by Theorem 2, it
can be written in the canonical form

Ly(t) =

{
β tΔ(β−tΔ((αβ )tΔy(t))) , if αβ � 1,

β tΔ(αtΔ((αβ )−tΔ((αβ )t y(t)))) , if αβ > 1.

Finally, if α > 1 and β > 1, then L is in noncanonical form (N), and by Theorem 3, it
can be written in the canonical form

Ly(t) = (αβ )tΔ
(
α−tΔ

(
β−tΔ

(
(αβ )t y(t)

)))
.

Again, we stress that the previous results in [12] do not apply in the semicanonical cases
with αβ > 1 nor in the noncanonical case.

Now, let us focus on the noncanonical case (N). It is easy to see that both of the
operators (4.1) and (4.2) satisfy condition (3.6) with � = α/β and � = β (α −1)/(β −
1) , respectively, and this allows us to apply Corollary 1 as in the following example.



Differ. Equ. Appl. 16, No. 1 (2024), 1–18. 11

EXAMPLE 3. Consider the third-order dynamic operator

Ly =
(

tσ(t)
(
tσ(t)yΔ

)Δ
)Δ

, t ∈ T.

Clearly, L is in noncanonical form since

A1(t) = A2(t) =
∫ ∞

t

1
sσ(s)

Δs =
1
t
.

Although the integrals

A12(t) =
∫ ∞

t

1
s2σ(s)

Δs and A21(t) =
∫ ∞

t

1
sσ2(s)

Δs

cannot be analytically computed on an arbitrary time scale T , if (3.6) holds, i.e.,

σ(t)
t

= � for some � ∈ R, (4.3)

then L can be explicitly written in the canonical form

Ly(t) =
1

σ2(t)
(
t2y(t)

)ΔΔΔ
.

Notice that condition (4.3) is satisfied for T = R (� = 1) as well as for the quantum
time scale T = qN = {t : t = qk,k ∈ N,q > 1} (� = q ), but it is not satisfied for many
other time scales such as T = N , T = hZ+ , h > 0, or T = N

2
0 .

5. Main results

Based on Theorems 1–3, we can now formulate our main results that we obtain by
rewriting (E) when it is in the semicanonical forms (S1) or (S2), or in the noncanonical
form (N) into an equation in canonical form(

b2(t)
(
b1(t)xΔ(t)

)Δ
)Δ

+ q̃(t)x(τ(t)) = 0. (EC)

THEOREM 4. Let (S1) hold. Equation (E) has a solution y(t) if and only if the
canonical equation (EC) with

b1(t) =

⎧⎨⎩a1(t)A1(t)Aσ
1 (t), if A21(t0) = ∞,

a1(t)A1(t)Aσ
1 (t)

A21(t)
, if A21(t0) < ∞,

b2(t) =

⎧⎪⎪⎨⎪⎪⎩
a2(t)
Aσ

1 (t)
, if A21(t0) = ∞,

a2(t)A21(t)Aσ
21(t)

Aσ
1 (t)

, if A21(t0) < ∞,
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q̃(t) =

{
q(t)A1(τ(t)), if A21(t0) = ∞,

q(t)A1(τ(t))Aσ
21(t), if A21(t0) < ∞,

has a solution

x(t) =
y(t)
A1(t)

.

THEOREM 5. Let (S2) hold. Equation (E) has a solution y(t) if and only if the
canonical equation (EC) with

b1(t) =

⎧⎪⎪⎨⎪⎪⎩
a1(t)
A2(t)

, if A12(t0) = ∞,

a1(t)A12(t)Aσ
12(t)

A2(t)
, if A12(t0) < ∞,

b2(t) =

⎧⎨⎩
a2(t)A2(t)Aσ

2 (t), if A12(t0) = ∞,
a2(t)A2(t)Aσ

2 (t)
Aσ

12(t)
, if A12(t0) < ∞,

q̃(t) =

{
q(t)Aσ

2 (t), if A12(t0) = ∞,

q(t)A12(τ(t))Aσ
2 (t), if A12(t0) < ∞,

has a solution

x(t) =

⎧⎨⎩y(t), if A12(t0) = ∞,
y(t)

A12(t)
, if A12(t0) < ∞.

THEOREM 6. Let (N) hold. Equation (E) has a solution y(t) if and only if the
canonical equation (EC) with

b1(t) =
a1(t)A12(t)Aσ

12(t)
A21(t)

,

b2(t) =
a2(t)A21(t)Aσ

21(t)
Aσ

12(t)
,

q̃(t) = q(t)A12(τ(t))Aσ
21(t),

has a solution

x(t) =
y(t)

A12(t)
.

