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THE FRACTIONAL VIRIAL THEOREM
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Abstract. Fractional calculus is an emerging field and its has many applications in several fields
of science and engineering. One of the major issue in this field is to apply this type of calculus
to the real world applications. In this paper the fractional generalization of the classical virial
theorem is presented.

1. Introduction

During the last decades the fractional calculus, which deals with fractional deriva-
tives and integrals of any order, started to be applied intensively in various fields of
science and engineering [30, 28, 39, 20, 32, 44, 23, 27, 19, 46, 31, 43, 22]. Based on
some examples from the field of viscoelasticity Heymans and Podlubny have proved
that it is possible to attribute some physical meaning to initial conditions expressed in
terms of Riemann-Liouville fractional derivatives [21].

The non-locality is a major characteristic of the fractional differential operators,
therefore some techniques should be used or developed in order to deal with theories in-
volving such kind of operators. An interesting and recent direction in fractional calculus
area is the field of the fractional variational principles.

As a result several formulations of the fractional Euler-Lagrange equations have
been reported in the literature and applied to several important dynamical systems [37,
38, 26, 24, 45, 25, 42, 29]. The next step was to obtain the fractional Hamilton equa-
tions. There are several ways to define the fractional Hamiltonian and all of them co-
incide in the classical limits with the classical results. Recently, the fractional varia-
tional principles started to play an important role in physics and in the control theory
[8, 29, 5, 41, 33, 34, 35, 18, 1, 2, 3, 36, 4, 6, 7, 40, 14, 17, 15]. Fractional Nambu me-
chanics has been obtained [9]. The generalized Newtonian law and fractional Langevin
equation and potentials corresponding to different kinds of forces involving both the
right and the left fractional derivatives has been introduced [10]. The fractional multi
time Lagrangian equations for dynamical systems within Riemann-Liouville derivatives
and fractional multi time constant of motion are discussed in [13]. The classical con-
straint Hamiltonian formulation using Dirac brackets successfully leads the equations
is obtained from fractional Euler-Lagrange equations [16]. The generalized Newto-
nian equations with memory and presented a physical model for application has been
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obtained [11]. Using the fractional differential forms, the classical electromagnetic
equations involving the fractional derivatives have been worked out [12].
As it is known in mechanics, the virial theorem provides a general equation which con-
nects the average over time of the total kinetic energy of a stable system, bounded by
potential forces. The range of the applicability of the virial theorem is very diverse. It
is applicable to dynamical and thermodynamical systems, systems with velocity depen-
dent forces, viscous systems, systems exhibiting macroscopic motions such as rotation,
systems with magnetic fields and even some systems which require general relativity
for their description. Actually the theorem represents a basic structural relationship that
the system must obey. However,this theorem it is difficult to be applied in some prac-
tical applications because the conditions of their fulfillment are too strict to be easily
fulfilled.

The aim of this paper is to investigate the fractional generalization of the classical
virial theorem.

The plan of the paper is as follows:

In Section 2 we briefly present some basic definitions and properties of the Riemann-
Liouville (RL) and Caputo derivatives. In Section 3 we present briefly the classical
virial theorem. Section 4 deals with the fractional generalization of the classical virial
theorem. Section 5 is dedicated to our conclusions.

2. Basic definitions

In the following we present briefly several basic definitions concerning fractional
calculus.

If f (x) ∈C[a,b] and α > 0 then

aIαx f (x) :=
1

Γ(α)

∫ x

a

f (t)
(x− t)1−α dt, x > a,

and

xIαb f (x) :=
1

Γ(α)

∫ b

x

f (t)
(x− t)1−α dt, x < b,

are called the left-sided and right-sided Riemann-Liouville fractional integral of or-
der α , respectively.

