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EXISTENCE AND UNIQUENESS OF SOLUTIONS
FOR NONLINEAR FRACTIONAL DIFFERENTIAL
EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

RAHMAT ALI KHAN, MUJEEB UR REHMAN AND JOHNNY HENDERSON

Abstract. In this paper, we study existence and uniqueness of solutions to nonlinear fractional
differential equations with integral boundary conditions in an ordered Banach space. We use the
Caputo fractional differential operator and the nonlinearity depends on the fractional derivative
of an unknown function. For the existence of solutions, we employ the nonlinear alternative
of Leray-Schauder and the Banach fixed point theorem. An example is included to show the
applicability of our results.

1. Introduction

The study of fractional differential equations has become a very important and
useful area of mathematics over the last few decades due to its numerous applications in
various areas of physics, chemistry and engineering such as viscoelasticity [5, 28, 29],
dynamical processes in self-similar structures [18], biosciences [19], signal processing
[23], systems control theory [32], electrochemistry [22] and diffusion processes [9, 20].
Further, fractional calculus has found many applications in classical mechanics [25]
and the calculus of variations [6] and is a very useful and simple means for obtaining
solutions to non-homogenous linear ordinary and partial differential equations. For
more details, we refer the reader to [21, 31].

There are several approaches to fractional derivatives such as Riemann-Liouville,
Caputo, Weyl, Hadamard and Grunwald-Letnikov, etc. Applied problems require those
definitions of a fractional derivative that allow the utilization of physically interpretable
initial and boundary conditions. The Caputo fractional derivative satisfies these de-
mands, while the Riemann-Liouville derivative is not suitable for mixed boundary con-
ditions.

Recently, the theory on existence and uniqueness of solutions of linear and non-
linear fractional differential equations has attracted the attention of many authors, see
for example, [1, 3, 4, 11, 15, 16, 17, 27, 30] and references therein. However, many
of the physical systems can better be described by integral boundary conditions. In-
tegral boundary conditions are encountered in various applications such as population
dynamics, blood flow models, chemical engineering and cellular systems. Moreover,
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boundary value problems with integral boundary conditions constitute a very interest-
ing and important class of problems. They include two-point, three-point, multi-point
and nonlocal boundary value problems as special cases, see [3, 7, 13, 14] and references
therein.

In this paper, we study existence and uniqueness of nonlinear fractional differential
equations of the type

‘DY, u(t) = f(t,u(t),“D§ u(r)), forr € [0,T], (1.1)

subject to integral boundary conditions

cw(0) — Bu' (0 /gsuds yu(1) +8u'(1 /hsu (1.2)

where 0 <o <1,1<g<2, a,6>0, B,y>0 (or a,6 >0, B,y>0)and °Df_,
‘D, are the Caputo fractional derivatives. We use the nonlinear alternative of Leray-
Schauder type and the Banach fixed point theorem to prove existence and uniqueness

results. Our results allow f to depend on “D, , which leads to extra difficulties.

2. Preliminaries

We recall some basic definitions and lemmas from fractional calculus [12, 24].
Riemann’s modified form of Liouville’s fractional integral operator is a generalization
of Cauchy’s iterated integral formula

/atdtl /at' dtz.../at"”g(tn)dzn: F(ln) /a[ (If(ss))l_nds, @.1)

where IT" is Euler’s gamma function. Clearly, the right-hand side of equation (2.1) is
meaningful for any positive real value of n. Hence, it is natural to define the fractional
integral as follows:

DEFINITION 2.1. If g € C([a,b]) and a > 0, then the Riemann-Liouville frac-
tional integral is defined by

1%.g(t) = — /at( 86) 4. 2.2)

t—s)l-a
For a = 0, the fractional integral (2.2) can be written as I, h(t) = h(t) * g (t), where

Qo (t) = % for >0 and @u(r) =0 for r <0

DEFINITION 2.2. The Caputo fractional derivative of order & > 0 of a continuous
function g : (a,b) — R is defined by

¢ 1 r ")
Da+g( ) F(n—a)/a (l‘—s)a_"""lds’

where n = [ot] + 1, (the notation [c] stands for the largest integer not greater than o).
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REMARK 2.3. Under natural conditions on g(¢), the Caputo fractional derivative
becomes the conventional integer order derivative of the function g(7) as o — n.

