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Abstract. One considers a class of fractional random processes defined as non-random dynamics
subject to Gaussian white noises in coarse-grained time, according to Maruyama’s notation. Af-
ter some prerequisites on modified Riemann-Liouville fractional derivative, fractional Taylor’s
series and integration with respect to (dx)α , one displays the main results which are as follows:
firstly, a general scheme to obtain the path probability density (in Feynman’s sense) of some frac-
tional stochastic dynamics; secondly an approximation, via Itô’s lemma, for their characteristic
functions, therefore approximate expressions for their path probability density; and thirdly, an
approach via the maximum entropy principle (MEP) which holds when the dynamical equations
of the state moments are available. One first uses the MEP combined with Shannon entropy,
and then one applies the MEP with a new concept of fractional entropy which takes account of
defects in observation. As a last application, one uses an optimization of distributed entropy
based on fractional Fokker-Planck equation. All the paper is based on the modified Riemann-
Liouville derivative and the generalization of the Maruyama notation for Brownian motion, and
the mathematics so involved is customarily referred to as physical mathematics or engineering
mathematics.

1. Introduction

On fractional Brownian motion
Loosely speaking, a fractional Brownian motion b(t,α) , t ∈ ℜ , is a self-similar

stochastic process which satisfies the conditions

E (db(t,α)) = 0, (1.1)

and

cov(b(t1,α),b(t2,α) = 2−1
(
|t1|2α + |t2|2α −|t1− t2|2α

)
Varb(1,α), (1.2)

where E(b) , which is written also 〈b〉 in the physical literature, denotes the mathe-
matical expectation. It appears that this kind of noise is more and more relevant in
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the modeling and the analysis of many practical phenomena (physics in coarse-grained
space, randomness in mathematical finance, for instance), and in quite a natural way
one has been led to generalize the Itô’s stochastic differential equation

dx = f (x,t)dt +g(x,t)db(t) (1.3)

in the form
dx = f (x,t)dt +g(x,t)db(t,α). (1.4)

As b(t,α) is highly discontinuous, it is very hard to soundly define the solution of this
equation, it is likely that several families of solutions are possible, and consequently
approximate results will be welcome on a practical standpoint.

Assume that we are not interested in the trajectory generated by x(t) , but instead
we are concerned with the probability density p(x,t) of x at time t . To get its value, we
can try to solve the corresponding Fokker-Planck equation, but the latter is a fractional
partial differential equation which can be solved in some special cases only. Otherwise,
numerical approximations are necessary.

White noise in coarse-grained time versus fractional Brownian motion
In order to try to circumvent, or likely to avoid the framework of fractional stochas-

tic differential equations which is highly mathematical, we rather propose to use dy-
namical systems involving coarse-grained time as follows.

(i) Consider the (non-random) system

dx = f (x,t)dt, (1.5)

and assume that time is coarse-grained in such a manner that the differential increment
of time is not dt , but rather (dt)α , 0 < α < 1, (dt)α > dt . Then the above equation
turns to be

dx = f (x,t)(dt)α , (1.6)

and in fractional calculus, one can show that this equation can be re-written in the form

x(α)(t) = K(α) f (x,t), (1.7)

where x(α)(t) is the αth -fractional derivative of x(t)and K(α) denotes a constant
which depends upon α .

(ii) Assume now that f (x,t) is a Gaussian white noise w(t) , then we obtain the
equation

dx = w(t)(dt)α , (1.8)

which can be considered as defining a Brownian motion running with coarse-grained
time (It is not a fractional Brownian motion in the copyrighted sense of this term).
Equation (1.8) is a direct extension of the Maruyama’s notation w(t)

√
dt for (standard)

Brownian motion [32].
In this way of thought, we are then led to consider fractional stochastic processes

as picturing the dynamics of non-random fractional dynamical systems driven by Gaus-
sian white noise. By combining this point of view with the fractional Taylor’s series de-
rived from the so-called modified Riemann-Liouville fractional derivative (as we named
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it), we have been able to get some general results. Here, we shall use this framework to
obtain some approximations for the probability density p(x,t) of the process.

The paper is organized as follows. For the convenience of the reader, we first
gives a short background on modified Riemann-Liouville fractional derivative (Section
2), fractional Taylor’s series of non-differentiable functions (Section 3) and integra-
tion with respect to (dx)α (Section 4). Then, with “pedagogical purpose” in mind, we
show how one can simply obtain approximation for the path probability density and
the characteristic function of some (standard) Markovian processes (Section 5). Then,
after recalling our representation of fractional stochastic processes (Section 6) we shall
show how one can obtain the path probability and the characteristic functions of these
processes (Sections 7 and 8). Lastly, we shall show how one can use Jaynes’ maximum
entropy principle to tackle this problem. When the dynamical equations of the state mo-
ments are available, the problem is rather simple (Section 9), but in the more general
case, we shall use an optimization procedure involving the fractional partial differential
equation which defines the probability density of the system (Section 10). We take this
opportunity to show why informational entropy of fractional order, seems to be quite
meaningful in this problem (Section 9).

All this paper is based on the modified Riemann-Liouville derivative and the gen-
eralization of a noise modeling firstly introduced by Maruyama to represent Brownian
motion. The mathematics so involved are essentially applied mathematics or engineer-
ing mathematics.

Warning to the reader. At date, fractional stochastic differential equation is a
highly controversial topic, and to the best of our knowledge, we have not yet sound
theory. Nevertheless in many practical problems like mathematical finance for instance,
we are facing this topic. The practitioner needs at least approximate technique to handle
this kind of equations, and the present paper is in this wake of thought. It is parallel
to the literature on fractional stochastic differential equations, and this is the reason
why it refers to Brownian motion in coarse-grained time instead of fractional Brownian
motion (which is copyrighted)

In the following, we shall denote the mathematical expectation of the random vari-
able X by 〈X〉 (customary notation in physics) instead of E {X} as usual in mathemat-
ics, to avoid confusing with the Mittag-Leffler function Eα(x) .

2. Background on Fractional Derivative (Revisited)

2.1. Fractional derivative via fractional difference

DEFINITION 2.1. Let f :ℜ→ℜ , x→ f (x) , denote a continuous (but not neces-
sarily differentiable) function, and let h > 0 denote a constant discretizing span. Define
the forward operator FW (h) by the equality (the symbol := means that the left side is
defined by the right side)

FW (h) f (x) := f (x+h); (2.1)

then the fractional difference of order α , 0 < α < 1, of f (x) is defined by the expres-
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sion [11, 14–19].

Δα f (x) := (FW −1)α f (x)

=
∞

∑
k=0

(−1)k
(
α
k

)
f [x+(α− k)h] , (2.2)

and its fractional derivative of order α is defined by the limit

f (α)(x) = lim
h↓0

Δα f (x)
hα

. (2.3)

This definition (which is slightly different from some other ones in the literature)
is close to the standard definition of derivative (calculus for beginners), and as a direct
result, the α -th derivative of a constant is zero.

In the following we shall display the counterpart of this definition in terms of
integral.

2.2. Modified fractional Riemann-Liouville derivative (via integral)

.

An alternative to the Riemann-Liouville definition of fractional derivative
In order to circumvent some defects involved in the classical Riemann-Liouville

definition, we use the following alternative referred to as modified Riemann-Liouville
derivative [16].

PROPOSITION 2.1. (Riemann-Liouville definition revisited [17])Refer to the func-
tion f (x) above:

(i) Assume that f (x) is a constant K . Then its fractional derivative of order α is

Dα
x K =

K
Γ(1−α)

x−α , α � 0, (2.4)

= 0, α > 0. (2.5)

(ii) When f (x) is not a constant, then one will set

f (x) = f (0)+ ( f (x)− f (0)) ,

and its fractional derivative will be defined by the expression

f (α)(x) = Dα
x f (0)+Dα

x ( f (x)− f (0))

in which, for negative α , one has

Dα
x ( f (x)− f (0)) :=

1
Γ(−α)

x∫
0

(x− ξ )−α−1 f (ξ )dξ , α < 0. (2.6)
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whilst for positive α , 0 < α < 1 , one will set

Dα
x ( f (x)− f (0)) = Dα

x f (x) =
(

f (α−1)(x)
)′

=
1

Γ(1−α)
d
dx

x∫
0

(x− ξ )−α ( f (ξ )− f (0))dξ . (2.7)

When n � α < n+1 , one will set

f (α)(x) :=
(

f (α−n)(x)
)(n)

, n � α < n+1, n � 1. (2.8)

Proof. A way to obtain this result is to show that the Laplace’s transforms of (2.3)
and (2.6) respectively are the same, and to this end we shall simplify the writing by
setting f̃ (x) := f (x)− f (0). We can then write the Laplace’s transform of (2.2) as

L
{
Δα f̃ (x)

}
=

∞

∑
k=1

(−1)k
(
α
k

)
e−(k−α)hsL

{
f̃ (x)

}− eαh

αh∫
0

e−sx f̃ (x)dx

=
(
1− e−hs

)α
L
{

f̃ (x)
}− eαh

αh∫
0

e−sx f̃ (x)dx

= hαsα
(
L{ f (x)}− s−1 f (0)

)−αheαhesx(θαh) f̃ (θαh)

therefore, on letting h ↓ 0, we obtain the transform of (2.3) which is

L
{

f (α)(x)
}

= sαL{ f (x)}− sα−1 f (0). (2.9)

This being the case, taking the Laplace’s transform of the convolution in (2.5) direct
yields

L
{

f (α)(x)
}

=
s

Γ(1−α)

(
Γ(1−α)

s1−α L{ f (x)}
)
− s
Γ(1−α)

(
Γ(1−α)

s1−α
1
s

)
f (0)

that is to say exactly (2.7).
We shall refer to this fractional derivative as to the modified Riemann Liouville

derivative, and it is of order to point out that it is strictly equivalent to the definition 2.1,
via the equation (2.2).

Further remark
The fact that we drop the initial value of f (x) in (2.7) amounts to consider only

those functions satisfying the condition f (0) = 0, and to some extent, this is not too
much surprising at all, as far as fractional derivative and self-similarity exhibit some
relations, and that a self-similar function takes the value zero at the origin.

