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OPIAL TYPE INTEGRAL INEQUALITIES
FOR FRACTIONAL DERIVATIVES

G. FARID AND J. PECARIC

Abstract. We consider a certain class of convex functions in an integral inequality. Mean value
theorems, Cauchy means, exponential convexity, and monotonicity are proved. Applications of
Riemann-Liouville fractional integral, Caputo fractional derivative and integral representation of
Riemann-Liouville fractional derivative are given.

1. Introduction and Preliminaries

Our object is to derive some results which reflect the importance of Opial type
inequalities, in the field of analysis. Inequalities of this type are investigated for exam-
ple in [7] and [8]. For the sake of good understanding see the following notions and
Theorem 1 in [11, p. 236, 237, 238].

We say that a function u : [a,b] — R belongs to the class U(v,K) if it admits the
representation

u(x) = /:K(x,t)v(t)dt

where v is a continuous function and K is an arbitrary non-negative kernal such that
v(x) > 0 implies u(x) > 0 for every x € [a,b].

THEOREM 1. Let h:[0,00) — R be a differentiable function such that for q > 1
1
the function h(x4) is convex and h(0) = 0. Let u € U(v,K) where

1
(/ (K(x,z))f’dz)”gzv, p g =1

Then

b 1—qy,/ q b 1
/a\u(x)| I (Ju(x)])|v(x)|9dx < ]Wh(N(/a |v(x)|qu)q). (1.1)

1
If the function h(x4) is concave, then the reverse of the inequality in (1.1) holds.

There is given exponential-convexity of a class of certain functions so, we have
the following definition and proposition in [4].
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DEFINITION 1. A function % : (a,b) — R is exponentially convex if it is contin-
uous and

n
2 uiujh(x;+x;) =0,
ij=1
for all » € N and all choices u; € R, i=1,2,...,n and x; € (a,b), such that x; +x; €
(a,b), 1 <i,j<n.

PROPOSITION 1. Let h: (a,b) — R. The following are equivalent.
(i) h is exponentially convex.
(ii) h is continuous and

" x+x
Euuh ! 1)20,
i,j=1

for every u; € R and every x;,x; € (a,b), 1 <i,j<n.
(iii) h is continuous and for every x; € (a,b),i=1,2,....n,

Xi+Xx;j

det[h( 7

)}ﬁj:l >0,k=1,2,...,n.
In [4] we also have the following corollary.

COROLLARY 1. If h: (a,b) — (0,) is exponentially convex function then h is a
log-convex function.

The presentation of the paper is as follows. The Section 2 contains mean value
theorems, exponential convexity and Cauchy’s means for a certain class of linear func-
tionals. In Section 3 theorems for Riemann-Liouville fractional integral, Caputo frac-
tional derivative as well as for integral representation of Riemann-Liouville fractional
derivative are given.

2. Preparatory Inequalities
DEFINITION 2. Let A : [0,0) — R be a real valued continuously differentiable

function and u,v be continuous functions, for g > 1 we define the linear functional
oy (u,v) as

o (,) / v(x) |qu / ) (@) () 9dx. 2.1)
The following definition is givenin [1 1, p. 7].

DEFINITION 3. If g is strictly monotonic, then f is said to be (strictly) convex
with respect to g if fog~! is (strictly) convex.
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LEMMA 1. Let h € C*(I), I C (0,), and g(x) =x4, ¢ > 1 with

e SEL V) g g e

Then the functions ¢, ¢> defined as:

M mx24

$1(0) = = —h(x), 0a(x) = h(x) = T,

1o,
are convex functions with respect to g(x) = x4, that is ¢;(x7), i = 1,2, are convex.

Proof Let F(x) = ¢; (x7) = M2 _ (x7). We have

() —(g— DI (y)
q2y2q71

F// (.x) =M 2 07
1 - . . .
where y = x4 . By Definition 3, this shows that ¢; is convex with respect to g(x) =x7,
1
so ¢ (x4) is convex.
1
Similarly, if we put G(x) = ¢,(x4) then G”(x) > 0, so by Definition 3, we have

1.,
that ¢ is convex with respect to g(x) = x9, so ¢,(x4) is convex.