REMARK 2.4. Let a,f3 >0 and n = [a] + 1, then the following relations hold:

v 5 T(B)
Pi = F - g

LEMMA 2.5. For oo >0, g(t) € C(0,1)NL(0,1), the homogenous fractional dif-
ferential equation

=1 B>nand DY * =0, k=0,1,2,---.n—1.

D, g(t) =0,
has a solution
gt)=ci+eatet? +-Fet" !,

where, ¢; €R, i=0,....,n, and n=[a] + 1.

LEMMA 2.6. Assume that g(t) € C(0,1)NL(0, 1), with derivative of order n that
belongs to C(0,1)NL(0,1), then

I§.°D§, g(t) = g(t) +cr+cat +est> + -+ ct" !
where, ¢, €R, i=0,...,n, and n=[o] + 1.

The following properties of fractional integrals and fractional differential operators
will be useful for our further discussion.

LEMMA 2.7. [2] Let p,q =0, f € Li|a,b]. Then
B f) =100 () = 15,15 f(2) (2.3)
is satisfied almost everywhere on [a,b]. Moreover, if f € Cla,b] or p+q > 1, then
(2.3) is true for all t € |a,b).
LEMMA 2.8. [12] If ¢ >0, f € Cla,b], then “D{_ I, f(t) = f(t) forall t €
[a,b].

One of our main results is based on the following theorem.

LEMMA 2.9. [8] (Nonlinear alternative of Leray-Schauder type) Let X be a
Banach space and C be a nonempty convex subset of X and U be open in C with
0€U. Let T : U — C be continuous and compact operator. Then either

(i) T has a fixed point, or
(ii) there exists u € OU and A € [0,1] with u= AT (u).

Define X = {u:u € C([0,T]) and °Df, u € C([0,T]),0 < o < 1} equipped with
the norm ||u||x = max [u|+ max [°D{ u|. The space X is a Banach space [30].
0<r<1 0<r<1



32 R. A. KHAN, M. UR REHMAN AND J. HENDERSON

3. Main Results

LEMMA 3.1. Let 1 < o <2 and h,¢,y € (C([0,1]),R). Then the unique solu-
tion of the boundary value problem for fractional differential equation

Df u(t) =y(t), 1 €[0,T], 3.1)
cu(0) — / 0(s)ds, yu(T) + 8u(T / w(s (3.2)

is given by
/ G(t,s)y(s)ds+ (1), (3.3)

where,
(=517t (Brony(T—s)47"  (B+on)d(g—1)(T—s)?"?
G(t S) = (q) pL(q) pI(q) 5 0 <s < t, (3 4)
’ _ (Brany(T—s)9""  (Btar)8(q—1)(T—s)472 0<s<t .
pl(q) pL(q) ) SRR X2

olt) = W/()T¢(s)ds+w1f w(s)ds and p = (8 +yT) + By.

Proof. Assume that u is a solution of the boundary value problem (3.1), (3.2),
then using Lemma 2.6, we have

u(t) =13, y(t) +c1+cat, c1,c2 €R. (3.5)
From (3.2) and (3.5), we obtain

ocy—Pe = /()Tq)(s)ds

T
e+ (8 +¥T)ex =y y(T) = 81 5(T) + [ wisds

which implies that
_ B
1=~ (g (D) + 31 () + / (6+7T)0() +By(s)ds,  (.6)
= =Lty + ST+ 1 [ v volNas 3)
p o+
Using (3.6)and (3.7) in (3.5), we obtain
1 _
u(t) =Ig, y(r) — l—)(ﬂ&y(T) + 81V (T)) (B + o)
S+y(T—1) (T (B+ot) [T
+7p /O(p(s)dH—ip /W(S)ds’