In the noncanonical case (N), we can obtain a simplified version of Theorem 6 that
results from applying Corollary 1.

COROLLARY 2. Let (N) and (3.6) hold. Equation (E) has a solution y(t) if and
only if the canonical equation (EC) with

b1(t) = a1(t)Aσ
1 (t)Aσ

2 (t),
b2(t) = a2(t)A1(t)A2(t),
q̃(t) = q(t)A1(τ(t))A2(τ(t))Aσ

1 (t)Aσ
2 (t),
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has a solution

x(t) =
y(t)

A1(t)A2(t)
.

REMARK 2. The obvious advantage of Corollary 2 over Theorem 6 is that we do
not need to compute the integrals A12 and A21 .

It is important to point out that, as an immediate consequence of Theorems 4–
6, any set of conditions that implies the oscillation of all solutions of the canonical
equation (EC) guarantees the same property for (E) in semicanonical or noncanonical
form. This is true on any unbounded time scale T , including the classical ones T = R

and T = N . In our opinion, this is a highly significant result.
To demonstrate the applicability of our results in this direction, let us recall an

oscillation criterion for the third-order delay differential equation

x′′′(t)+ q̃(t)x(τ(t)) = 0, t � 1, (ẼC)

which is a particular case of (EC) with T = R and b1 = b2 = 1.

THEOREM 7. Let λ∗ := liminft→∞
t

τ(t) and

M2 = max
{−p(p−1)(p−2)λ p−2

∗ : 1 < p < 2
}

.

If

liminf
t→∞

τ2(t)tq̃(t) >

{
0, for λ∗ = ∞,

M2, for λ∗ < ∞,
(5.1)

and

limsup
t→∞

∫ t

τ(t)

∫ t

u

∫ t

x
q̃(s)dsdxdu > 1, (5.2)

then (ẼC) is oscillatory.

Note that condition (5.1) (see [13, Theorem 2.1])) eliminates the solutions belong-
ing to the class N2 , and condition (5.2) ensures that the class N0 is empty (see [9,
Theorem 9]). An important observation here is that (5.1) remains sharp for the delay
Euler differential equation

x′′′(t)+
q0

t3
x(λ t) = 0, q0 > 0, λ ∈ (0,1], t � 1, (5.3)

as shown in [13, Corollary 2.1]. To the best of our knowledge, a similarly sharp criterion
for the nonexistence of N0 -type solutions has not yet been obtained (see [6] for more
details).

Now, let us consider the case of the simple noncanonical differential equation(
t2(t2y′(t))′

)′
+q(t)y(τ(t)) = 0, t ∈ R, t � 1. (Ẽ)

By Theorem 6, equation (Ẽ) can be written as the canonical equation (ẼC) with q̃(t) =
τ−2(t)t−2q(t) , so that y(t) is a solution of (Ẽ) if and only if x(t) = t2y(t) is a solution
of (ẼC). In view of Theorem 7, the following result is immediate.
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THEOREM 8. Let λ∗ and M2 be as in Theorem 7. If

liminf
t→∞

q(t)
t

>

{
0, for λ∗ = ∞,

M2, for λ∗ < ∞,
(5.4)

and

limsup
t→∞

∫ t

τ(t)

∫ t

u

∫ t

x

q(s)
τ2(s)s2 dsdxdu > 1, (5.5)

then (Ẽ) is oscillatory.

Notice that the noncanonical delay Euler differential equation

(t2(t2y′(t))′)′ +q0ty(λ t) = 0, q0 > 0, λ ∈ (0,1], t � 1,

has a nonoscillatory solution y∈N∗∗ if q0 = M2 ; this shows that condition (5.4) cannot
be improved.

Next, we formulate a variant of the oscillation criterion for (EC), which can be
viewed as an extension of Theorem 7. We will use the notation:

Bi(t) =
∫ t

t0

1
bi(s)

ds, i = 1,2, and B12(t) =
∫ t

t0

B2(s)
b1(s)

ds.

THEOREM 9. Let

β∗ := liminf
t→∞

B2(t)B12(τ(t))q̃(t)b2(t),

λ∗ := liminf
t→∞

t
τ(t)

,

k∗ = liminf
t→∞

Bβ∗
2 (t)

∫ t
t0

B1−β∗
2 (s)
b1(s)

ds

B12(t)
,

and
M = max

{
p(1− p)λ 1/k f−1

∗ : 0 < p < 1
}

,

where

k f = liminf
t→∞

Bp
2(t)

∫ t
t0

B1−p
2 (s)
b1(s)

ds

B12(t)
.