THEOREM 2. Let h:[0,00) — R be a function which satisfies the assumptions of
Theorem 1. If h € C2(I), where I C (0,00) is compact interval, then there exists & € 1
such that the following equality holds

o (u,v) = éh”(é)z;zéqz;ll)h’(é) (Nq (/ab |v(x)qu>2

2 / ’ |u(x)|q|v(x)‘1dx>. 2.2)

Proof. Suppose that min(y(y)) = m and max(y/(y)) =M where

') — (g D)
= PR :

v(y)

Using ¢ instead of & in (1.1) we get
b 1 b
(N ([ weorrax)") = [T () iy

< # <N’1 (/h v(x)|qu)2 —Z/Qb|u(x)|q|v(x)‘1dx> 3
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Similarly, using ¢, instead of 4 in (1.1) we get
(v( [ wpas) ) = [ ol Gucopivopas

>%<N‘1 ( / v(x)|qu) 2 /ab|u(x)|q|v(x)qu>. 2.4)

By combining the above two inequalities and using the fact that

< yh'(y) = (g = DK (y) <M

q2y2q71

there exists & € I such that we get (2.2).

THEOREM 3. Let hy,hy : [0,00) — R be functions which satisfy the assumptions
of Theorem 1. If hy,hy € C*(I), where I C (0,) is compact interval and

N’1</ |qu> —z/\ )9 |v(x)|dx # 0,

then there exists an & € I such that we have

o, (u,v) _ ShY(8) — (g — DI (§)
Oy (u,v)  Sh5(8) = (g — ()’

provided the denominators are not equal to zero.

Proof. The proof is similar to the proof of such Theorems for example see in
[5]. O

Throughout the paper we frequently use the following family of convex functions
with respect to g(x) =x? (¢ > 1) on (0,00).

x5 £ 0.,
¢s(x) = —qlogx, s =0; (2.5)
gx?logx, s =q.

In the following we use T’y (u,v) in the place of o4, (u,v), when we put & = ¢, in
(2.1), that is

e (qNS(ff ()| 9dx) T — sN¥ [P ()[4 ]v(x) \qu) L s£0,q;
ey = | A (SIoB VUL O +89  e) 5 =0
PETT) (v g2 vl tog (N2 (ol 7a) )

+ 12 (1+ qlog u(x) ) v() 9dx). s=a.

(2.6)
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THEOREM 4. For Ty (u,v) we have:

n
a) for every n € N and p; € R the matrix A = [Fg,,piﬂJ, (um)] , is a positive
S ij=1
semi-definite matrix.
b) the function s — Ty (u,v) is exponentially convex.

c) if Ty, (u,v) is positive, then the function s — Ty (u,v) is log-convex.

Proof. a) Define the function f(x) = X}, ui;@p,;(x), where p;j = ,+p, Set

FO) =) = 3 iy, (aF).

i—=1
2
F' (x <Zu,x 2q ) >0.

This implies that f is convex with respect to g(x) = x4, and also f(0) = 0. So using
this f in the place of & in (1.1) we have

Then

2 uiujTg, (1,v) > 0. (2.7)
i,j=1

Hence the matrix, A = {Fq, pit; (u, v)] is positive semi-definite.
nxn
b) After some computatlon we have liII(l) Lo, (u,v) =T (u,v) and im Ty, (u,v) =
§— S—q

[y, (u,v), so Ty (u,v) is continuous. Then by (2.7) and Proposition 1 we conclude
that s +— Ty (u,v) is exponentially convex.

c) As Ty (u,v) is positive and exponentially convex, so by Corollary 1, T’y (u,v)
it is log-convex.

If we put by = @;, h, = @, in Theorem 3, then we have a mean defined as:

[q] - thys(u,v) s—r
M\',r(u,V) - (W) , s 7& , (28)
that is
M (u,v) = r(r—q) gN*(J2 [v(x)|%dx) s — sN? [? [u(x) ]~ 9|v(x)|9dx | (2.9)
s.r\Uy s(s—q) qN’(f:‘v(x”‘Idx)g _quf:|u(x)|r_q‘v(x)|qu )

where s,r £ q, s#r.
In limiting cases we have: when s goes to r

lq] _ A 2r—q
Mr,r (M,V) - eXp (B r(r_ q)) ) r 7é q, (210)
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where

b . b .
A=aV'( [ o)1) og(V( [ v([dix)?)
b b
N[l x4 [ ) og () DIy
and Y Y
B=gN'( / Iv(x)[9dx) T — N / ()" v (x)|9elx.