The following complements will be useful for our purpose.
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2.3. On sequences of cascaded fractional derivatives

On the order of cascaded derivatives

Assume that we want to calculateDα+θ f (x) , 0 < α,θ < 1, by applying Dα and
Dθ in any order. At first glance, one could use either DαDθ f (x) or DθDα f (x) , but
the results so obtained are sensibly different, since then in terms of Laplace’s transform
(see Equ. (2.9)) one has

L
{

DθDα f (x)
}

= sα+θF(s)− sα+θ−1 f (0)− sθ−1 f (α)(0), (2.10)

and
L
{

DαDθ f (x)
}

= sα+θF(s)− sα+θ−1 f (0)− sα−1 f (θ)(0). (2.11)

The same problem occurs when θ , for instance, is a positive integer n , and here again
one has DnDα f (x) 	= DαDn f (x) . For instance, when f (x) = x2 , n = 3 and α = 0.5;
one obtains

D0.5D3(x2) = 0

and
D3D0.5(x2) = KD3(x1.5) =−1.5(0.5)2Kx−1.5,

with K denoting a constant.
Once more, we are facing the same problem when we try to define Dα f (x) with

n < α < n+1, in which case we have to set either Dα := DnDα−n or Dα := Dα−nDn .
As a result, we have to select a model, and we suggest the following

DEFINITION 2.2. Principle of derivative increasing orders. The fractional deriva-
tive of fractional order Dα+θ expressed in terms of Dα and Dθ is defined by the equality

Dα+θ f (x) := Dmax(α ,θ)
(
Dmin(α ,θ) f (x)

)
. (2.12)

On doing so, we merely follows the practical rule in accordance of which we
increase the derivation order rather than the opposite. Or again, we start from low order
derivative to define large order derivative.

On the decomposition of fractional derivatives
Let be α positive, and assume that 0 < 3α < 1. There are two different manners

to obtain D3α f (x). One can calculate DαDαDα f (x) to obtain the Laplace’s transform

L{DαDαDα f (x)}= s3αF(s)− s3α−1 f (0)− s2α−1 f (α)(0)− sα−1 f (2α)(0).

or else calculate D3α f (x) to obtain

L
{
D3α f (x)

}
= s3αF(s)− s3α−1 f (0),

in such a manner that one will have

DαDαDα f (x) 	= D3α f (x), 0 < 3α < 1.



PATH PROBABILITY OF RANDOM FRACTIONAL SYSTEMS 51

For instance f (x) = x2α yields

DαDαDα(x2α) = 0

and

D3α(x2α) =
Γ(1+α)
Γ(1−2α)

x−2α .

This pitfall can be easily circumvented if we carefully define the framework. When the
problem which we are dealing with involves Dα as the basic derivative, then we shall
necessarily refer to DαDαDα . Otherwise, if the smaller derivative so involved in the
problem isD3α , then we shall use the modified Riemann-Liouville expression for the
later.

For further reading on fractional calculus, regarding history and complements, see
for instance [3, 4, 21, 24, 26, 27, 30, 31, 33, 35–41].

3. Background on Taylor’s Series of Fractional Order

3.1. Main definition

A generalized Taylor expansion of fractional order which applies to non-differentiable
functions (F-Taylor series in the following) reads as follows [11, 14–19].

PROPOSITION 3.1. Assume that the continuous function f : ℜ→ ℜ , x→ f (x)
has fractional derivative of order kα , for any positive integer kand any α ,0 < α < 1 ,
then the following equality holds, which is

f (x+h) =
∞

∑
k=0

hαk

Γ(1+αk)
f (αk)(x), 0 < α � 1. (3.1)

where f (αk)(x) is the modified Riemann-Liouville derivative of order αk , i.e. DαDα ...Dα ,
k times, of f (x).

With the notation
Γ(1+αk) =: (αk)!,

one has the formula

f (x+h) =
∞

∑
k=0

hαk

(αk)!
f (αk)(x), 0 < α � 1

which looks like the classical one.
Alternatively, in a more compact form, one can write

f (x+h) = Eα(hαDα
x ) f (x), (3.2)

where Dx is the derivative operator with respect to x and Eα(y) denotes the Mittag-
Leffler function defined as

Eα(y) :=
∞

∑
k=0

yk

Γ(1+αk)
.
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Eα(u) =
∞

∑
k=0

uk

(αk)!
. (3.3)

Proof. (Step 1) Lemma 3.1 One first notices that the solution of the fractional
differential equation

y(α)(x) = λy(x), 0 < α < 1, y(0) = y0, (3.4)

where λ is a real valued parameter is

y(x) = y0Eα(λxα). (3.5)

Proof. Indeed, let us seek a solution in the form

y(x) =
∞

∑
k=0

akx
kα .

We substitute this series into (3.4) and we use the relations

Dαxαk =
(αk)!

(αk−α)!
xα(k−1) (3.6)

together with
Dαx0 = 0, (3.7)

to obtain the recursive equation

ak+1 =
(αk)!

(α(k+1))!
ak,

therefore the result.

(Step 2) This being the case, the purpose of the proof of (3.1) is to show that one
has the formal operational equation

Dα
h Fw(h) = Fw(h)Dα

x , (3.8)

of which the solution is
Fw(h) = Eα(hαDα

x ). (3.9)

To this end, it is sufficient to write successively

Δαh Fw(h) =
∞

∑
k=0

(−1)k
(
α
k

)
f (x+h+(α− k)H)

= Fw(h)
∞

∑
k=0

(−1)k
(
α
k

)
f (x+(α− k)H) .

and on dividing both sides by Hα and taking the limit as h tends to zero yields the
result.
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Further remarks. (i) The fractional Taylor’s series provides the approximation

f (x+h)− f (x)
h

∼= f (α)(x)
h1−αα!

, 0 < α � 1,

and as a result, when f (α)(x) exists and is bounded with α < 1, then f (x) is not
differentiable

(ii) An argument which could help the reader to take this fractional Taylor’s series
for granted is as follows. It is easy to check this series applies to the Mittag-Leffler
function. Given this remark, it is sufficient to consider functions which can be approx-
imated by linear combinations of Mittag-Leffler functions.

COROLLARY 3.1. Assume that m < α � m+1 , m ∈ N−{0} and that f (x) has
derivatives of order k (integer), 1 � k � m. Assume further that f (m)(x) has a frac-
tional Taylor’s series of order α−m =: β provided by the expression

f (m)(x+h) =
∞

∑
k=0

hk(α−m)

Γ [1+ k(α−m)]
Dk(α−m) f (m)(x), m < α � m+1. (3.10)

Then, integrating this series with respect to h yields

f (x+h) =
m

∑
k=o

hk

k!
f (k)(x)+

∞

∑
k=1

h(kβ+m)

Γ(kβ +m+1)
f (kβ+m)(x), β := α−m. (3.11)

In the special case when m = 1 , one has

f (x+h) = f (x)+h f ′(x)+
∞

∑
k=1

hkβ+1

Γ(kβ +2)
f (kβ+1)(x), β := α−1. (3.12)

The order of the derivation in f (kβ+m)(x) is of paramount importance and should
be understood as Dkβ f (m)(x) , since we start with the fractional Taylor’s series of
f (m)(x) .

Mc-Laurin series of fractional order
Let us make the substitution h← x and x← 0 into (3.1), we so obtain the frac-

tional Mc-Laurin series

f (x) =
∞

∑
k=0

xαk

Γ(1+αk)
f (αk)(0), 0 < α � 1. (3.13)

EXAMPLE 3.1. Let us consider the function

f (x) = xαN , 0 < αN < 1

with N denoting a positive integer. A simple calculation yields

f (αk)(x) =
(αN)!

(αN−αk)!
xα(N−k), 0 � k � N
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f (αk)(x) = 0, k � N +1

therefore the equality

(x+h)αN =
N

∑
k=0

(αN)!
(αk)!(αN−αk)!

xα(N−k)hαk.

3.2. Fractional Taylor’s series for multivariable functions

On generalizing (3.2), we shall write the fractional Taylor’s series for a two-
variable function in the form

f (x+h,y+ l) = Eα ((hDx + lDy)α) f (x,y)
∼= Eα(hαDα

x )Eα(lαDα
y ) f (x,y), 0 < α < 1. (3.14)

therefore the differential

d f (x,y) = Γ−1(1+α)
(

f (α)
x (x,y)(dx)α + f (α)

y (x,y)(dy)α
)

, 0 < α < 1. (3.15)

For larger values of α , one will have

d f = fxdx+ fydy+Γ−1(1+α)
(

f (α)
x (dx)α + f (α)

y (dy)α
)

+Γ−2(1+α) f (2α)
xy , 1 < α < 2α (3.16)

3.3. Some useful relations

First of all, the equation (3.1) provides the useful differential relation

dα f ∼= Γ(1+α)d f , 0 < α < 1, (3.17)

or in terms of fractional difference, Δα f ∼= α!Δ f , which, in accordance of the second
remark above, applies to non-differentiable functions only. This being the case, one has
the following

COROLLARY 3.2. The following equalities hold, which are

Dαxγ = Γ(γ +1)Γ−1(γ+1−α)xγ−α , γ > 0, (3.18)

or, what amounts to the same (we set α = n+θ )

Dn+θxγ = Γ(γ +1)Γ−1(γ +1−n−θ )xγ−n−θ, 0 < θ < 1,

(u(x)v(x))(α) = u(α)(x)v(x)+u(x)v(α)(x), (3.19)

( f [u(x)])(α) = f ′u(u)u(α)(x), (3.20)

= f (α)
u (u)(u′x)

α . (3.21)
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u(x) is non-differentiable in (3.19) and (3.20) and differentiable in (3.21), v(x) is non-
differentiable, and f (u) is differentiable in (3.20) and non-differentiable in (3.21).

The proof of (3.19) is based on the equality

d(uv) = v(du)+u(dv)

which yields
α!d(uv) = v(α!du)+u(α!dv)

that is to say
dα(uv) = v(dαu)+u(dαv)

These last two formulae (3.20) and (3.21) can be obtained by using the chain rules

dα f (u)
dxα

=
dα f
du

du
dxα

=
α!d f
du

du
dxα

=
d f
du

α!du
dxα

=
d f
du

dαu
dxα

and
dα f (u)

dxα
=

α!d f
dxα

=
α!d f
duα

(
du
dx

)α
=

dα f
duα

(
du
dx

)α
.