The left Riemann-Liouville (RL) fractional derivative has the form

aDα
t f (t) =

1
Γ(n−α)

(
d
dt

)n t∫
a

(τ− t)n−α−1 f (τ)dτ, (2.1)

and the right RL fractional derivative is given below

tDα
b f (t) =

1
Γ(n−α)

(
− d

dt

)n b∫
t

(τ− t)n−α−1 f (τ)dτ. (2.2)
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The order α satisfies n−1 � α < n and Γ denotes the Euler’s gamma function.
As it can be seen from (2.1), the RL derivative of a constant is not zero and its

expression is given below

aDα
t C = C

(t−a)−α

Γ(1−α)
. (2.3)

However, the RL derivative of a power has the form

aDα
t tβ =

Γ(α +1)(t−a)β−α

Γ(β −α+1)
, (2.4)

for α > −1,β � 0. The composite of fractional derivatives is crucial in various appli-
cations and it presented below

aDα
t aDσ

t f (t) = aDα+σ
t f (t)

−
k

∑
j=1

aD
σ− j
t f (t)|t=a

(t−a)−α− j

Γ(1−β − j)
, (2.5)

Here 0 � k−1 � q � k , p � 0 and k is an integer number. The fractional product rule
has the form

aDα
t ( f g) =

∞

∑
j=0

(
α
j

)(
aD

α− j
t f

)(
∂ jg
∂ t j

)
, (2.6)

where the binomial coefficient has the form

(
α
j

)
= Γ(α+1)

j!Γ(α− j+1) , j ∈ N0 .

Let us consider an analytic function φ(t) and f (t) = H(t − a) , where H(t) de-
notes the Heaviside function. By making use the Leibniz rule together with the formula
for the fractional differentiation of the Heaviside function we obtain the following result

aD
p
t φ(t) =

∞

∑
k=0

(
p
k

)
φ (k)(t)aD

p−k
t H(t−a). (2.7)

Finally, replacing the fractional derivative of H(t −a) we obtain

aD
p
t φ(t) =

(t−a)−p

Γ(1− p)
φ(t)+

∞

∑
k=1

(
p
k

)
(t−a)k−p

Γ(k− p+1)
φ (k)(t) (2.8)

under the assumption t > a .
We observe that when α becomes an integer we obtain

aDα
t f (t) =

(
d f (t)

dt

)α
, tDα

b f (t) =
(
−d f (t)

dt

)α
. (2.9)

In the following we define the left and the right Caputo derivatives. Namely, the
left Caputo fractional derivative has the form

C
a Dα

t f (t) =
1

Γ(n−α)

t∫
a

(t − τ)n−α−1
(

d
dτ

)n

f (τ)dτ, (2.10)
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and the right Caputo fractional derivative is given by

C
a Dα

t f (t) =
1

Γ(n−α)

b∫
t

(τ− t)n−α−1
(
− d

dτ

)n

f (τ)dτ, (2.11)

where n−1 < α < n . In the following we briefly present some properties of fractional
derivatives and integrals:

C
a Dα

t ( f (t)+g(t)) = C
a Dα

t f (t)+ C
a Dα

t g(t), (2.12)

C
a Dα

t c = 0, c is constant. (2.13)

As it can be seen from above mentioned formulas, in the Caputo case the derivative
of a constant is zero and we can define properly the initial conditions for the fractional
differential equations which can be handle by using an analogy with the classical case.

The fractional integration by parts formula is given below

∫ b

a
f (t)[aDα

t g(t)]dt =
∫ b

a
g(t)[ tDα

b f (t)]dt. (2.14)

We mention that (2.14) is valid under the assumption that f (t) ∈ t Iαb (Lp) , g(t) ∈
aIαt (Lp) , 1

p + 1
q � 1 + α . In the following we enlist some other basic formulas of

fractional integrals and derivatives, namely

aDα
t (t−a)β =

Γ(β +1)
Γ(β +1−α)

(t −a)β−α (β > α), (2.15)

aIαt (t−a)β =
Γ(β +1)

Γ(β +1+α)
(t−a)β+α , (2.16)

aIαt aDα
t x(t) = x(t)−

n

∑
j=1

(aD
α− j
t x)(a)

Γ(α +1− j)
(t −a)α− j, (2.17)

tIαb tDα
b x(t) = x(t)−

n

∑
j=1

(tD
α− j
b x)(b)

Γ(α +1− j)
(b− t)α− j, (2.18)

aIαt
C
a Dα

t x(t) = x(t)−
n−1

∑
j=0

(Djx)(a)
Γ( j +1)

(t−a) j, (2.19)

tIαb
C
t Dα

b x(t) = x(t)−
n−1

∑
j=0

((−D) jx)(b)
Γ( j +1)

(b− t) j. (2.20)
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3. The virial theorem – classical case

In this section we give briefly the classical virial theorem.
Let us consider that the Newton’s second law

−→̇
pi =

−→
Fi , where −→pi denotes the

canonical momenta, −→ri are the position vectors and
−→
Fi are the external forces. Here

i = 1, · · ·n.