In (2.9) when r goes to ¢ we get for s # ¢

M (u,v) = M (u,v) =

( 4(s(s = N~ (@N*(f7 V() |%) T — N [ ()" v(x) i) ) B
(4 Iv(0)9dxlog(N(f7 [v(x) [9)7) = ([ v(x) kx+ g [ og(Ju(x) ) v(x) 7))

2.11)
When s goes to ¢ we have

1 /P 2
M) (u,v) = exp (5 (@ - 5)) : 2.12)

where
b b 1
P=aN(q [ 1v(x)dx(log(N( | v(x)f1ax) )2
b b
~ 2 [ toglu()lv()|“dx +g | (tog o) v 1),
and
b b .
0=aV'(g | vl“dxlog(N( [ v(x)[dx))
b b
~([ Wl +q [ Togluo)]|ax))
Now we prove monotonicity of means.

THEOREM 5. Let t,s,l,m € Ry suchthat t <1, s <m. Then

Mt[?s] (u,v) < Ml[qn]1(u7v).

Proof. The following inequality holds for convex function ¢ see in [11, p. 4].

@(x2) — @(x1) < (p(yz)—(p(yl), (2.13)
Xy — X1 2=y
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where x1 <yp, x2 <y2, X1 # X2, Y1 # 2.
Since by Theorem 4, I'y(u, v) is log-convex, we can putin (2.13) ¢ =logy, (u,v),
x1=s,xp=t,y1=1,y,=m. Wegetfor s#¢,l#m

logTy, (u,v) —logy, (u,v) logl“q,m(u v) —logTy, (u,v)
t—s m—1 ’

therefore we have .

rgo,(u,v))f's p (rw,v))w -
(F(Px (u7 V) h F(Pz (M, V) . ( . )

From (2.14) we get our result for t # 5, [ #m and for r =s, [ =m; t £, | = m;
t =s, | #m we can consider limiting cases.

3. Inequalities for Fractional Derivatives

DEFINITION 4. Let o > 0. Forany f € L(a,b) the Riemann-Liouville fractional
integral of f of order « is defined by

19 f(x) = ﬁ/ﬂx(x—t)“’lf(t)dt, x € [a,b]. G.1)

THEOREM 6. Let h: [0,00) — R be a function which satisfies the assumptions
of Theorem 1. If h € C*(I), where I C (0,%0) is compact interval, let v € Cla,b] has
Riemann-Liouville fractional integral of order o > Ll]. Then there exists & € I such that

0y SO OHE) ( apet
allavy) = =5 pga (rq( )(pa p+1) ff( v |qd)

2 / |I,f‘v(x)q|v(x)qu>. (3.2)
Proof. From Theorem 2, we have

" o / 2
) = S A (Nq ([ wwpsax) 2 [ u<x>|w<x>|qu> 6y

and v has Riemann-Liouville fractional integral of order c, so

u(x) =Igv(x) = %a)/ax(x—t)“_lv(t)dt,x € [a,b].

Here

Let
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Then

for a > é, X € |a,b]. Therefore, P(x) is increasing in [a,b], and

max (P(x)) = (b—a) 7 ;
xela] L(a)(pa—p+1)7

b

for o > é It follows that

x ’ (b—a)a_%
([ xwsrar)' < Fa)(po—p+ 1)}

so we can choose
(b—a)* ¥
10
I'(o)(pa—p+1)r
and by putting the values of u(x) and N in (3.3) we get oy, (I%v,v) as required in (3.2).

N =

THEOREM 7. Let hy,hy : [0,00) — R be functions which satisfy the assumptions
of Theorem 1. If hy,hy € C*(I), where I C (0,%) is compact interval, let v € Cla,b]
has Riemann-Liouville fractional integral of order o > é. Then there exists & € I such

that
o, (Igvv) — ER{(E) — (g— Dh(E)
2

(3.4)

oy, (Igv,v) — Eny (&) — (g — Diy(§)

provided that denominators are not equal to zero.