COROLLARY 3.3. Assume that f (x) and x(t) are two ℜ→ ℜ functions which
both have derivatives of order α , 0 < α < 1 , then one has the chain rule

f (α)
t (x(t)) = Γ(2−α)xα−1 f (α)

x (x)x(α)(t). (3.22)

Proof. The α -th derivative of x provides the equality

dαx =
1

(1−α)!
x1−α(dx)α . (3.23)

which allows us to write

dα f = f (α)
x (dx)α = f (α)

x (x)(1−α)!xα−1dαx

whereby the result.

3.4. Further results and remarks

On the suitable fractional derivative definition to be selected
(i) With the modified Riemann-Liouville derivative, the solution of the equation

(and this is why we introduced this modified Riemann-Liouville fractional derivative!)

Dα
t x(t) = x(t), x(0) = x0, x(0) = x0. (3.24)

is exactly the Mittag-Leffler function, and this can be obtained easily on looking for a
solution in the form

x(t) =
∞

∑
k=0

xk (tα)k. (3.25)
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An alternative is to take the Laplace transform of the equation (3.17) to obtain, with the
modified Riemann-Liouville derivative,

sαX(s)− sα−1x(0) =−λX(s),

where X(s) , which is the Laplace transform ofx(t) , yields the Mittag-Leffler function.

On the differentiability of f(x)
(ii) As it is obvious, the series (3.1) applies to nondifferentiable functions, whilst

(3.12) refers to differentiable functions.
(iii) Assume thatα = 1/N , N integer, in the F-Taylor series (3.1); then when

k = N we come across the first derivative. Nevertheless this does not mean that there
is some inconsistency somewhere, but rather it is the meaning of these equations which
must be clarified. Indeed, because of the presence of hα , h is restricted to be positive,
h > 0; and as a result, all the derivatives involved in the F-Taylor series (3.1), either
they are fractional or not, are derivatives on the right.

Modeling irreversibility of time
Assume that f (.) is a function f (t) of time; then according to the above com-

ments, the F-Taylor series of f (t +Δt) holds for positive Δt only. This property can be
thought of as a practical describing of the irreversibility of time.

Relation with previous results in the literature
(iv) Osler [37] has previously proposed a generalization of Taylor’s series in the

complex plane, in the form

f (z) = α
k=+∞

∑
k=−∞

f (αk)(z0)
Γ(1+αk)

(z− z0)αk, (3.26)

which provides the fractional Mc Laurin’s series

f (x) = α
k=+∞

∑
k=−∞

f (αk)(0)
Γ(1+αk)

xαk. (3.27)

In order to enlighten the discrepancy between this series and our’s, we proceed as fol-
lows. On taking the expression (3.27) in terms of modified Riemann-Liouville deriva-
tive on the one hand, and identifying f (x) with Eα(xα ) on the other hand, we would
obtain the equality

Eα(xα) = αEα(xα)+α
∞

∑
k=1

x−αk

Γ(1−αk)
,

therefore

Eα(xα) =
α

1−α
∞

∑
k=1

x−αk

Γ(1−αk)
,

in such a manner that here we would have Eα(0) = ∞ .
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We think that the basic reason for this difference is due to the fact that the definition
of fractional derivative is not quite the same in the two series.

(vi) More recently Kolwankar and Gangal [24,25] proved the so-called “local frac-
tional Taylor expansion” (or fractional Rolle’s formula)

f (x+h) =
m

∑
k=0

hk

k!
f (k)(x)+

f (α)(x)
Γ(1+α)

hα +Rα(h), m < α < m+1, (3.28)

where Rα(h) is a remainder, which is negligible when compared with the other terms.
This is exactly our series (3.4), but here we give an explicit expression for Rα(h) ,
namely

Rα(h) =
∞

∑
k=2

h(kβ+m)

Γ(kβ +m+1)
f (kβ+m)(x), β := α−m. (3.29)

Nevertheless, it is relevant to point out that these authors do not use the Riemann-
Liouville expression of derivative as we did it, but rather define the later as the limit of a
quotient involving the increment of the function on the one hand, and a so-called coarse
grained mass or α -mass of a subset which is generally fractal, exactly d f/(dx)α .
Loosely speaking the function is fractal because it is defined on a set which itself is
fractal.

We can go a step farther. Assume that we are moving in a space in which the
points (the pixels) have a thicknessδx .Then the corresponding infinitesimal increment
is not dx butδx > dx , and a possible modeling is to put δx = (dx)α , 0 < α < 1.

4. Integration with respect to (dx)α

The integral with respect to (dx)α is defined as the solution of the fractional dif-
ferential equation

dy = f (x)(dx)α , x � 0, y(0) = 0, (4.1)

which is provided by the following result:

DEFINITION 4.1. Let f (x) denote a continuous function, then the solution y(x) ,
y(0) = 0, of the equation (4.1) is defined by the equality

y =
∫ x

0
f (ξ )(dξ )α

= α
∫ x

0
(x− ξ )α−1 f (ξ )dξ , 0 < α < 1. (4.2)

Derivation
On multiplying both sides of (4.1) by α! , and on taking account of (3.17), we have

the equality

y(α)(x) = α! f (x)
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which provides

y(x) = α!D−α f (x),

=
α!

Γ(1+α)

x∫
0

(x− ξ )α−1 f (ξ )dξ . (4.3)

As a result, the integration of (4.1) can be written also in the form

D−α f (x) =
1
α!

x∫
0

f (ξ )(dξ )α . (4.4)

or in a like manner

f (x) =
1
α!

dα

dxα

x∫
0

f (ξ )(dξ )α . (4.5)

LEMMA 4.1. As a direct consequence of (4.2), one has the equality

x∫
0

f (ξ )(dξ )α+β =
α +β
α

x∫
0

(x− ξ )β f (ξ )(dξ )α , 0 < α +β < 1 (4.6)

=
α +β
β

x∫
0

(x− ξ )α f (ξ )(dξ )β , 0 < α +β < 1.

The proof is a result of the equality∫ x

0
f (ξ )(dξ )α+β = (α +β )

∫ x

0
(x− ξ )α+β−1 f (ξ )dξ

= (α +β )
∫ x

0
(x− ξ )α−1 ((x− ξ )β f (ξ )) dξ .

LEMMA 4.2. (Fractional integration by part.) The formula reads

∫ b

a
u(α)(x)v(x)(dx)α = α! [u(x)v(x)]ba−

∫ b

a
u(x)v(α)(x)(dx)α , (4.7)

and can be obtained easily by combining (4.1) with (4.3).

LEMMA 4.3. (Transformation of variable.) Consider the new variable y defined
by the equation y = g(x) . When g(x) is differentiable, then one has∫

f (y) (dy)α =
∫

f (g(x))
(
g′(x)

)α(dx)α , 0 < α < 1, (4.8)

and when g(x) has a fractional derivative of order β , 0 < α,β < 1 , one has∫
f (y) (dy)α = Γ−α(1+β )

∫
f (g(x))

(
g(β )(x)

)α
(dx)αβ , 0 < α,β < 1.
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This is a direct consequence of the fact that dy = g′(x)dx in the first case, while in
the second one, we have dy = (β !)−1g(β )(x)(dx)β .

Some examples
(i) On making f (x) = xγ in (4.1) one obtains

x∫
0

ξ γ(dξ )α =
Γ(α +1)Γ(γ+1)
Γ(α + γ+1)

xα+γ , 0 < α � 1 (4.9)

and, more especially one has∫ x

0
(dξ )α = xα , 0 < α � 1.

(ii) Assume now that f (x) is the Dirac delta generalized function δ (x) , then one has∫ x

0
δ (ξ )(dξ )α = α xα−1, 0 < α � 1. (4.10)

Application to the fractional derivative of the Dirac delta function
On using the equation (3.19) on the one hand, and extending well known definition

on the other hand, we shall define the fractional derivative of the Dirac delta function
by the equality∫

δ (α)(ξ ) f (ξ )(dξ )α =−
∫
δ (ξ ) f (α)(ξ )(dξ )α , 0 < α � 1 (4.11)

and the equation (4.2), direct will yields∫
δ (α)(ξ ) f (ξ )(dξ )α =−α xα−1 f (α)(0), 0 < α � 1 (4.12)

In the next section we shall summarize some results on Markovian processes, which
will be duplicated latter to deal with fractional stochastic.

5. Background on Probability Functionals of Markov Processes

5.1. Path probability of some Markov processes

Let us consider a scalar valued continuous random process x(t) defined as the
solution of the nonlinear stochastic differential equation which, with the Maruyama’s
notation, can be written in the form

dx = f (x,t)dt +g(x,t)w
√

dt, (5.1)

where w(t) is a Gaussian white noise (in the usual engineering sense of this term) with
zero mean and the constant variance σ2 . Our purpose is to obtain the value of the path
probability density defined as

pr ({x(t)} , t ∈ [0,T ]) := lim
N↑∞

pr (x(t1),x(t2), ...,x(tN)) , (5.2)
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where t1 = 0 < t2 < ... < tN = T . This limit is not a stochastic limit (probability,
meansquare, almost sure) but merely the limit in the usual sense of this term, that is
the limit of p(xn, t) as xn → x . The probability so defined by (5.2) is the probability
density of the trajectory of x(t)on [0,T ] .

