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HOMOTOPY PERTURBATION METHOD TO

FRACTIONAL BIOLOGICAL POPULATION EQUATION

YANQIN LIU, ZHAOLI LI AND YUEYUN ZHANG

Abstract. In this paper, the Homotopy perturbation method is successfully extended to solve
fractional biological population model and numerical results are obtained. The fractional deriva-
tives are described in the Caputo sense, some examples are provided. And the solutions of the
equation are continuous with the parameter α .

1. Introduction

Fractional derivative have been extensively investigated due to their broad appli-
cations in mathematics, physics and engineering [12, 2, 9], such as anomalous transport
in disordered systems, some percolations in porous media, and the diffusion of biologi-
cal populations. But these nonlinear fractional differential equations are difficult to get
their exact solutions [14, 7]. An effective method for solving such equations is needed.
In this paper, the Homotopy Perturbation Method (HPM)is considered. This method
which provides analytical approximate solution was first presented by He [3, 4] and ap-
plied to various nonlinear problems [5, 6, 8]. Odibat and Momani [10, 11], Wang [15]
applied the HPM to nonlinear fractional equations which have nonlinear terms in the
equations. We extend the HPM to time-fractional biological population model [13], a
representative biological population diffusion equation is ut = u2

xx +u2
xx +σ(u) , where

u(x,y, t) denotes the population density and σ(u) represents the population supply due
to births and deaths. In this paper, we propose a generalized time-fractional nonlinear
biological population diffusion equation as follows

∂αu
∂ tα

=
∂ 2u2

∂x2 +
∂ 2u2

∂y2 +hua(1− rub), t > 0, x,y ∈ R (1)

with given initial condition u(x,y,0) = f0(x,y) , and according to Malthusian law and
Verhulst law, we consider a more general form of σ(u) = hua(1− rub) , where h,a,r,b
are real numbers. When choose special value, they change to Malthusian law and
Verhulst law.

The derivatives in Eq. (1) is the Caputo derivative. Linear and nonlinear population
systems were solved in [13] and [1] by using Viriational Iteration Method (VIM) and
Adomian Decomposition Method (ADM). However, one of the disadvantages of ADM
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is the inherent difficulty in calculating the Adomian polynomials. In this letter, we are
interested in extending the applicability of HPM to population systems of fractional dif-
ferential equation (1). To demonstrate the effectiveness of the HPM algorithm, several
numerical examples of fractional biological population systems shall be presented.

2. Preliminaries

DEFINITION 1. A real function f (t) , t > 0, is said to be in the space Cμ , μ ∈ R ,
if there exists a real number p > μ , such that f (t) = t p f1(t), where f1(t) ∈ C(0,∞) ,
and it is said to be in the space Cn

μ if and only if f (n) ∈Cμ , n ∈ N .

DEFINITION 2. The Riemann-Liouville fractional integral operator Jα(α � 0) of
a function f ∈Cμ , μ � −1, is defined as

Jα f (t) =
1

Γ(α)

∫ t

0
(t− τ)α−1 f (τ)dτ, (α � 0) (2)

where Γ(·) is the well-known gamma function, and some properties of the operator Jα

are as follows

JαJβ f (t) = Jα+β f (t), (α � 0, β � 0) (3)

Jα tγ =
Γ(1+ γ)

Γ(1+ γ+α)
tα+γ , (γ � −1) (4)

DEFINITION 3. The Caputo fractional derivative Dα of a function f (t) is defined
as

0D
α
t f (t) =

1
Γ(n−α)

∫ t

0

f (n)(t)dτ
(t − τ)α+1−n , (n−1 < Re(α) � n, n ∈ N) (5)

the following are two basic properties of the Caputo fractional derivative

0D
α
t tβ =

Γ(1+β )
Γ(1+β −α)

tβ−α , (6)

(JαDα) f (t) = f (t)−
n−1

∑
k=0

f (k)(0+)
tk

k!
, (7)

we have chosen the Caputo fractional derivative because it allows traditional initial and
boundary conditions to be included in the formulation of the problem. And some other
properties of fractional derivative can be found in [12, 2].