Proof. By Theorem 3 we have

o, (1w,v) _ ERY(E) — (g~ DIH(E)
Oy (,v) - ER5(8) = (g —1)h5(S)
and from the proof of Theorem 6, we can easily get (3.4) with required conditions.

If v has Riemann-Liouville fractional integral of order o, o > é, then (2.6) be-
comes

Lo, (Igv,v) =
7 . (b—a) @)D s [b |Iav(x)‘s7q|v(x)‘qu) s #0,q;
s(s—q) F"‘l(a)(p(x—erl)L;[l SJa ta P L sqs

(bajre™ N(a)(pa—p+1)7

L
2( plog(—b=a 1D
1 ( g(rw)(pa—pﬂ)%)

a
+ PUOUPa Pt DT [2(1 4 glog \Ig‘v(x)|)|v(x)\qu)7 s—q.

q wl 1
g (_qrq(a)(pafpﬂ)z’ log( (b—a)” 4 D4 )“'fab |I§v(x)\’q\v(x)|qu) ,s=0;
3.5)

where D = [ |v(x)|9dx.
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THEOREM 8. For Ty (IZv,v) defined above we have:

n
a)forevery n € N and p; € R the matrix A = [F(pp’_+pj (I%v, v)] , IS a positive
2 i,j=1
semi-definite matrix.
b) the function s — T (I¢v,v) is exponentially convex.
c) if Ty, (I¢v,v) is positive, then the function s — T (I¢v,v) is log-convex.

Proof. The proof is similar to the proof of Theorem 4.
If we put h; = @y, hp = @, in Theorem 7, then we have a mean defined as

1
ld] [ O, (I%v,v)\ &
Qi (I vv) = (%Tj‘}v,v) , SFET (3.6)
That is
Q1) =

1

s—r

r

(r(r—q) gr= (@) (pa—p+1)"7 (b—a)* 0@ )i s P |13‘v<x>-‘qv<x>|qu>
$(5=49) gra-r(a)(pa—p+1)"7 (b—a)" D@ D D7 —r 2 |1%v(x) [ 9[v(x) [9dx

3.7)
In limiting cases we have: when s goes to r,
Ay 2r—q
Q[‘I] 1% — — 3.8
r,r( a V7V) exp Bl r(r_ q) ) r 7é q, ( )

where
AL =T9"(a)(po—p+ 1) (b—a)" 9 ) pilogD
L — )@ Sypa-r =)D p
—qlog(I()(por—p-+ 1) (b=a) )T (@) (pa—p+ )7 (b—a) 4D
b b
= [ @Il 7 [ 1@l og 1) v dx

and
~, . b
By =T (@)(por—p+ 1)'F (b =)V DDF —r [ 100w .

In (3.7) when r goes to ¢ we get for s # ¢

QW (1%, v) = QU (1%v,v) =

(ss—a) (T @(po—p+1) T (b-a) = FDT s vy feax) | o
((togD—1)D—glog(T(@)(pa—p+1)7 (b—a) “* ) —g [PlogIev(x)|p()ax) |
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When s goes to ¢ we have

1/ P 2
QL (u,v) = exp (E (Q—ll—g)) (3.10)
where
D(lOgD)2 1 —(Ot—l)
P = T—Dlongog(F(a)(poc—p+l)P(b—a) ')
+ g(log(T(@)(po — p+ 1)7 (b—a)~*~1)))2
b o b o 2
~2 [ tog Iv(x)|[v(x) 1~ | (og iv(o)] Plv(e) v
and

01 = (logD —1)D —qglog (F(a)(p(x —-p+ I)F} (b— a)_(a_é))
—q [ ool
a
Now we prove the monotonicity.
THEOREM 9. Let t,s,l,m € Ry suchthat t <1, s <m. Then

ol (1%, v) < Ql7

1,m

(IZv,v).

Proof. The following inequality holds for convex function ¢ see in [11, p. 4].