First preliminary remark. We first remark that the probability density of w(t) is

p(w) =
1

σ
√

2π
exp

(
− w2

2σ2

)

therefore we conclude that the probability density of the variable Y := w/
√

dt is

p(y) =
(

σ√
dt

√
2π
)−1

exp

(
− y2

2σ2 dt

)
. (5.3)

Second preliminary remark. Assume that a random variable has the probability den-
sity q(y). Assume further that we make the transformation Y = φ(X) where φ(.) is a
differentiable function, then the probability p(x) of X is

p(x) = q(φ(x))
∣∣φ ′(x)∣∣ . (5.4)

Derivation of the path probability density. Given this prerequisite, we assume that the
process x(t) in the equation (5.1) is observed on a finite time interval [0,T ] of time, we
select a time increment τ , and we set

tk+1− tk =: τ, k = 1,2, ...,N−1,

τ =
T

N−1
, t1 = 0, tN = T. (5.5)

This being the case, we re-write the equation (5.1) in the form

dx
dt

= f (x,t)+g(x,t)
w√
dt

therefore we derive the discrete approximation scheme

xk+1− xk

τ
= f (xk,tk)+g(xk, tk)

wk+1√
τ

which provides
wk+1√

τ
=

1
g(xk,tk)

(
xk+1− xk

τ
− f (xk,tk)

)
. (5.6)

This equation can be considered as a transformation from wk+1/
√
τ to xk+1 , and then

using (5.3) and (5.4) we have the probability density of Xk+1 in the form

p(xk+1) =
1

σ
√

2πτ
exp

(
− 1

2σ2g2(xk,tk)

(
xk+1− xk

τ
− f (xk,tk)

)2

τ

)
. (5.7)
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As a result one have the probability density

p(x1,x2, ...,xN) =
(

1

σ
√

2πτ

)N

exp

(
− τ

2σ2

N

∑
1

1
g2(xk, tk)

(
Δxk

τ
− f (xk,tk)

)2
)

.

On taking the limit as τ ↓ 0 and N ↑ ∞ , we find that

pr ({x(t)} , t ∈ [0,T ]) := K exp

⎛
⎝− 1

2σ2

T∫
0

g−2(x(t),t)(ẋ(t)− f (x(t), t))2 dt

⎞
⎠ , (5.8)

where K is normalizing constant of which the value is to be determined.
The fact that the value of K is unknown should not be troublesome, because, on a

practical standpoint, this probability density will be used mainly to compare stochastic
trajectories.

EXAMPLE 5.1. Let us consider the stochastic differential equation

dx = rxdt + xw
√

dt, (5.9)

which is basic in mathematical biology and mathematical finance. One has the identifi-
cation

f (x,t) ≡ rx and g(x)≡ x,

in such a manner that (5.8) provides

pr ({x(t)} , t ∈ [0,T ]) := K exp

⎛
⎝− 1

2σ2

T∫
0

(
ẋ
x
− r

)2

dt

⎞
⎠ . (5.10)

ẋ/x = ρ is the actual increase rate of the actual trajectory x(t) . The formula (5.10)
clearly says that the more ρ(t) deviates from r , the less the corresponding trajectory is
likely to occur. Loosely speaking, ρ(t) will evolve around r .

EXAMPLE 5.2. For the standard Brownian motion b(t) (or order 1/2)

db(t) = w(t)
√

dt, (5.11)

one has
f (x,t) = 0 and g(x) = 1,

therefore the expression

pr ({b(t)} , t ∈ [0,T ]) := K exp

⎛
⎝− 1

2σ2

T∫
0

(ẋ(t))2 dt

⎞
⎠ . (5.12)

which can be found in some applications in physics.
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EXAMPLE 5.3. Let us consider the coloured noise or Ornstein-Uhlenback process
defined by the equation

dx =−ρ(xdt−w(t)
√

dt), ρ > 0. (5.13)

Here one has
f (x,t) =−ρx and g(x) = ρ

therefore

pr ({x(t)} , t ∈ [0,T ]) := K exp

⎛
⎝− 1

2σ2

T∫
0

(
ẋ
ρ

+ x

)2

dt

⎞
⎠ . (5.14)

In physics, the practical meaning of this expression is straightforward since (ẋ)2 can
be thought of as the kinetic energy of a particle with unit mass.

5.2. Characteristic function estimate for some Markov processes

A useful technique to obtain the probability density of a random variable is to
determine its characteristic function defined as the mathematical expectation Φ(u) :=
E(eiux) ≡ E(ϕ) ≡ 〈ϕ〉 . Here, x(t) is defined by the stochastic differential equation
(5.1). According to the Itô’s lemma, one has the differential

dϕ =
(

iu f − 1
2
u2g2σ2

)
ϕ dt + iuϕgw

√
dt, (5.15)

therefore

d(lnϕ) =
(

iu f − 1
2
u2g2σ2

)
dt + iugw

√
dt. (5.16)

In order to obtain an estimate
�

Φ(u)of Φ(u) , we use the approximation

〈lnϕ〉= lnΦ̂∼= ln〈ϕ〉,
which yields

d
(
ln

�

Φ(u,t)
)∼= E

(
iu f (x,t)− 1

2
u2g2(x, t)σ2

)
dt.

=
(

iu〈 f (x,t)〉− 1
2
u2 〈g2(x,t)

〉
σ2
)

dt

therefore

Φ̂(u, t)∼= Φ(u,0)exp

⎛
⎝ t∫

0

(
iu〈 f (x,s)〉− 1

2
u2 〈g2(x,s)

〉
σ2
)

ds

⎞
⎠ , (5.17)

with
Φ0(u) :=

〈
eix(0)

〉
.
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Remark that we would obtain the same result by taking the approximate mathematical
expectation of (5.13) to obtain the equality

d 〈ϕ̂〉=
(

iu〈 f 〉− 1
2
u2 〈g2〉σ2

)
〈ϕ̂〉dt.

We bear in mind that Φ(u) is the Fourier’s transform of p(x,t) in such a manner that
we can define the latter as the inverse transform of Φ(u) .

EXAMPLE 5.3. Once more we consider the equation (5.9). A direct simple cal-
culation yields the equations

d 〈x〉= r 〈x〉dt,

d
〈
x2〉=

(
2r+σ2) 〈x2〉dt,

therefore
〈x〉= x0e

rt , (5.18)〈
x2〉= (x0)2 exp

(
(2r+σ2)t

)
, (5.19)

and, on substituting into (5.13),

Φ̂(u) = Φ(u,0)exp

(
iu

x0

r
ert − (x0)2

2(2r+σ2)
u2 exp

(
(2r+σ2)t

))
. (5.20)

EXAMPLE 5.4. For the Brownian motion db = w
√

dt , one has

〈x〉= 0 and
〈
g2〉= 1

therefore the well known result

Φ̂(u,t) = Φ(u,0)exp

(
−1

2
u2σ2t

)
. (5.21)

In the following we shall use these techniques to fractional stochastic processes, but
before we need to define the framework

6. Stochastic Processes Defined by Coarse-grained Time

6.1. Modeling via stochastic differential equations of fractional order

As we pointed out in the introduction, the presence of a coarse-grained phe-
nomenon in time causes that practical physical differential increment of time is not
dt but (dt)α . In the parlance of mechanics, the action integral turns to be an inte-
gral with respect to (dt)α . In our framework herein, w(t)(dt)α will be substituted for
w(t)dt .

With this modeling purpose in mind, we have the following alternative to define
stochastic systems in the presence of coarse-grained time [21].

First model
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The most direct way to generalize (5.1) is to write

dx = f (x,t)dt +g(x,t)w(t)(dt)α , 0 < α � 1, (6.1)

which pictures the fact that the non-random dynamics ẋ = f (x,t) is disturbed by the
coarse-grained white noise g(x,t)w(t)(dt)α . On multiplying both sides of (6.1) by α!
and on taking account of the equality dαx = α!dx (which holds only when 0 < α < 1) ,
we obtain

dαx = f (x,t)dα t +α!g(x,t)w(t)(dt)α . (6.2)

This being the case, the αth derivative of t yields

dα t = Γ−1(2−α)t1−α(dt)α , (6.3)

and on substituting into (6.1), we obtain

dαx = Γ−1(2−α) f (x,t)t1−α(dt)α +Γ(1+α)g(x,t)w(t)(dt)α ,

or again, on dividing both sides by (dt)α ,

x(α) = Γ−1(2−α) f (x,t)t1−α +Γ(1+α)g(x,t)w(t). (6.4)

Next, on making the substitution Γ−1(2−α) f ← f and Γ(1+α)g← g , we eventually
have the general model

x(α) = f (x,t)t1−α +g(x,t)w(t). (6.5)

or, in terms of fractional Brownian motion,

dαx = f (x,t)t1−α(dt)α +g(x,t)db(t,α). (6.6)

with the identification db(t,α) := w(t)(dt)α .

Second model
Another approach is to generalize the equation (5.1) directly in the form

x(α)(t) = f (x,t)+g(x,t)w(t), 0 < α � 1. (6.7)

or
dαx = f (x,t)(dt)α +g(x,t)db(t,α). (6.8)

Third model
The third model consists in identifying the fractional stochastic differential equa-

tion with the first two terms of the fractional Taylor’s series, to yield

dx(t) = f (x,t)w2(t)(dt)α +g(x,t)w(t)(dt)α/2. (6.9)

In the Itô’s mean square calculus, one can formally write the identity w2(t)≡ σ2(t) , in
such a manner that (6.9) turns to be

dx(t) = f (x,t)σ2(t)(dt)α +g(x,t)w(t)(dt)α/2,
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where σ2(t) is the variance of w(t) , or more generally

dx(t) = f (x,t)(dt)α +g(x,t)w(t)(dt)α/2. (6.10)

Here, when α = 1, we have the Maruyama’s equation

dx(t) = f (x,t)σ2(t)dt +g(x,t)w(t)
√

dt, (6.11)

Further remarks and comments
(i) The second model (6.7) can be thought of as an extension of the so-called

Langevin equation in physics and which reads

ẋ(t) = f (x,t)+g(x,t)w(t).

(ii) The equation (6.10) of the third model is fully consistent with the fractional Taylor’s
series

dx = ((α/2)!)−1 x(α/2)(t)(dt)α/2 +(α!)−1x(α)(t)(dt)α ,

and formally, we have the correspondence

((α/2)!)−1 x(α/2)(t)≡ g(x,t)w(t)

and
(α!)−1x(α)(t)≡ f (x,t).

We believe we can claim that this remark is a strong support to this model.
(iii) In all the derivation above, we have made the identification

db(t,α)≡ w(t)(dt)α

but this is a formal writing only. To the best of our knowledge, nowhere in the literature,
w(t)(dt)α has been used to define fractional Brownian motion, and this is the reason
why we refer to white noise defined in coarse-grained time.