The organization of this paper is as follows. In Section 2, we review the procedure
of HPM and apply this technique to Eq. (1). To show the efficiency of this method, we
present some examples in section 3, and some numerical results are obtained. The last
section is a short summary and discussion.
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3. Analysis of the HPM

The Homotopy analysis method which provides an analytical approximate solu-
tion is applied to various nonlinear problems [3, 5, 8, 10, 15]. In this section, we extend
HPM to Eq. (1), according to this method, we construct the following simple homotopy

(1− p)
(
∂αu
∂ tα

− ∂αu0

∂ tα

)
+ p

[
∂αu
∂ tα

− ∂ 2u2

∂x2 − ∂ 2u2

∂y2 −hua(1− rub)
]

= 0, (8)

or
∂αu
∂ tα

− ∂αu0

∂ tα
+ p

[
∂αu0

∂ tα
− ∂ 2u2

∂x2 − ∂ 2u2

∂y2 −hua(1− rub)
]

= 0, (9)

where u0 is an initial approximation of Eq. (1), and p ∈ [0,1] is an embedding param-
eter. In case p = 0, (9) is a fractional differential equation, ∂αu

∂ tα − ∂αu0
∂ tα = 0, which

is easy to solve; and when p = 1, (9) turns out to be the original one (1). The basic
assumption is that the solutions can be written as a power series in p

u = u0 + pu1 + p2u2 + p3u3 + . . . , (10)

the approximate solutions of the original equations can be obtained by setting p = 1,
i.e.

u = lim
p→1

∞

∑
n=0

pnun = u0 +u1 +u2 +u3 + · · · , (11)

institute (10) into (9) and comparing coefficients of terms with identical powers of p ,
lead to

p0 :
∂αu0

∂ tα
= 0, (12)

p1 :
∂αu1

∂ tα
+
∂αu0

∂ tα
− ∂ 2u2

0

∂x2 − ∂ 2u2
0

∂y2 −hua
0(1− rub

0) = 0, (13)

p2 :
∂αu2

∂ tα
− ∂ 22u0u1

∂x2 − ∂ 22u0u1

∂y2 −haua−1
0 u1 +hr(a+b)ua+b−1

0 u1 = 0, (14)

...

Because of the knowledge of various perturbation methods that low order approximate
solution leads to high accuracy, there requires no infinite series. Then after a series of
recurrent calculation by using Mathematica software we will get approximate solutions
of fractional biological population model. In section 4, we show some examples that the
Homotopy perturbation method gives a very good approximation of the exact solution.

4. Numerical results

In order to assess the advantages and the accuracy of the Homotopy perturbation
method presented in this paper for nonlinear fractional differential equation, we have
applied it to the following three problems.
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EXAMPLE 1. Consider Eq. (1) with a = 1, r = 0, corresponding to Malthusian
law, we have the following fractional biological population equation

∂αu
∂ tα

=
∂ 2u2

∂x2 +
∂ 2u2

∂y2 +hu, (15)

subject to the initial condition
uo =

√
xy. (16)

Substituting (10) into (9), and comparing coefficients of terms with identical powers of
p , leads to

p0 :
∂αu0

∂ tα
= 0, (17)

p1 :
∂αu1

∂ tα
− ∂ 2u2

0

∂x2 − ∂ 2u2
0

∂y2 −hu0 = 0, (18)

p2 :
∂αu2

∂ tα
− ∂ 22u0u1

∂x2 − ∂ 22u0u1

∂y2 −hu1 = 0, (19)

...

operating with Riemann-Liouville fractional operator Jα , which is the inverse operator
of Caputo derivative Dα , in both sides of (17-19) the solution reads

uo =
√

xy, (20)

u1 =
htα

Γ(1+α)
√

xy, (21)

u2 =
h2t2α

Γ(1+2α)
√

xy, (22)

...

un =
hntnα

Γ(1+nα)
√

xy, (23)

Then the approximate solution in a series form is

u(x,y,t) =
∞

∑
n=0

un =
√

xy
∞

∑
n=0

(htα)n

Γ(1+nα)
=
√

xyEα(htα), (24)

where Eα(htα) is Mittag-leffler function, defined as Eα(z) =∑∞
n=0

zn

Γ(1+nα) . As α → 1
we have

u(x,y,t) =
√

xy
∞

∑
n=0

(ht)n

Γ(1+n)
=
√

xyeht , (25)

which is an exact solution to the standard form biological population equation. The
evolution results for the exact solution (25) and the approximate solution (24), for the
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case α = 1, are shown in Fig. 1. It can be seen from Fig. 1 that the solution obtained
by the HPM is nearly identical with the exact solution. Fig. 2 show the approximate
solutions when α = 0.9 and α = 0.5 respectively. From Fig. 2, it is easy to conclude
that the approximate solution of fractional biological population model is continuous
with the parameter α .
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Fig. 1. The surface shows the solution u(x,y,t) for(15): (a) exact solution (25); (b) numerical
solution (24), when h = 0.1 , t = 10.
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Fig. 2. The surface shows the approximate solution u(x,y, t) for (15): (a)α = 0.9;(b)α = 0.5,
when h = 0.1 , t = 10.