0
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which can be written as

)= [ Gl )s + 000,

where,
(tfs)q’l _ (BJrOCI)y(Tf.\')q’l _ (ﬁJrOCI)(S(qfl)(Tfs)q’z
G(t,s)=¢ @ p(q) rIlg) » Ossst
’ _ (Brony(T—s)""  (B+an)d(g—1)(T—s)?~ s<t
pL(q) rL(q) ’ =D

and ¢(r) = S (o (s)ds + L2 [Ty (s)ds. O

LEMMA 3.2. Assume that f € C([0,T]) x R x R,R), then u € X is solution of
fractional boundary value problem (3.1), (3.2) if and only if u € X is solution of the
fractional integral equation

1
u(t) = /O G(t,5)/(s,u(s),* DG, u(t))ds

O+y(T—1) (T (B+or) (T
+f/o g(s7u(s))ds+T/0 h(s,u(s))ds.

(3.8)

Proof. Let u € X be a solution of the boundary value problem (3.1), (3.2), then
by the same method as used in Lemma 3.1, we can prove that u is a solution of the

fractional integral equation (3.8).
Conversely, let u satisfy (3.8) and denote the right hand side of equation (3.8) by

w(t). Then, by Lemmas 2.7 and 2.8, we obtain
1 _ T
wit) = /O G(t,5)£(s.u(s), DG, u(s))ds + W /0 g(s,u(s))ds
+ @ATh(s,u(s))ds
=1 f(t,u(t),"Dg,u(t)) — %I&f(T’u(T),"D&u(T))(ﬁ +at)

O 4 19 - T
= 2 AT D) B+ o+ D [ s 0yas

T
L Bra / h(s, u(s)) (s)ds,
P 0
which implies that

0+fo+

0

P
=f(t,u(t),"Dg,u(1)).

‘D, w(t) =D I, f(t,u(t),DF u(t)) — %“Dgﬂ&f(ﬂM(T),”Délu(T))(ﬁ +at)

D 147" (T,u(T),* DG, u(T))(B + cu)
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Hence, u(r) is a solution of the fractional differential equation

‘Df u(t) = f(t,u(r), "D, u(r)).

Also, it is easy to verify that

:/OTg(s,u(s))ds, yu(T) + 8u/(T / h(s,u(s O

Now, define an operator A : X — X by

u(t) = /O ' G(t,5) (s, u(s), DY, u(t) )ds + 9 ). (3.9)

Then, the boundary value problem (1.1), (1.2) is equivalent to the fixed point problem
Au = u. In what follows, we establish an existence result using the nonlinear alternative
of Leray-Schauder type by imposing growth conditions on f, g and .

Assume that the following hold:
(H1) The functions f:[0,7] x RxR—R, g,h:[0,T] x R — R are continuous.
(H2) There exist continuous and nondecreasing functions u/} : [0,00) — (0,0), and

functions ¢} € L1([0,T],(0,0)), (i = 1,2), such that
| (tu,)| < OO wi(lul) + o7 () wi(Iv]),  forz € [0,T], u,v € R.

(H3) There exist a continuous and nondecreasing function y, : [0,00) — (0,°), and a
function ¢, € L;([0,T7],(0,20)) such that

191,10 < @)W (lul), fors € [0,7], u,v € R.

(H4) There exist a continuous and nondecreasing function y, : [0,00) — (0,00), and a
function ¢y, € L1([0,T],(0,00)) such that |A(t,u)| < ¢y (¢)w(|ul|), fort € [0,T], u,v €
R. Define

a= /OT Oy (s)ds, b= /T On(s)ds

kg = Wi (N)11004 |y + w7 (N1 607F 12,
bl := yi(r) (Y195 (T)) + 81%405(T)). (i = 1,2),

M, = })(B +aT) (b} +b%) + 1—9(5 +2yT) e (r) + S(B +aT)yp(r).

(HS) There exists r > 0 such that

r

- — >1.
l—-(z_g) + kr,q + <l + F(Z—O’)) MI’

THEOREM 3.3. Under the assumptions (H1) — (HS), the fractional boundary
value problem (1.1), (1.2) has at least one solution on [0,T].
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Proof. In view of the continuity of f, g and h, the operator A is continuous. To
show that A maps bounded sets into bounded sets in X, choose 1 > 0 (fixed).