(iv) There are various models of fractional Brownian motion which are presently
in use in the literature, and the most commonly accepted is the proposal of Mandelbrot
and van Ness [29]

b(t,α)−b(0,α) =
1

Γ(1+α/2)

⎧⎨
⎩

0∫
−∞

[
(t− τ)α−1/2− (−τ)α−1/2

]
db(τ)

+
t∫

0

(t− τ)α−1/2db(τ)

⎫⎬
⎭

and, at first glance, this model is not quite identical to our one. So, with two different
models, it is likely that we shall have different results.
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6.2. Itô’s lemma of fractional order

Fractional Itô’s lemma for differentiable functions
The Itô’s lemma reads as follows. If h(x,t) is a function with first and second

derivative with respect to x , and if db(t) = w(t)
√

dt , then one has the following equal-
ity, that is

h(x+db) = h(x,t)+h′x(x,t)w
√

dt +(1/2)h′′xx(x, t)σ
2dt +o(dt3/2), (6.12)

where σ2 is the variance of w(t). This formula is exact in the mean square stochastic
calculus in the sense that (db)2 and σ2dt are equal in this framework.

We shall generalize this lemma in the form

h(x+w(dt)α) = h(x,t)+h′x(x,t)w(dt)α +(1/2)h′xx(x, t)σ2(dt)2α +o(dt3α). (6.13)

The easier way to prove this result is to show that it applies when h(x, t) is a poly-
nomial with respect to time, and then to use the Weierstrass theorem, of polynomial
approximation.

In the equation (6.13), the identification with the usual Itô’s lemma is achieved
when α = 1/2.

Fractional Itô’s lemma for non- differentiable functions
Assume now that h(x) is not differentiable, and has only derivatives of fractional

order kβ , where k is any positive integer and β is such that 0 < β < 1. In such a case,
h(x) has a fractional Taylor’s series of order β expressed by (3.1), namely

h(x+db) =
∞

∑
k=0

(db)kβ

(kβ )!
f (kβ )(x), 0 < β � 1, (6.14)

and on taking account of the equality db = w(t)(dt)α , we have

f (x+w(dt)α) = f (x)+

f (kβ)(x)
(kβ)!

∑
k

wkβ (t)(dt)kαβ , kαβ � 1. (6.15)

7. Path Probability Density of Coarse-grained Time Processes

7.1. Coarse-grained time processes with short-range memory

We refer to the fractional stochastic process x(t)with short-range dependence (i.e.
0 < α < 1/2) defined by the equation

dx = f (x,t)dt +g(x,t)w(t)(dt)α , 0 < α < 1/2. (7.1)

To handle this equation, we shall firstly re-write it in another form, and to this end, we
shall proceed as follows. We multiply its both sides by (2α)! , and on taking account
of (3.10) which applies here since 0 < 2α < 1, we obtain

d2αx = f (x,t)d2α t +(2α)!g(x,t)w(t)(dt)α , (7.2)
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This being the case, the fractional derivative of the function t provides the equality

d2α t = Γ−1(2−2α)t1−2α(dt)2α (7.3)

by the means of which we can re-write (7.2) in the sought form

d2αx =
f (x,t)

Γ(2−2α)
t1−2α(dt)2α +(2α)!g(x, t)w(t)(dt)α ,

=: f̃ (x,t)(dt)2α + g̃(x,t)w(t)(dt)α . (7.4)

with
f̃ (x,t) := Γ−1(2−2α) f (x,t)t1−2α

and
g̃(x,t) := (2α)!g(x,t).

Given this equation, we can duplicate step by step the derivation in the preceding Sec-
tion 6. Dividing both sides of (7.4) by (dt)2α yields the equation

d2αx
dt2α

= f̃ (x,t)+ g̃(x,t)
w

(dt)α
,

which provides the discrete approximation scheme

Δ2αx
τ2α = f̃ (xk,tk)+ g̃(xk,tk)

wk+1

τα
,

or in a like manner

wk+1

τα
=

1
g̃(xk,tk)

(
Δ2αxk

τ2α − f̃ (xk,tk)
)

.

This equation provides the probability density of xk+α ≡ x(kτ +ατ) which is

p(xk+α) =
1

σ
√

2πτα
exp

(
− 1

2σ2g̃2(xk,tk)

(
Δ2αxk

τ2α − f̃ (xk,tk)
)2

τα
)

. (7.5)

On taking the limit as τ ↓ 0 and N ↑ ∞ , we find that

pr ({x(t)} , t ∈ [0,T ]) = K exp

⎛
⎝− 1

2σ2

T∫
0

g̃−2(x,t)
(
x(2α)(t)− f̃ (x,t)

)2
(dt)α

⎞
⎠ .

(7.6)
The fact that the exact value of the constant K is unknown should not be troublesome.
Indeed, on a practical standpoint, we shall compare the likelihood of stochastic trajec-
tories, in other words we shall work with the quotient of these probability in such a
manner that the effect of K will vanish.
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EXAMPLE 7.1. We consider the fractional version of (6.9) which reads

dx = rxdt + xw(t)(dt)α , 0 < α < 1/2. (7.7)

We have successively

f̃ (x,t) =
rx

Γ(2−2α)
t1−2α ,

g̃(x,t) = (2α)!x,

therefore the expression

pr ({x(t)} , t ∈ [0,T ]) = K exp

(
− 1

2σ2

T∫
0

((2α)!x(t))−2×

×
(

x(2α)(t)− rx
Γ(2−2α)

t1−2α
)2

(dt)α
)

(7.8)

EXAMPLE 7.2. For the stochastic process defined by the equation

dx =−x2r+1dt +w(t)(dt)α , 0 < α < 1/2, r ∈ N+, (7.9)

one has successively

f̃ (x,t) =− x2r+1

(1−2α)!
t1−2α ,

g̃(x,t) = (2α)!,

therefore

pr ({x(t)} , t ∈ [0,T ])= K exp

⎛
⎝− 1

2((2α)!σ)2

T∫
0

(
x(2α)(t)+

x2r+1(t)
(1−2α)!

t1−2α
)2

(dt)α

⎞
⎠ .

(7.10)
in which the integral w.r.t. (dt)2α is defined by (4.2).

When r = 0, one so recovers the Ornstein-Uhlenback fractional process.

EXAMPLE 7.3. We consider the coarse-grained Brownian motion b(t,α) defined
by the equation

db(t,α) = w(t)(dt)α , 0 < α < 1/2. (7.11)

One has
f̃ (x,t) = 0 and g̃(x,t) = (2α)!

therefore

pr ({b(t,α)} , t ∈ [0,T ]) = K exp

⎛
⎝− 1

2σ2

T∫
0

(
b(2α)(t,α)

(2α)!

)2

(dt)α

⎞
⎠ . (7.12)
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7.2. Coarse-grained time processes with long-range memory

The process under consideration is still defined by the equation (7.1), but here we
assume that 1/2 < α < 1,

dx = f (x,t)dt +g(x,t)w(t)(dt)α , 1/2 < α < 1. (7.13)

Such a process is referred to as a stochastic process with long-range memory. Here the
equation (7.2) dooes not hold because, as one has 2α > 1, the equation (3.30), which
relates d2αx to dx no longer applies. We have to find another approach

Multiplying both sides of (7.13) by α! on the other hand, and taking account of the
relation (7.3) in which α is substituted for2α on the other hand, we have the fractional
differential

dαx =
(

f (x,t)
Γ(2−α)

t1−α +α!g(x,t)w(t)
)

(dt)α , (7.14)

or in a like manner
x(α)(t) =

�

f (x,t)+ �g (x,t)w(t). (7.15)

with
�

f (x,t) := Γ−1(2−α) f (x,t)t1−α

and
�g (x,t) := α!g(x,t)

We then have

w(t) =
(

�g (x,t)
)−1(

x(α)(t)− �

f (x, t)
)

,

and the rationale of the preceding subsection directly yields

pr ({x(t)} , t ∈ [0,T ]) = K exp

⎛
⎝− 1

2σ2

T∫
0

�g
−2

(x,t)
(
x(α)(t)− �

f (x,t)
)2

(dt)α

⎞
⎠ .

(7.16)

EXAMPLE 7.4. For the parallel of (7.7) which reads

dx = rxdt + xw(t)(dt)α , 1/2 < α < 1, (7.17)

one has
�

f (x,t) =
rx

(1−α)!
t1−α ,

�
g (x,t) = α!x

therefore

pr ({x(t)} , t ∈ [0,T ])= K exp

⎛
⎝− 1

2σ2

T∫
0

(α!x(t))−2
(

x(α)(t)− rx
(1−α)!

t1−α
)2

(dt)α

⎞
⎠

(7.18)

EXAMPLE 7.5. We once more consider the equation (7.11) in which now we as-
sume that the order α satisfies the condition 1/2 < α < 1.
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Here one has

�

f (x,t) =− x2r+1

(1−α)!
t1−α ,

�
g (x,t) = α!

and the equation (7.16) direct yields

pr ({x(t)} , t ∈ [0,T ]) = K exp

⎛
⎝− 1

2(σα!)2

T∫
0

(
x(α)(t)+

x2r+1(t)
(1−α)!

t1−α
)2

(dt)α

⎞
⎠ .

(7.19)

EXAMPLE 7.6. We consider the coarse-grained time Brownian motion of the ex-
ample (7.11), but now we assume that 1/2 < α < 1,

db(t,α) = w(t)(dt)α , 1/2 < α < 1., (7.20)

We then have
�

f (x,t) = 0 and �g (x,t) = α!,

therefore

pr ({b(t,α)} , t ∈ [0,T ]) = K exp

⎛
⎝− 1

2σ2

T∫
0

(
b(α)(t,α)

α!