Q) — @) _ ¢(2) —¢n)

< (3.11)
X2 — X1 Y2 =i

where x; < y1, X2 < y2, X1 # X2, y1 # y2. Since by Theorem 8, T'y(I%v,v) is log-
convex, we can putin (3.11): ¢ =logly (Ifv,v), x1 =5, x2 =t, y1 =1, y2 =m, we
getfor s#t,l#m

logTy, (I¢v,v) —logT g (IZv,v) o logTy,, (1%v,v) —logTy, (I¢v,v)

t—s = m—1 ’
therefore we have
Lo (IZv,v) = Loy, (I$v,v) o=
_rva v/ < _ymya o/ . (3.12)
F(Ps (Iztlx‘)? V) F(Pl ([g v, V)

From (3.12), we getourresultfor 7 #£s, [ Am andfort =s, l=m; t £s, | =m;
t =s, | #m we can consider limiting cases. []
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Next, we define Caputo fractional derivative, for details see [6, p. 449]. The
Caputo fractional derivative is defined as: Let o > 0, n =[], f € AC"([a,b]). The
Caputo fractional derivative is given by

w1 f)
DY, (t)_l"(n—oc)/(t—s)o‘*"*l ds, (3.13)

for all x € [a,b]. The above function exists almost everywhere for x € [a, b].
THEOREM 10. Let h:[0,00) — R be a function with assumptions of Theorem 1.

If h € C3(I), where I C (0,) is compact interval and let v € AC"[a,b], has Caputo
fractional derivative of order o, 0 < 0. — [0] < % Then there exists & € I such that

Sh"(8) = (g = DH'(S)
2q2§2q71

(b_a)tI([a]—OH-%) bv(") Vd 2
) (F"([a]—a+1)(p([a]—OC)+1)Z ( Al )

b
—2[ D& y(x)|1p™ (x)|’1dx> . (3.14)

oy, (D% v, v") = X

Proof. From Theorem 2 we have

() = S1(E) =g = DI'E) (Nq ( /ab |v(x)qu>2

2q2€2q71

—2/:7u(x)qv()c)|qd)c>7 Eel, (315

and v € AC"[a, b], has Caputo fractional derivative of order o, so

ule) = D) = s [ =0 0
e (e i<
K(x,t):{o(" o) Ceteh
Let
o) = X . > (x—a)n_a_ﬁ -
o </“ e ’t»pdt) T(a)(p(n— ) —p+1)7 S
Then . (o] — o) + 1)$(x—a)(n_a_$_l) o
eh= PYCIEESY >0,
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for 0 < o —[o] < % and x € [a,b]. Q(x) is increasing in [a,b]. Therefore,

(b_a)[a]—a-&-%
max (Q(x)) = T
xelab) (e —a+1)(p([o] —a) +1)7

for 0 < o —[a] < . Thatis

</xK()C,t)Pdt> » < (b—a)[a]_a*‘; )
a r([a]_a—i_l)(p([a}_a)—i-l)ﬁ

for 0 < o — [0 < % Therefore, here we can take

(b_a)[a]ftxﬁ*%
17
I(le] —a+1)(p(la] —a) +1)7
for0<a—|[o] < }—) By putting v = v") and the values of u(x) and N in (3.15) we

N =

get oy, (D*"‘av,v(")) as required in (3.14).

THEOREM 11. Let hy,hy : [0,00) — R be the function with assumptions of The-
orem 1. If hy,hy € C*(I), where I C (0,00) is compact interval, let v € AC"[a,b] has
Caputo fractional derivative of order o, 0 < ot — [0] < 11—7 Then there exists & € I such

that
og, (D%vv™) _ ER{(E) — (g — DA(&)

!/
1
0y, (D, vW)  ERY(E) — (g —1)h5(E)’
provided that denominators are not equal to zero.