EXAMPLE 2. Consider Eq. (1) with a = 1, b = 1, this leads to Verhulst law, and
we have the following fractional biological population equation

∂αu
∂ tα

=
∂ 2u2

∂x2 +
∂ 2u2

∂y2 +hu(1− ru), (26)

subject to the initial condition uo = e

√
hr
8 (x+y) , by using (10) and (9), we now succes-

sively obtain

uo = e

√
hr
8 (x+y)

, (27)
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u1 =
htα

Γ(1+α)
e

√
hr
8 (x+y)

, (28)

u2 =
h2t2α

Γ(1+2α)
e

√
hr
8 (x+y)

, (29)

...

Then the approximate solution in a series form is

u(x,y, t) = e

√
hr
8 (x+y)

∞

∑
n=0

(htα)n

Γ(1+nα)
= e

√
hr
8 (x+y)Eα(htα), (30)

as α → 1 we have

u(x,y,t) = e

√
hr
8 (x+y)+ht

, (31)

which is an exact solution of the integer order biological population.

EXAMPLE 3. Consider Eq. (1) with a = −1, b = 1, we have the following frac-
tional biological population equation

∂αu
∂ tα

=
∂ 2u2

∂x2 +
∂ 2u2

∂y2 +hu−1−hr, (32)

and the initial condition uo =
√

hr
4 x2 + hr

4 y2 + y+5, by using (10) and (9), we now
obtain

uo =

√
hr
4

x2 +
hr
4

y2 + y+5, (33)

u1 =
htα

Γ(α +1)
√

hr
4 x2 + hr

4 y2 + y+5
, (34)

u2 =
−2h2t2α

Γ(1+2α)(
√

hr
4 x2 + hr

4 y2 + y+5)3
, (35)

...

Then the approximate solution in a series form is

u(x,y,t) = u0 +
htα

u0

∞

∑
n=0

n+1
Γ(1+(n+1)α)

(−htα

u2
0

)n

, (36)

as α → 1 we have

u(x,y,t) = u0 +
ht
u0

exp

(−ht

u2
0

)
, (37)

which is an exact solution of the integer order biological population. The evolution
results for the exact solution (37) and the numerical solution (36), for the special case
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Table 1: Comparison of the exact and numerical values by HPM for t = 10

(x, y) exact value of Eq. (32) numerical value by HPM absolute error by HPM

(-20, -20) 20.8806 20.8806 0

(-10, -10) 10.4162 10.4162 9.3969e-013

(0, 0) 2.4384 2.4384 9.1337e-007

(10, 10) 11.3357 11.3357 4.3698e-013

(20, 20) 21.8174 21.8174 0

Table 2: Comparison of the exact and numerical values by HPM for t = 20

(x, y) exact value of Eq. (32) numerical value by HPM absolute error by HPM

(-20, -20) 20.9045 20.9045 5.6843e-014

(-10, -10) 10.4638 10.4638 3.0036e-011

(0, 0) 2.6022 2.6022 2.8660e-005

(10, 10) 11.3795 11.3795 1.3941e-011

(20, 20) 21.8403 21.8403 3.5527e-014

α = 1, h = 0.05, r = 45, are summarized in Tables 1-2 for t = 10, t = 20, and absolute
errors are also calculated. Those results shows that even for small n(n = 3) , the nth
approximation has high accuracy. And from above procedure, we can easily conclude
that the HPM is an efficient and simple tool to solve approximate solution of nonlinear
fractional differential equations.

5. Conclusion

In this work, the HPM was applied to derive approximate analytical solutions of
time fractional degenerate parabolic equations arising in the spatial diffusion of biologi-
cal populations subject to some initial conditions. The reliability of HPM and reduction
in computations give this method a wider applicability. The corresponding solutions are
obtained according to the recurrence relation using Mathematica.
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