)2

(dt)α

⎞
⎠ . (7.21)

When α = 1, one so recovers (5.12)

8. Characteristic Function of Random Coarse-grained Processes

8.1. Coarse-grained time processes with short-range memory

We refer again to the stochastic process x(t) defined by the stochastic differential
equation

dx = f (x,t)dt +g(x,t)w(t)(dt)α , 0 < α < 1/2, (8.1)

and to the function ϕ(u,x) = exp(iux) ; and since it is differentiable, we can use the
corresponding Itô’s lemma (6.13) to obtain

dϕ = ϕ
(

iu f dt + iugw(dt)α− u2

2
g2σ2(dt)2α

)
. (8.2)

On taking the mathematical expectation of both sides, we come across the approximate
equation

d
(
lnΦ̂(u,t)

)
= iu〈 f 〉dt− u2

2

〈
g2〉σ2(dt)2α . (8.3)

Looking for a solution in the form

Φ̂(u,t) = Φ̂1(u,t)Φ̂2(u,t),
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we finds that it is determined by the two equations

dΦ̂1(u,t) = iu〈 f 〉 Φ̂1(u,t)dt, (8.4)

and

dΦ̂2(u,t) =−u2

2

〈
g2〉σ2Φ̂2(u,t)(dt)2α . (8.5)

Equation (8.4) yields

Φ̂1(u,t) = Φ1(u,0)exp

⎛
⎝iu

t∫
0

〈 f (x,s)〉ds

⎞
⎠ . (8.6)

The solution to (8.5) can be obtained as follows. Multiplying its both sides by (2α)!
and taking account of (3.10), we obtain the equation

d2αΦ̂2(u,t) =−(2α)!
u2

2

〈
g2〉σ2Φ̂2(u, t)(dt)2α

of which the solution is

Φ̂2(u, t) = Φ̂2(u,0)E2α

⎛
⎝− (2α)!

2
u2σ2

T∫
0

〈
g2(x,s)

〉
(ds)2α

⎞
⎠ . (8.7)

We then have the sought result

Φ̂(u, t) = Φ(u,0)exp

⎛
⎝iu

t∫
0

〈 f (x,s)〉ds

⎞
⎠ E2α

⎛
⎝-

(2α)!
2

u2σ2

t∫
0

〈
g2(x,s)

〉
(ds)2α

⎞
⎠ .

(8.8)

EXAMPLE 8.1. For the equation (7.7) of the example 7.1, the solution (8.8) yields

Φ̂(u, t) = Φ(u,0)exp

⎛
⎝iru

t∫
0

〈x〉ds

⎞
⎠ E2α

⎛
⎝-

(2α)!
2

u2σ2

t∫
0

〈
x2〉(ds)2α

⎞
⎠ . (8.9)

EXAMPLE 8.2. For the stochastic process defined by (7.15), one has

Φ̂(u, t) = Φ(u,0)exp

⎛
⎝−iu

t∫
0

〈
x2r+1〉ds

⎞
⎠ E2α

⎛
⎝− (2α)!

2
u2σ2

t∫
0

(ds)2α

⎞
⎠ .

= Φ(u,0)exp

⎛
⎝−iu

t∫
0

〈
x2r+1〉ds

⎞
⎠ E2α

(
− (2α)!

2
u2σ2t2α

)
. (8.10)
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EXAMPLE 8.3. Refer to the Brownian motion with short-range memory defined
by the equation (7.11). Then the expression (8.8) yields

Φ̂(u, t) = Φ(u,0)E2α

⎛
⎝− (2α)!

2
u2σ2

t∫
0

(ds)2α

⎞
⎠

= Φ(u,0)E2α

(
− (2α)!

2
u2σ2t2α

)
, 0 < α < 1/2. (8.11)

8.2. Coarse-grained time processes with long-range memory

We can duplicate step by step the calculus above related to fractional processes
with short-range memory, up to the equations (8.4) and (8.5) which still hold here.

Φ̂1(u, t) is still given by the equation (8.6).
The solution of (8.5) with 1 < 2α < 2 is now given by the expression (see the

Appendix for the details)

Φ̂2(u, t) = Φ̂2(u,0)E2
1/2

⎛
⎝(1/2)!

iuσ√
2

t∫
0

〈
g2(x,s)

〉1/2
(ds)α

⎞
⎠

therefore the general solution

Φ̂(u, t) = Φ(u,0)exp

⎛
⎝iu

t∫
0

〈 f (x,s)ds〉
⎞
⎠E2

1/2

⎛
⎝(1/2)!

iuσ√
2

t∫
0

〈
g2(x,s)

〉1/2
(ds)α

⎞
⎠ .

(8.12)

EXAMPLE 8.4. For the equation (7.7) in the example (7.1), one has

Φ̂(u, t) = Φ(u,0)exp

⎛
⎝iru

t∫
0

〈x〉ds

⎞
⎠ E2

1/2

⎛
⎝(1/2)!

iuσ√
2

t∫
0

〈
x2〉1/2

(ds)α

⎞
⎠ . (8.13)

EXAMPLE 8.5. We now refer to the stochastic process defined by the equation
(7.15) in the example (7.2). Here one has

Φ̂(u, t) = Φ(u,0)exp

⎛
⎝iru

t∫
0

〈x〉ds

⎞
⎠ E2

1/2

⎛
⎝(1/2)!

iuσ√
2

t∫
o

(ds)α

⎞
⎠

= Φ(u,0)exp

⎛
⎝iru

t∫
0

〈x〉ds

⎞
⎠ E2

1/2

(
(1/2)!

iuσ√
2

tα
)

. (8.14)
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EXAMPLE 8.6. For the Brownian motion with long-range memory, one finds eas-
ily

Φ̂(u,t) = Φ(u,0)E2
1/2

⎛
⎝(1/2)!

iuσ√
2

t∫
0

(ds)α

⎞
⎠

= Φ(u,0)E2
1/2

(
(1/2)!

iuσ√
2

tα
)

. (8.15)

9. Application of the Maximum Entropy Principle

9.1. Fractional dynamical equations of the state moments

Preliminary remarks
In the following, we shall denote the state moment of the random variable x(t) by

mk(t) :=
〈
xk(t)

〉
, k � 1.

We refer to the stochastic differential equation with short range dependence (6.10)
which we re-write below for convenience, that is

dx(t) = f (x,t)(dt)α +g(x,t)w(t)(dt)α/2, (9.1)

with 〈w(t) = 0〉 and
〈
w2(t)

〉
= σ2(t) .

First of all, we notice that one has successively

〈dx〉= 〈 f (x,t)〉 (dt)α〈
(dx)2〉=

〈
g2(x,t)σ2(x,t)

〉
(dt)α〈

(dx)k
〉

= 0, k � 3

Dynamical equation of the first order moment.
We have successively

dm1 = 〈x+dx〉− 〈x〉
dm1 = 〈 f (x,t)〉(dt)α

α!dm1 = α!〈 f (x,t)〉 (dt)α

therefore
m(α)

1 (t) = α!〈 f (x,t)〉 . (9.2)

Dynamical equation of the second order moment.
In a like manner one has

dm2 =
〈
(x+dx)2〉− 〈x2〉
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=
〈
2xdx+(dx)2〉

= 〈2x f (x,t)〉(dt)α +
〈
g2(x,t)σ2(x,t)

〉
(dt)α .

Multiplying both-sides by α! and dividing by (dt)α yields

m(α)
2 (t) = α!〈2x f (x,t)〉+α!

〈
g2(x,t)σ2(t)

〉
. (9.3)

Dynamical equation of the moment of order k,k � 3.
In the general case one has

dmk =
〈
(x+dx)k− xk

〉

=
〈

kxk−1dx+
k(k−1)

2
xk−2(dx)2

〉

= k
〈
xk−1 f

〉
(dt)α +

k(k−1)
2

σ2(t)
〈
xk−2g2

〉
(dt)α

therefore

m(α)
k (t) = α!

〈
kxk−1 f (x,t)+

k(k−1)
2

σ2(t)xk−2g2(x,t)
〉

. (9.4)

In the special case when f (x,t) and g(x,t) are polynomials with respect to x , these
equations define a set of linear differential equations of fractional order to determine
the moments.

EXAMPLE 9.1. Let us consider the popular equation (see (7.17))

dx = rx(dt)α + xw(t)(dt)α/2, (9.5)

where r is a constant with 〈w〉= 0 and
〈
w2
〉

= σ2(t) . We then have the identification

f (x,t) = rx and g(x) = x

and according to (9.2) and (9.3) one has the equations

m(α)
1 (t) = α!rm1(t)

m(α)
2 (t) = α!(2r+σ2(t))m2(t)

of which the solutions are (with the modified Riemann-Liouville derivative)

m1(t) = m1(0)Eα(α!rtα) (9.6)

and

m2(t) = m2(0)Eα

⎛
⎝2rα!tα +α!

t∫
0

σ2(τ)(dτ)α
⎞
⎠ . (9.7)



PATH PROBABILITY OF RANDOM FRACTIONAL SYSTEMS 75

9.2. Application of Jaynes maximum entropy principle

Background on the MEP. Jaynes maximum entropy principle [11] states that if, all
you know about a random variable X ∈ℜ is summarized in some constraints of statistic
nature, such as some mathematical expectations, for instance; then, as the best estimate
p̂(x,t) of its probability density p(x,t) , you should select that one which maximizes its
informational entropy

H(X) :=−
∫
ℜ

p(x) ln p(x)dx, (9.8)

subject to these constraints.
The classical example is provided by the case when one has at hand the first two

moments m1 and m2 of X , therefore one obtains, via a simple optimization with La-
grange parameters

p̂(x,t) =
(
s
√

2π
)−1

exp

(
− (x−m1)2

2s2

)
. (9.9)

with
s2 := m2− (m1)2.

EXAMPLE 9.2. We come back to the equation (9.5) with the maximization of

H(X ,t) :=−
∫
ℜ

p(x,t) ln p(x,t)dx,

and the calculation yields the equation (9.9) in which m1 and m2 are defined by (9.6)
and (9.7).

9.3. An approach to informational entropy of fractional order

Recently [22] we have proposed a new model of entropy of fractional order to take
account of some defects in observation, and of course, formally it could be possible
to use it to apply the maximum entropy principle. In the present subsection, we shall
introduce the reader to new results on this fractional entropy, mainly to show why it is
quite relevant in our problem of determining path probability density. We shall display
its main properties, and by this way, we shall exhibit its practical meaning.