(3.16)

Proof. By Theorem 3 we have

O, (u,v) _ éh/ll(é) —(g— l)hll(é)
O, (u,v)  ERY(E) — (g — 1)hy(E)’
and from the proof of Theorem 10, we get (3.16) with required condition.
If v € AC"[a,b] has Caputo fractional derivative of order a, a — [a] < %, then
(2.6) becomes

F‘PA (D*aavv V(n)) =

q2 q(bia)(vq)([a‘,nﬁr%)ET; [P Do s—q|,(n) aq ) 0.a:
x(xiq)(F‘"/([06]7064»1)([)([0(]7(1)4»1)% s.[al *av(x)‘ ‘V (x)l x|, s#0,q;

q (7ql“"([ot]706+1)(p([(x]706)+1)1% o (b—a) b i
(b—a)(@-p) T (o] —o+1) (p([e]—er)+1)7
+ 21D v(x) =4 (x)lqug : s=0. (3.7

1 1
2 (g1 (b—a) " P ET
! ( Og<r([a]fa+1><p<gaw>+1>%)

(bfa)q('“‘]ia*ﬁ) b 1 | Do‘ (n) P ) _
I“I([a]—aJrl)(p([a]—a)Jrl)% fa( +q Og‘ *av(x)‘)‘v (x)‘ dx s 8 q,

where E = [ |v(") (x)|9dx.
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THEOREM 12. For Ty (D%v,v") defined above we have:

n
a) for every n € N and p; € R the matrix A = l"(p,,'_+pj (D%, v(") ,isa
e i,j=1
positive semi-definite matrix.

b) the function s +— T (D%v,v") is exponentially convex.
¢)if Ty, (D%v,v(M) is positive, then the function s — T (D%v,v\")) is log-convex.

Proof. For proof see the proof of Theorem 4.
If we put h; = @5, ho = @, in Theorem 11, then we have a mean defined as:

1
)Y\
4t )y [ Qe (D% V™)
(D () = : 3.18
r(DSv, ™) (%,(Df‘av,v(")) sFEr (3.18)
That is

YL?;(DS;W v(”>) =

L L
(’(r—q> ar (o —ot D(p(od=0)+1) T (b=a) 1« T — 1, ) 6
$6=0) gror(jo)-a+1)(p(le]-0)+) T (p-a) Vg )T
for s,r # q, s # r. where
b b
Li=s [ D& )9y = r [ 1DGu(0) v @) 9.
In limiting cases we have, when s goes to r
A 2r —
YL‘IJ D% (n)y _ 2 q 2
k] ( *aV,V ) eXp B2 r(r_q) k) r?'é% (3 0)

where

Ay =T (je] — e+ 1)(pllo] — o) +1) 7 (b—a)" A= D Ed 1og
—qlog(T (o] — o+ D)(p([o — o) + 1) 7 (b—a) 17 7)x
X197 (o] — ot D)(plla] — @) +1) 7 (b —a) DD

/ D)) (x )l"dx—r/ Dy ()| log | D% (x)|[v") (x)| 7dx
and
By =ql%" " ([a] — o+ 1)(p([o] — )+1) (b a)(r a)(lel-a+3) g

—r/ D% v (x) "~y (x)[9dlx.
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In (3.19) when r goes to ¢ we get

Y (D% = Yl (D% 7)) =

1

a(r (o] —a Vel ~0) + )7 p—a) VT )
: : ,  (3.21)
(s ) ((logE—1) E—glog (T [o]—a-+1)(p([e] o) +1)7 (b—a) 1€ 7**2)) - )
where
L= s [ ISPl =g [ Tog D) W e
When s goes to g we have
la (et (n)y (1 (ﬁ_%))
Y, (D% v, e , 3.22
0.q(Digvi V") = exp 0, 4 (3.22)
where
2 1 1
p, — EU02E) — ElogElog(T([a] — a+ 1) (p([e] — &t) + 1) 7 (b—a) " 1#1 =0+
+q(log(T([0] — ez + 1)(p([or] >+1>"7<b—a>*““]*°‘+%>>>2
2 [ log D9 9ax g [ log D] o),
and

0> = (logE — 1)E — glog(T([e] — o+ 1) (p([e] — o) + 1)7 (b —a) ~1¥0F7))

b
~q [ og|D%y(0)] ).