Letl>max{n,#)*l+knq+( +1"( )Mn}anddeﬁne

U={ueX:|ulx<ntandC={uecX:|ulx <}

For t € [0,T] and u € U, we have
T
= [ 60,9 5.005) D s
0

L (5 h(su))d
o (@ T —0)glon) + (B + oh(s.)ds

T B O +v(
< [ 169lt.uts). DR, utsplas+ S gt fas
+oct/ Ih(s,10)|ds.

Using (H2) — (H4), we obtain

1 (t — )41
< [ S (0} v )+ 36) v )

(B+oat) (T (y(T—s)" ST —s)7
T /1 ( I'(q) * T(g—1) )
x (107 ()l wi (luellx) + 07 ()W (llullx))ds

5
ST I oo lulyas + £

vl o¢fHL1+ll/f( )07 I,

+(B+pa—T) v () (v 497 (T)+ 81407 (T)+ w7 () (107 (T)+81107 (T))]

(6 +2yT)ye(n) [T (B+aT)y,(n) (T
+fg / (])g(s)ds—kf /0 O (s)ds

kgt (ﬁ+ocT)(b1 B2+ (6+2yT>wg<n>+§<ﬁ+ar>w<n>

[ 10wl

=kn.q +Mn-
Also,

T
< [ 2 6l9)sts,u(s). D u(s))ds + 9'0)

P
2G(1,5)| | (5,u(5), DS ) |ds+y/ lg(s, )| ds+ < / (s, u)|ds

1 (p— g)4-2
< [ S ool + 1026) v o)



36 R. A. KHAN, M. UR REHMAN AND J. HENDERSON
o —sq1 8(T —s)i72
/ ( " I'(g—1) )
x (|04 ()] f(HuHx>+W?(s)lw%(\\u\\x))ds
=2 o6 walulas+ 2 [ oo wilulds
<YM Of oy + w17 07 1,
+%[wf<n>(ﬂ+o¢f( )+ 81004 (T)) + w7 (n) (19407 (T) + 819,67 (T))]
+L”§f”> / T¢g(s>d+a"’;("> /O 0n(s)ds

ayy,(n) n bayy,(n)
)4 )4

o
<kn7q,1+;(b$,+b%)+

Hence, it follows that

DEAWO] = gy '/ 1 — )" (Au) (s)ds
<ﬁ/o("s> | (Au)' (5)|ds

T ayyg(n) | boyn(n)

gm(kq 1+ = (b1+b2) ; + . )

—0

< (M +Thy o).
F(z_o_)( 71"’ n.q9 1)

Therefore, ||Au||x < I, which implies that Au € C. Hence, A maps bounded sets into
bounded sets in X .

Now, we show that A maps bounded sets into equicontinuous sets of X . For this,
we take K =max{|f(¢,u(t),’D§ u(t))|:ucU,t €J}, Ly =max{|g(t,u(t)|:ucU,t
J} and L, = max{|h(t,u(t)|:u € U,t € J}. Choose t,7 € (0,T] such that < 7 and
u € U. Then,

(1)(7) A1)
/ G(2.5) = Gl0.9) | (su(s >,°‘D3+u<s>>\ds

_t/| w)|ds + EEY /|hsu|ds
<K [/O \G(T7s)—G(t7s)|ds+/t |G(‘L’,s)—G(t,s)|ds+/TT\G(T7s)—G(t7s)|ds

T
+ ;(’)/Ll +OCL2)(T—Z)
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[ (= R U (ay(T—sw—l +a6<q—1><r—s>q—2>> o) as

r(q) I'(q) pl'(q)

(S (e )

+/ (ow D O‘a(q_;%((z)_s)q2)>(T—t)dS]-F%(YLl‘FOCLﬁ(T_I)
ol (o e S
and

°DG A(u)(7) = D7, Au) (1)]