Discrete entropy of fractional order

DEFINITION 9.1. Given a random variable X which takes on the values x1,x2, ...,xm

with the probabilities p1, p2, ..., pm , p1 + p2 + ...+ pm = 1, its fractional entropy of or-
der α is defined by the expression

H̃α(X) :=−
m

∑
i=1

pi (Lnα pi)1/α , (9.10)

where Lnα p denotes the inverse of the Mittag-Leffler function, clearly p = Eα (Lnα p) ,
and with the convention 0(Lnα 0)1/α = 1(Lnα 1)1/α = 0.
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The motivation for this definition comes from the relation [17]

(Lnα uv)1/α = (Lnα u)1/α +(Lnα v)1/α . (9.11)

Indeed, according to (9.11), (Lnα pi)1/α is considered as measuring the quantum of
information associated to pi , and its mathematical expectation yields (9.10).O

It follows that, as expected, when X is a non-random variable which takes on one
value only, then its fractional entropy is zero.

Remark that, according to the equality [17]

(
Lnα

1
p

)1/α
=−(Lnα p)1/α

one has the new expression

H̃α(X) :=
m

∑
i=1

pi

(
Lnα

1
pi

)1/α
. (9.12)

Continuous entropy of fractional order

DEFINITION 9.2. Given a real valued random variable X with the probability
density p(x) , its fractional probability entropy of order α , 0 < α < 1, is defined by
the expression

H̃α(X) =−
∫
ℜ

p(x)(Lnα p(x))1/αdx. (9.13)

Motivation. The derivation of this definition in order that it be fully consistent with
the entropy of discrete variable can be achieved by the total entropy [13]

H(Xd ,h) =
N

∑
i=1

Pi

[
−(Lnα Pi)1/α +(Lnα h)1/α

]
,

and by using the equality
Lnα(xy) = yα Lnα(x),

we obtain the new expression

H(Xd,h) =−
N

∑
i=1

Pi

(
Lni

Pi

hi

)1/α
,

of which the limit when h ↓ 0 is (9.13). It can be shown that

LEMMA 9.1. When X and Y are independent, then the following equation holds,
which is

H̃α(X ,Y ) = H̃α(X)+ H̃α(Y ).
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Proof. A simple calculation yields

H̃α(X ,Y ) =−
m

∑
i=1

(Lnα pi)
1/α

n

∑
j=1

piq ji−
m

∑
i=1

n

∑
j=1

piq ji (Lnα q ji)
1/α ,

=−
m

∑
i=1

(Lnα pi)1/α pi

n

∑
j=1

q ji−
m

∑
i=1

pi

n

∑
j=1

q ji (Lnα q ji)1/α (9.14)

In a like manner one has the

LEMMA 9.2. Define Φα(p1, p2, .., pm) := Hα(X); then the Faddeev formula holds,
which is

Φα (p1, p2, ..pM, .., pm) := Φα

(
M

∑
i=1

pi, pM+1, ...., pm

)

+

(
M

∑
i=1

pi

)
Φα

⎛
⎜⎜⎝ p1

M
∑
i=1

pi

, .....,
pM
M
∑
i=1

pi

⎞
⎟⎟⎠ . (9.15)

Proof. The proof is based on the relation

(
Lnα x

1
x

)1/α
= (Lnα x)1/α +

(
Lnα

1
x

)1/α
= (Lnα 1)1/α = 0

which provides (
Lnα(x−1)

)1/α
=−(Lnα x)1/α . (9.16)

This being the case, for the sake of pedagogy, we consider the special case

Φα (p1, p2, p3) := Φα (p1 + p2, p3)+ (p1 + p2)Φ
(

p1

p1 + p2
,

p2

p1 + p2

)
,

It is easy to show that one has successively,

Φ
(

p1

p1 + p2
,

p2

p1 + p2

)
=
(

p1

p1 + p2

)
Ln1/α

α
p1

p1 + p2
+
(

p2

p1 + p2

)
Ln1/α

α
p2

p1 + p2

with
Ln1/α

α
p1

p1 + p2
= Ln1/α

α p1−Ln1/α
α (p1 + p2),

therefore

(p1 + p2)Φ
(

p1

p1 + p2
,

p2

p1 + p2

)
= Φ(p1, p2)− (p1 + p2)Ln1/α

α (p1 + p2).
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Moreover, a straightforward calculation yields

Φ(p1 + p2, p3) = (p1 + p2)Ln1/α
α (p1 + p2)+ p3 Ln1/α

α p3.

It follows that, as expected, when X is a non-random variable which takes on one value
only, then its fractional entropy is zero.

This entropy has properties similar to those of the entropies of Renyi [39] and
Tsallis [44] in which the parameter α can be thought of as measuring an information
loss, but in addition, and this is of paramount importance, it satisfies all the main basic
composition rules of the classical information. We believe that this entropy could re-
place Renyi’s and Tsallis entropies and provide new approaches to various problems in
statistical mechanics.

On the significance of fractional entropy

(First remark) Observation with information loss. Let us consider the random
variable X which takes on the value xi with the probability pi , i = 1,2, ..,n. In the
absolute, the amount of information involved in xi is ln(1/pi) . Assume that the pro-
cess is observed with some defect in observation, in such a manner that the amount of
information which is so seized by the observer is lower than ln(1/pi) . An approach to
describe this phenomenon is to select a model in the form

observed information = α ln(1/pi), 0 < α < 1,

therefore the entropy 〈α ln(1/p)〉 , that is to say

Hobs(X) =
n

∑
i=1

pi ln(1/pαi )

=−
n

∑
i=1

pi ln pαi .

Let us bear in mind that transinformation, or merely information, is a difference of
entropies, whilst, strictly speaking, entropy measures the amount of uncertainty we
have about a phenomenon prior to any experiment. Sometimes H(X) is referred to
as information (instead of uncertainty) mainly because it appears to be the maximum
value of the amount of information which we need to identify X .

(Second remark) The equality

x = exp(lnx) = Eα(Lnα x)

provides the approximation

Lnα x∼= ln(xα!), 0 < α! < 1

which suggests that the entropy

Kα (X) :=−
n

∑
i=1

pi Lnα pi, (9.17)
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is also a valuable candidate to measure of information in the presence of defect in the
observation process.

(Third remark) At first glance, the entropy (9.17) could be considered as the gen-
eralized entropy which we are looking for. This being the case, if in addition we require
that a suitable generalization of entropy should satisfy all the basic functional proper-
ties of the classical Shannon entropy, then we have to go a step farther, and select the
entropy H̃α(X) instead of Kα(X) .

Remark that, in term of physical dimensions, Kα compares with (H̃α)α : Kα ∝
(H̃α)α . In other words, in a practical problem of encoding, (H̃α)α would be more
relevant than H̃α .

For instance, if we want to encode X by Y , which are characterized by the en-
tropies H̃α(X) and H̃β (Y ) respectively, then one should have the necessary encoding

condition
(
H̃β (Y )

)β �
(
H̃α(X)

)α
. When X has M results which occur with the same

probability and, likewise, Y provides N results with the same probability, then the bal-
ance condition turns to be simply Lnβ N � Lnα M .

(Fourth remark) On the meaning of information. Several authors have suggested
to extend entropy of random variables in the form

Hobs(X) =−
∫
ℜ
μ(x)p(x) ln p(x)dx

where μ(x) is a density function which would take account of the meaning of the
information. If we assume that μ(x) is a constant, then we once more recover the
uncertainty density − ln pμ .

(Fifth remark) Observed probability. By using observation with informational in-
variance, we obtained a model of observed probability distribution in the form

pobs(x) = apb(x),

where p(x) is a probability density, and a together with b denotes two constants which
characterize the observation process. Taking the mathematical expectation

〈
ln(apb)

〉
yields the observed entropy

Hobs(X) = lna+ H̃b(X).

In the following we shall give more explanations on the heuristic derivation of the
fractional entropy.

9.4. Heuristic derivation of entropy of fractional order

Let X ∈ ℜ denote the observed result of an experiment which may take on the
value x ∈ R , to which we can ascribe a weight function ϕ(x) � 0. We assume that the
uncertainty that an observer has about the value of X, prior to any experiment, can be
defined by a function

H(X) =−
∫
ℜ
ϕ(x)h(ϕ)dx, (9.18)
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where −h(ϕ) is the density of uncertainty involved in the event (X = x) .
Assume now that, due to some coarse-graining effect in space, the increment of

weighted uncertainty varies like (dx)α . Clearly it is not −ϕ(x)h(ϕ)dx , but rather it
is −ϕ(x)h(ϕ)(dx)α , 0 < α < 1, in such a manner that the amount of uncertainty
involved in X would be rather defined by the formal expression

H(X) =−
∫
ℜ
ϕ(x)h(ϕ)(dx)α

of which the meaning would remain to be clarified.
So, in order to circumvent this difficulty and to be fully consistent with classical

calculus, we shall rather assume that the amount of uncertainty involved in X is defined
by the integral

H(X) =−
∫
ℜ
ϕ1/αh1/α(ϕ)dx. (9.19)

in which the integrand is (ϕ(x)h(ϕ)(dx)α)1/α .
In the information theory, it is quite right to set the requirement that h(.) should

fulfill the condition (additive law of uncertainty)

h1/α(ϕψ) = h1/α(ϕ)+h1/α(ψ), (9.20)

in which case we are led to set
h(ϕ)≡ Lnα ϕ

therefore the eventual expression

H̃α(X) =−
∫
ℜ

ϕ1/α(x)(Lnα ϕ)1/αdx. (9.21)

The counterpart for discrete probability distributions reads

H̃α(X) =−
m

∑
i=1

ϕ1/α
i (Lnα ϕi)

1/α . (9.22)

This being the case, if we make the transformation

p = ϕ1/α , (9.23)

then we obtain the entropies

H̃α(X) =−α
∫
ℜ

p(x)(Lnα p(x))1/αdx, (9.24)

and

H̃α(X) =−α
m

∑
i=1

pi(Lnα pi)1/α . (9.25)

It follows that, at first glance, this fractional entropy could be quite meaningful here to
apply the maximum entropy principle in the presence of defect in observation.

When the solution defined by the maximum entropy principle cannot be obtained
by the moment equations, we have to work via the detailed distributed optimization
technique, and in the following we shall show how this can be done.
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10. Application of the Maximum Fractional Entropy Principle

MEP applied to the entropy H̃α(X)

Statement of the problem. In the setting of fractional entropy, according to Jaynes
[11] maximum entropy, our purpose will be to determine the probability distribution
p(x) which maximizes the entropy

〈−(Lnα p)1/α〉 under the condition that the math-
ematical expectations 〈1〉 , 〈Xr〉 and 〈Xs〉 , r > 0,s > 0, have given values.