If

β∗ >

{
0, for λ∗ = ∞ or k∗ = ∞,

M, for λ∗ < ∞ and k∗ < ∞,
(5.6)

and

limsup
t→∞

∫ t

τ(t)

1
b1(u)

∫ t

u

1
b2(x)

∫ t

x
˜̃q(s)dsdxdu > 1, (5.7)

then equation (EC) is oscillatory.
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For condition (5.6), we refer the reader to [15, Corollary 3, Corollary 4], while
condition (5.7) is due to [9, Theorem 9]. Notice that again, (5.6) is optimal in that it
remains sharp when applied to the delay Euler differential equation(

tβ (tαy′(t)
)′)′ +q0t

α+β−3y(λ t) = 0, q0 > 0, λ ∈ (0,1], t � 1.

For our last example in this paper we illustrate our results in this section by con-
sidering the third-order delay differential equation whose coefficients are powers of t ,
namely, (

tβ (tαy′(t)
)′)′ +q(t)y(τ(t)) = 0, t ∈ R, t � t0 � 1. (Ep)

THEOREM 10. Equation (Ep) is oscillatory if and only if (EC) is oscillatory in
each of the following cases.

1. α > 1 and β � 1:

(i) α + β � 2 and b1(t) = t2−α , b2(t) = tα+β−1 , q̃(t) = τ1−α(t)q(t) ;

(ii) α + β > 2 and b1(t) = tβ , b2(t) = t3−α−β , q̃(t) = τ1−α(t)t2−α−β q(t) .

2. α � 1 and β > 1:

(i) α + β � 2 and b1(t) = tα+β−1 , b2(t) = t2−β , q̃(t) = t1−β q(t) ;

(ii) α + β > 2 and b1(t) = t3−α−β , b2(t) = tα , q̃(t) = τ2−α−β (t)t1−β q(t) .

3. α > 1 and β > 1:

b1(t) = t2−β , b2(t) = t2−α , q̃(t) = τ2−α−β (t)t2−α−βq(t) .

Proof. We will prove the first case and leave the remaining ones to the reader.

1. If α > 1 and β � 1, then (Ep) is in semicanonical form (S1), i.e., we have

A1(t) =
t1−α

α −1
and A2(t0) = ∞.

Consequently, two subcases can occur.

(i) If α + β � 2, then A21(t0) = ∞ . Clearly,

b1(t) =
t2−α

(α −1)2 , b2(t) = (α −1)tα+β−1, q̃(t) =
τ1−α(t)
(α −1)

q(t).

By Theorem 4, (Ep) has a solution y(t) if and only if the canonical equation(
tα+β−1(t2−αx′(t)

)′)′
+ τ1−α(t)q(t)x(τ(t)) = 0,

has a solution x(t) = tα−1y(t) .
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(ii) If α + β > 2, then

A21(t) =
t2−α−β

(α −1)(α + β −2)

and clearly,

b1(t) =
(

α + β −2
α −1

)
tβ , b2(t) =

t3−α−β

(α + β −2)2(α −1)
,

q̃(t) =
τ1−α(t)t2−α−β

(α −1)2(α + β −2)
q(t).

Again by Theorem 4, (Ep) has a solution y(t) if and only if the canonical
equation (

t3−α−β
(
tβ x′(t)

)′)′
+ τ1−α(t)t2−α−βq(t)x(τ(t)) = 0,

has a solution x(t) = tα−1y(t) .

The proofs of the remaining cases are similar and as such we leave the details to the
reader. �

Combining Theorems 9 and 10, one can easily establish an oscillation criterion for
(Ep).

THEOREM 11. If (5.6) and (5.7) hold with b1(t) , b2(t) , and q̃(t) as in Theorem
10, then (Ep) is oscillatory.

Here, we would like to stress that the results in [12] do not cover the semicanonical
cases with α + β > 2 nor the noncanonical case discussed in the above example.

REMARK 3. Many other analogous results can be established for equation (E)
using Theorems 4–6 and existing oscillation results for (EC). The details are left to the
reader.

REMARK 4. It should be clear that we can apply our results here, in particular,
Theorems 4–6, to nonlinear equations such as(

a2(t)
(
a1(t)yΔ(t)

)Δ
)Δ

+q(t)yγ(τ(t)) = 0,

where γ is the ratio of odd positive integers, as was done in [12].

REMARK 5. To the best of our knowledge, there is no oscillation result for the
delay dynamic equation (E) that would involve sharp oscillation constants known in
the continuous case. This is left as an interesting research problem.
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6. Conclusion

In this paper we show that any semicanonical or noncanonical third-order linear
delay dynamic equation on a time scale can be written in canonical form without im-
posing any additional conditions on the coefficient functions or any restrictions on the
time scale. As a consequence, this is also true for differential and difference equations.
Applications to equations whose coefficients are exponential functions or powers of t
are also given.
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