The total time derivative of the following quantity G = ∑n
i=1

−→pi · −→ri , i = 1, · · · ,n
has the form

dG
dt

=
n

∑
i=1

−→̇
ri ·−→pi +

n

∑
i=1

−→̇
pi ·−→ri . (3.1)

We mention that the dot represents the inner product between two vectors. We notice
that the first term of (3.1) can be written as

n

∑
i=1

−→̇
ri ·−→pi =

n

∑
i=1

miv
2
i = 2T, (3.2)

where T denotes the kinetic energy and vi denotes the velocity.
By inspection we observe that the second term in (3.1) becomes

n

∑
i=1

−→̇
pi ·−→ri =

n

∑
i=1

−→
Fi ·−→ri . (3.3)

As a result the total time derivative of G is given by

dG
dt

= 2T +
n

∑
i=1

−→
Fi ·−→ri . (3.4)

Finally, if we take the time average of (3.1) between 0 and τ we obtain

2T +
n

∑
i=1

−→
Fi ·−→ri =

1
τ
[G(τ)−G(0)]. (3.5)

By considering τ sufficiently long we finally obtain

T = −1
2

n

∑
i=1

−→
Fi ·−→ri . (3.6)

4. The virial theorem – fractional generalization

In the following we consider the fractional generalization of Newton’s second law
as given below

aDα
t

−→
p f

i =
−→
Fi , (4.1)
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where
−→
p f

i denotes the fractional canonical momenta. In the following the superscript
f of a quantity denotes the fact that it is a fractional generalization of a corresponding
classical one.As a consequence of this we define the following fractional quantity

Gf =
n

∑
i=1

−→
p f

i ·−→ri . (4.2)

The next step is to take the fractional Riemann-Liouville derivative of (4.2).
As a result we obtain the following expression

aDα
t G f =

n

∑
i=1

3

∑
j=1

aDα
t (pi

f jri
j)

=
∞

∑
k=3

n

∑
i=1

3

∑
j=1

(
α
k

)
p f j

i (aDα−k
t ri

j)

+
n

∑
i=1

3

∑
j=1

p f j
i aDα

t ri
j

+
n

∑
i=1

3

∑
j=1

α
dp f j

i

dt aDα−1
t ri

j. (4.3)

Taking into account that the fractional momenta has the from

p f
i = miaDα

t ri (4.4)

we define the fractional kinetic energy as

T f =
1
2

n

∑
i=1

3

∑
j=1

p f j
i aDα

t ri
j. (4.5)

By inspection we observe that

2T f +
n

∑
i=1

3

∑
j=1

α
dp f j

i

dt aDα−1
t ri

j

+
∞

∑
k=3

n

∑
i=1

3

∑
j=1

(
α
k

)
p f j

i (aDα−k
t ri

j) = aDα
t G f , (4.6)

which implies that

2T f = −
n

∑
i=1

3

∑
j=1

α
dp f j

i

dt aDα−1
t ri

j

−
∞

∑
k=3

n

∑
i=1

3

∑
j=1

(
α
k

)
p f j

i (aDα−k
t ri

j)+ aDα
t G f (4.7)
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Finally, taking the time average we obtain

2T f = −
n

∑
i=1

3

∑
j=1

α
dp f j

i

dt aDα−1
t ri

j

−
∞

∑
k=3

n

∑
i=1

3

∑
j=1

(
α
k

)
p f j

i (aDα−k
t ri

j)+ aDα
t G f , (4.8)

which is a fractional generalization of the classical virial theorem. At this stage we
observe that besides the classical expected generalization term we have two more terms
which are coming due to the non-locality of the fractional differential operator.

5. Conclusions

The virial theorem was generalized to the fractional case.The form of the fractional
virial theorem illustrates that the classical virial theorem is recovered when α �−→ 1.
The main open problem is to find the correct generalization of the fractional Newton
equation. In this present paper we suppose that we can fractionalize the Newton equa-
tion by replacing the classical derivative with Riemann-Liouville fractional derivative.
The obtained theorem permits to define explicitly the terms causing deviations from the
ideal virial form. The obtained results show that the fractional virial theorem can be
applicable for the characterization of the complex systems.
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