Introducing the Lagrange parameters λ , μ and υ , this amounts to maximize the
augmented Hamiltonian

Haug :=
∫
ℜ

p
(
−(Lnα p)1/α +(λxr + μxs +υ)

)
dx. (10.1)

Due to the presence of Lnα p , we shall work in the setting of fractional calculus and
we shall equate to zero the αth fractional variation of the augmented Hamiltonian to
obtain the optimality condition(

−Dα
p (Lnα)1/α − pDα

p (Lnα p)1/α +(λxr + μxs +υ)Dα
p p
)
δ p(x) dx = 0

which provides the equation (on taking account of (3.24))

−(1−α)!(Lnα p)1/α −α+(1−α)!(λxr + μxs +υ) = 0,

therefore

Lnα p =
(
λxr + μxs +υ− α

(1−α)!

)α
, (10.2)

and

p = Eα

{(
λxr + μxs +υ− α

(1−α)!

)α}
(10.3)

Remark that when α = 1, r = 2 and s = 1, Eα(.) turns to be the exponential exp(.)
and we obtain exactly the wel known result corresponding to the normal law.

Practical meaning of the fractional MEP. This result can be understood as follows.
If all we know about a probability density p(x) is summarized in the knowledge of 〈Xr〉
and 〈Xs〉 , and if further these values have been obtained via an observation process
involving an information loss described by the presence of α , then we should select
(9.8) as the likely value of p(x).

On the modeling standpoint, according to the maximum entropy principle, in the
presence of defect in observation (or fuzzy observation) the probability density defined
by the Mittag-Leffler function would be more relevant than the Gaussian law.

MEP applied to the entropy Kα(X)
Assume now that we use Kα instead of H̃α , to have the augmented entropy

Kaug(X) =
∫
ℜ

p(−Lnα p+λxr + μxs +υ)dx. (10.4)
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Here we shall use the equality

dα Lnα p
dpα

=
(

α
(1−α)!

)2 (Lnα p)1−(1/α)

pα

which can be obtained by combining (3.24) with the chain fractional derivative rule
(3.10); and we shall obtain the optimization condition

(1−α)!Lnα p+α2(Lnα p)1−(1/α)− (1−α)!(λxr + μxs +υ) = 0. (10.5)

As in evidence, the closed solution cannot be obtained in the general case, but when
α = 1/2one has (1−α)! = (1/2)!Γ(1+1/2) =

√
π/2, therefore the equation

√
π

2

(
Ln1/2 p

)2− √π
2

(λxr + μxs +υ)Ln1/2 p+
(

1
2

)2

= 0 (10.6)

which provides

2Ln1/2 p = λxr + μxs +υ±
(√

π
2

)−1
√

π
4

(λxr + μxs +υ)2−
√
π

2
. (10.7)

11. Maximum Entropy via Distributed Parameter Optimization

Statement of the problem. We consider the problem of maximizing

maxHα(X ,t) :=−
∫ T

0

∫
ℜ

p(x,t) ln p(x,t)dx(dt)α (11.1)

subject to the dynamics

∂αt p(x,t) =−α!∂x( f p)+ (α!/2)∂ 2
xx(g

2σ2p). (11.2)

Further comments The equation (11.2) has been obtained in the Ref [20]. Regarding the
total entropy, at first glance it could be selected in the form of an integral with respect
to dt , but we have rather selected an integral w.r.t. (dt)α to save some consistency
between the two equations (11.1) and (11.2).

Optimization. On introducing the Lagrange parameter function λ (x, t) the prob-
lem turns to maximize the augmented entropy

H̃α(X , t) =
∫ T

0

∫
ℜ

{
−p ln p+λ

[
p(α)
t +α!∂x( f p)− (α!/2)∂ 2

xx(g
2σ2p)

]}
dx(dt)α

(11.3)
Detailed calculations yield successively

∫ T

0

∫
ℜ
λ p(α)

t dx(dt)α =
∫
ℜ

[λ p]T0 dx−
∫ T

0

∫
ℜ
λ (α)

t pdx(dt)α , (11.4)

α!
∫ T

0
(dt)α

∫
ℜ
λ∂x( f p)dx = α!

∫ T

0
[λ f p]+∞

−∞(dt)α −α!
∫ T

0

∫
ℜ
λx f pdx(dt)α , (11.5)



PATH PROBABILITY OF RANDOM FRACTIONAL SYSTEMS 83

(α!/2)
∫ T

0
(dt)α

∫
ℜ
λ∂ 2

x (g2σ2p)dx = (α!/2)
∫ T

0

[
λ∂x(g2σ2p)

]+∞
−∞(dt)α

−(α!/2)
∫ T

0

[
λx(g2σ2p

]+∞
−∞(dt)α +(α!/2)

∫ T

0

∫
ℜ
λxx(g2σ2p)dx(dt)α , (11.6)

and on substituting (11.4) to (11.6) into (11.3) yields the final form

H̃α =
∫ T

0

∫
ℜ

L(p,λ ,x,t)dx(dt)α +
∫
ℜ

[λ p]T0 dx+α!
∫ T

0
[λ f p]+∞

−∞(dt)α

−(α!/2)
∫ T

0

[
λ∂x(g2σ2p)

]+∞
−∞(dt)α +(α!/2)

∫ T

0

[
λx(g2σ2p

]+∞
−∞(dt)α ,

with

L(p,λ ,x, t) :=−p ln p−λ (α)
t p−α!λx f p− (α!/2)λxx(g2σ2p). (11.7)

The necessary optimality condition reads ∂L/∂ p = 0 which provides

p(x, t) = exp
(
−1−λ (α)

t −α!λx f − (α!/2)λxxg
2σ2

)
, (11.8)

and the optimal solution is then defined as the solution of the equations (11.2) and
(11.8).

The boundary conditions are defined by the condition

∫
ℜ

[λδ p]T0 dx = 0

therefore

λ (T ) = 0.

It is clear that it is not a simple task to find the solution of these equation, and this
remains all a programme for future research.

Remark of importance. If instead of the additive equation(9.20) we have the con-
dition

h1/α(ϕψ) � h1/α(ϕ)+h1/α(ψ)

or

h1/α(ϕψ) � h1/α(ϕ)+h1/α(ψ),

then we shall talk in terms of sub entropy and super entropy, and we shall expand
the theory in the same manner. But here the equations so obtained will have different
practical significances and will apply to different frameworks.
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12. Concluding Remarks

Stochastic differential equations of fractional order are by now pervasive in many
areas of science, and presently, to the best of our knowledge, there is no sound theory
for this kind of equations, and it is likely that, due to the high discontinuities involved
in these processes, if theory there is, it will not be the only one, but rather one among
several ones. For instance with (standard) stochastic differential equations driven by
(standard) Brownian motion, we have the Itô’s theory and the Stratonovich’s theory. Up
to now, there is only one model for fractional Brownian motion, the copyrighted one,
but we believe that thare is room for further points of view.There is not only one model
of fractional Brownian motion, but several ones. This being the case, the modeling of
real problems in the real physical world involving coarse-grained phenomenon results
in this family of equations, and we need at least some approximate approaches to their
solutions. Despite that the system state x(t) itself cannot be easily defined, we can
nevertheless obtain some estimates of its probability densities, and the present paper
shows how this can be done simply, on a practical standpoint.

In this way of thought, by using path integral, we have calculated the probability
density of the trajectory generated by the fractional system, a tool which will allow us
to determine which trajectory is more likely to occur. By the night, the computer can
systematically simulate trajectories and then calculate their probabilities, what may be
of help to the practitioner for making decisions.

As the second result, we have obtained approximate expressions for the charac-
teristic function of the state probability of some fractional stochastic systems. These
expressions involve the state moments of the system state of which the values can be
easily obtained by preliminary experiments.

The last result is related to the potential application of the maximum entropy prin-
ciple in this kind of problem. Two cases have been considered, depending upon the
structural definition of the system. Sometimes, it is easy to obtain the fractional dif-
ferential equation of the state moments of the system, and the optimization is then a
classical one with Lagrange parameter. Otherwise, in the more general case, we shall
use the entropy of fractional order which takes account of defects in observation..

In a first step we have considered one-dimensional systems only, but at first glance,
it seems that the extension to multi-dimensional systems should not give rise to much
more problems.

We shall finish with a remark on the basic stochastic process to be used in the
modelling of stochastic systems. There are two schools. Most mathematicians define
stochastic processes by means of the Brownian motion which is as such considered
as the basic generating stochastic process, but there is also another school of applied
mathematicians who focus on physics and who use white noises to generate stochastic
process. The present paper could be considered as being in this trend, and consider that
the solution of the equation

dx = w(t)(dt)α

is fully defined in the framework of fractional calculus with modified Riemann-Liouville
derivative.
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There are many traps in the manipulation and the fractional calculus of non-
differentiable functions, and we beg the leniency of the reader who will probably find
here topics to be improved.

Appendix

Solution of a special fractional differential equation

Our purpose in this appendix is to solve the fractional differential equation

dy = y f (t)(dt)2α , 1 < 2α < 2. (A.1)

and to this end we proceed as follows. Firstly, one can write

(dy)1/2 =
√

y
√

f (dt)α . (A.2)

On taking account of the equality (provided by fractional derivative)

(dy)1/2 =
1

(1/2)!
d1/2

(
y1/2

)
, (A.3)

We can re-write (A.2) in the form

1
(1/2)!

d1/2
(
y1/2

)
=
√

y
√

f (dt)α . (A.4)

This suggests to make the transformation (or change of function) u =
√

y , which yields

d1/2u = (1/2)!u
√

f (dt)α .

We then have successively

d1/2u
u

= (1/2)!
√

f (dt)α ,

t∫
0

d1/2

u
= (1/2)!

t∫
0

√
f (ds)α ,

Ln1/2 u = (1/2)!
t∫

0

√
f (ds)α ,

u = E1/2

⎛
⎝(1/2)!

t∫
0

√
f (ds)α

⎞
⎠

therefore

y = E2
1/2

⎛
⎝(1/2)!

t∫
0

√
f (ds)α

⎞
⎠ .
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