! /O "(t = 5)"° (Au) (s)ds — /0 (= )7 (A (s)ds

Mi—o)
ST T s [ s

e | 9w s [ ey syas
<trrmay ([ sl @las [ (e~ =)y 9)las )
e | [ (/| (5. e le): D le)lde+ ') ) s

# [ (=097 ([ 156062 eu Dz + ') ) ]

K — —0 —0 —0
<ty (@ e | [((eosy e [ (20—t

+ % [/tT(T—S)_Uds-i-/OI((T—S)_U - (t—S>_“)dS}

- B o oy, WLiHOL)T 5 4 s
SW((QS—HD)T‘I LpayT?)(r' 0 ¢! )+W(Tl —{1-0)

L - (YLi+0L)T\ | o 16
<(rraramgea o e+ SEEgE o=

Hence, |A(u)(7) —A(u)(¢)| — 0 and |°DF A(u)(t) — D, A(u)(t)| — 0 as t — 7. By
Arzela-Ascoli, it follows that A : X — X is completely continuous. Define

U, :{uEX:HuHx <r}
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and assume that there exists u € dU; such that u = AA(u) for some A € (0,1). Using
(3.3), we obtain

w(t) = A (/OT G(1,5)f (s, u(s),* DS, u(s))ds + m(:)) .

In view (H2) — (H4), we have

T _ T
01 < [ 1669116, D, atsplas+ LI [ gt ofas

B+oct/ h(s.0)[ds
< [ 22 o} 0w ) +1676) v el
(B+or) Y(T —s)4~'  §(T —s)172
T /1 ( Mg T D )
< (0wl + 103wl ))ds
5”7/ 06l llds-+ B2 [ gy 0l lrds

SKjulx,q + I_?(ﬁ + OéT)(bHuHX + bHuHx) + 1_9(5 +2yT) yg(flullx)

+§(B+ar>wh<uuux>~

T a c O /
/0 2-Glt,9)f (5,u(s), “DE u(s))ds + ¢'(0)

—s q—2
<[4 (q_> (10} 6) v lele) -+ 035 w3 )

i —5’1 1 8(T —5)172
/ ( I'(g—1) )

< (194w (e Hx>+\¢f< N2 (lullx)ds
+%/OT|¢;; (s) |‘I/g(HuHX)ds+g/T\¢h ()| wn(|ullx)ds

<y (leellx) 1125 0 f 1, + wi(lllx) 1295 07 L,
+ 2 Wl (7200 (7)+ 81440}(T)

7 (lullx) (VIS 007 (T )+51$0¢}(T))]+W"’g;”X>+0‘bllfh;||ullx)

ayWe(llullx) | boyn(llullx)
p p

2
LKuly.g-1+ = (bHMHX ) +
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‘CDg_,'_M(I)‘ < ﬁ/o[(t —5)70'|u/(5)|ds

Tlfcr 5
< r2—o) ( lullx, -1+ — (bHuHX+bHuux)+

Therefore, it follows that

ayye(n) bawh(n))
p p '

el x

<1
k| ’

ri-e ully,q—1 k 1 M
o) T Hlulx.qt +r< |

a contradiction to (H5). Hence, u # AA(u) for u € dU,, A € [0,1]. By Theorem 2.9,
the BVP (1.1), (1.2) has at least one solution. [

The uniqueness result is based on the Banach contraction principal.

THEOREM 3.4. Assume that:

(H6) There exists a constant k > 0 such that

|f(t,u,v) — f(2,7,7)),| <k(lu—1a|+|v—"7|), foreacht € [0,T] and all u,u € R.

(H7) There exists a constant k; > 0 such that

lg(t,u) — g(¢,%)| < ki|u—1l, foreacht € [0,T)and all u,u € R.

(H8) There exists a constant k, > 0 such that

|h(t,u) — h(t,7)| < ko|u —1l, for eacht € [0,T] and all u,u € R.

o\l
Uk<sy (”%) where N = ({5 SR (1948T971) ) and by < sy
ky < W then the boundary value problem (1.1), (1.2) has a unique solution.