Now we prove monotonicity.
THEOREM 13. Let t,s,l,m € R" such that t <I,s <m. Then
T}‘{] (D% v, vM) < T[q] ) (D% v, v,
Proof. The following inequality holds for convex function ¢ see in [11, p. 4],

Q) — @) _ 9(2) — ¢
X2 — X1 A Y2 =i

(3.23)

where x| < y1, x2 <y2, X1 # X2, y1 # y2. Since by Theorem 12, T'y(D%v,v")) is log-
convex, we can putin (3.23): ¢ =logTy (D%y, v, xi =5, xo =1, y1 =1, y2=m
We getfor s #1, l #m

log Ty, (D%, v") —logTg, (D%v,v) _ logTy, (D%, V) —log Ty, (DZv,v(")
I—=s N m—1 ’
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therefore we have

& -
(F‘Pt (Dfava V(n)) ) o < (F‘Pm (Dfav’ V(n)) ) l (3 24)

F‘Ps (D*O‘av, V(n)) 1—‘<PI (Dgavﬂ V(n))

From (3.24) we get our result for t £ 5, [ £#m and for r =s, [ =m; t £, | = m;
t =s, | #m we can consider limiting cases.
We continue with the following lemma that is given in [2].

LEMMA 2. Let v>y20, n=[v]+1, m=[y]+1 and f € AC"([a,b]). Suppose
that one of the following conditions hold:
(a) v,y¢Ng and fi(a) =0 fori=m,m+1,...,n—1.
(b) veN,y¢ Ny and fi(a)=0 fori=m,m+1,....n—2.
(c) véN,yeNg and fi(a) =0 fori=m—1,....n—1.
(d) veN,ye Ny and fi(a)=0fori=m—1,...n—2.
Then

Y _ 1 [ VY-l pv
D, (t)_il“(v—y) /(t s)V VDY f(s)ds. (3.25)

a

forall a<t<b.

By using Lemma 2 similar results to previous ones can be proved. They can be
stated as follows:

THEOREM 14. Let h, q and p be defined as in Theorem 1, and 0 <y <v — é.
If one of the conditions in Lemma 2 is satisfied, then

qr(v =9 (p(v—7) —p+ 1)
a (b—a)q(v_y_%)

(b—a)' 777 b ;)
h - |DY,v(x)|%dx , (3.26)
(F(V—Y)(p(V—Y)—erl)" (/" )

If the function h(xé) is concave, then the reverse of the inequality (3.26) holds.

THEOREM 15. Let h: [0,00) — R be the function with assumptions of Theorem
L. If h € C*(I), where 1 C (0,c0) is compact interval, also let 0 < y < v — Llj and one
of the conditions in Lemma 2 is satisfied, then there exists & € I such that

EN'(8) —(a— DI (§) ( (b—a)™ 7D
2¢%&2q-1 (v —9)(p(v—7y)—p+1)

( [ \Drav<x>|qu) " JRERE qu> .

ah(DZavaxav) = q -
?



46 G. FARID AND J. PECARIC

THEOREM 16. Let hy,h; : [0,00) — R be functions which satisfy the assumptions
of Theorem 1. If hy,hy € C*(I), where I C (0,0) is compact interval, let 0 <y < v — é
and if one of the conditions in Lemma 2 is satisfied, then there exists & € I such that

o, (DLav, DYyv) _ ERY(E) — (¢ — 1hi(E)
o, (DY, DY) EM5(E) — (g —1)M(E)

provided that denominators are not equal to zero.

In the next we give results using an improved composition rule for Canavati frac-
tional derivatives (see, [3]). The subspace Cy, ([a,b]) of C"([a,b]) defined as

Y ([a,b]) = {f € C"([a,b]) : I}, ¥ "} € C'([xo, b)), V=V —n,n=[v].

For f € Cy ([a,b]) the generalized Canavati v-fractional derivative of f over [xo,b] is
given by

DY f=DI7 f".

An improved composition rule for Canavati fractional derivatives is given in the
following result [3].

LEMMA 3. Let v >7v>0,n=[v],m=[y]. Let f € C)([a,b]) be such that
fi(a)=0 fori=m,m+1,...n—1. Then

(i)
[ €Ci(la,D])

(ii)
DL = gy [ 6= Dinwa G2)

for every x € [a,b].