Proof. We shall use Banach fixed point theorem. For this we need to verify that A
is contraction. Let u,% € X, then in view of (H6) — (H8), for each ¢ € [0,T], we have

1
A(u)(1) = A(@)(r)] </ G(t,9)|/ (s,u(s)," DG, u(s)) — f(s,w,°Dg, u(s))|ds

S+y(T _
(8 +1T) +ﬁy/ 8(s,u(s) = 8(s,T(s)) s
(B+ar) B
+ (617 —|—ﬁ)// lg(s,u(s)) —g(s,u(s))|ds

<|lu—a| (k/o |G(t,s)|ds + ;(kl(é +v7(T—1))+ k(B + Ott))

<|lu—1| (k/ol |G(z,s)|ds + %(kl(é +2yT)+ k(B + ocT))) .
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From (3.4), we have

1 g AT—5)1_S(g-1)(T )7
/0 \G(Ls)\dsé/o g ds—l—/o (B+O£t)< + @ )ds

200)) pI'(q
9 Btou _q T  P+at 1
< + YT94+8TT") < ——+—=—(yT+6T% ") =N,
@ @ ST g :
which implies that

A(u)(t) = A@) (1)] < ||u—H| [kN+ (k1 (6 +2vT) +ka (B + ocT))}
Hence,
“Dg (Au)(t) — “DF (Am)(1)]

1 ! s / —\/
:‘m/o (t —s)"°((Au)'(s) — (AR)'(s))ds

<ﬁ/ot(t—s)“’ (/01
<= [e-o ([

Again, from (3.4), we have

iG(s7z)

35605, 61(2).DE.e)~(2.(2,“DF, (2 ) s

dz) ds.

t(t—s -2 T
/ |==G(z,s) |ds</0 (lt"(q—)ql)ds+prozq)/() ()/(T—s)‘l—l—l—S(q—1)(T_S)q—2)ds

d
aG(&Z)

4=t yar?  Sari!  TI!

o —1
gqF(cl) pal(q)  pT(q) <qp(q)+ pr(q)(yT‘“r(ST‘f ).

Thus, we have

D ()~ “DF, 0] < 15— (o + oo

I'2-o) pI'(q)
Therefore, [|[Au— A < L|u—|| where L = k(1 + g=g7)N + L (ki (8 +2yT) +

ko(B +aT)) < 1. By the contraction mapping principle, the BVP (1.1), (1.2) has a
unique solution. [

(yT’1+6T‘11)) .

EXAMPLE 3.5. Consider the following fractional BVP,

el + [DRu(t))
(124 + e ) (1 + [u])’

/ 9( 1+\ S

CDéu(t) = €10,1] (3.10)
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/ |u sms ' (3.12)
Set f(t,bt,\/) (24\/’e+e—(c/()t()1+b£(3) @) g(lﬂ/t) = 96@2;{;)) and h(tvu) ()gmt for r €

[0,1] and u,v € [0,00).
Let 7 € [0,1] and u,%,v,V € [0,0), then we have
e u(t) +v(
(124 /m+e=) |1+ u(t) +v(t)
e (Jut) —u(r)| + [v(r) —v(r)|)
(124\/_+e (L4 u(t) +v(t)) (1 +u(t) +v())
“(Ju(t) — ()| + [v(r) —¥()])
= 124/ +e

(lu(e) = m(@) [+ [v(2) = ¥(2)])-

—ct

|f(t7u7v)_f(t u,v )‘

1
<
124\/n
-1
By simple calculations we have, p =3, N = 3\F’ 3N <1+ (2= )> = m-

Here k= —124\/5 < 714(\/%”).
Now, for u, u € [0,o0) we have

Hence condition (H6) is satisfied.

9 [1+u(t) 1+u@)

e u(t) —u(r)| 1 _
S ST am)aramy) S 9~ Ol

where ky = § < W = 1. Hence (H7) is satisfied. Also,

|g(t,u)—g(t,ﬁ)\ =

(e, ) = (o] = S ule) = 0)] < 5 lule) (),
where k, = % < W([{?w = % . All conditions of the Theorem 3.4 are satisfied. There-

fore the fractional BVP (3.10)—(3.12) has a unique solution.
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