THEOREM 17. Let h, q and p be defined as in Theorem 1, and 0 <y < v — é
Let v € C)(|a,b]) be such that f'(a) =0 for i=m,m+1,...n— 1. Then

T

[ 0ol = (D) D s < Y=Y D) Pt )
a ¢ ¢ (b— ) a(v—r=3)

( (b—a) " , )
h : |D |qu , (3.28)
r(v—7(pv-7) p+w

1
If the function h(x4) is concave, then the reverse of the inequality (3.28) holds.
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Proof. By applying Lemma 3 we have

1 * v—y— 4
u(x)=(DZV)(x)=m/a (x—=0)" 77" (D) (t)dr, x € [a,b],

Here
K(x,t) = { ﬁ(X—I)V”H, a<t<x;
’ x<t<b.
Let

* l’ _ V—'y_l
R(x) ( / (K(X,f))pdt>’ _ w0
) (v =7)(p(v—7)—p+1)?

Then

(v=y=Ha—a 7"

T(v—7)(p(v=7)—p+1)7

R'(x)

20,

for0<y<v— }—), X € [a,b]. R(x) is hence increasing in [a,b]. Therefore,

N
max (R(x)) = (b-a)

el (v =N(p(v=7)=p+1)?

b

for 0 < y< v—i.Thatis

)

x 7 (b—a)’ 7
([ xeer) - 7B —a) - p+ 1)

for0<y< v—é,sowecantakehere

47

(3.29)

(3.30)
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(b—a)’ ¥
Tv=1(pv -7 -p+1)7

N:

'ul»—

for0<y<v-— %1 Therefore by putting v = D)v and the values of u(x) and N in
(1.1) we get oy, (D}v,DYv) as required in (3.28).

THEOREM 18. Let h:[0,00) — R be the function with assumptions of Theorem 1.
If h€ C3(I), where I C (0,00) is compact interval, alsolet 0 <y <v—1, ve CY([a,b])

be such that fi(a) =0 fori=m,m+1,...,n— 1.
Then there exists & € I such that

v, oy = SH'(6) —(a—1'(S) (b—a)?1%)
oy (Dyv,D)v) = 2q2E%-1 (F‘I(V v —7)— p+1)q,

(/ IDYv(x |qu) —2/ DIy (x)[41DY v )|qu>. 3.31)

Proof. From Theorem 2 we have

" (o / . 2 .
o) = S E) (zvq(/abw)qu) -2 /abu<x>mv<x>qu>7 332

By using Lemma 3 we have

1 ! v—y—1lpv
u(x) = Dly(x) = m/ﬂ (x—0)""""'DYv(t)dt, x € [a,b).

Here we have

_ 1 (v p\vr-1 .
K(x,t)={5(vy)(x ) ’a@jz,
’ x<t<b,

and from the proof of Theorem 17, we easily get (3.31).

THEOREM 19. Let hy,hy : [0,00) — R be functions which satisfy the assumptions
of Theorem 1. If hy,hy € C*(I), where 1 C (0,0) is compact interval, let 0 <y < v — é,
v € CY(|a,b]) be such that fi(a) =0 for i=m,m+1,...n— 1. Then there exists £ € I
such that
0, (DIv. D) _ ERIE) — (g — DI(E)
oy, (Div,DYv)  ER5(E) — (q—1)h(E)

provided that denominators are not equal to zero.

(3.33)
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Proof. By Theorem 3, we have
oy (u,v) — ERY(E) — (g —Dhi(E)

1
oy (u,v)  §h5(8) = (g —1)(E)’

and by using Lemma 3 and the proof of Theorem 10, we can easily get (3.33) with
required condition.

Iffor 0 <y<v—1,veCy([a,b]) besuch that f'(a) =0 for i=m,m+1,...n—
1. Then (2.6) becomes

Lo, (Dhu,DYv) =

vy s ‘
7 ( qlo—a) TV TR /;|ng(x)|x*q|pgv(x)|qu>7s;ﬁ@q;

D\ s v v -p1) 7 O
—qT(v=a)(plv=y)=p+)? | o (b=a) T IFT
(b-a) 1) D(v=p(p(v=—1)-p+1)?
+ 7 1Dl ()1 DY () fdx ) s=0. (3349

vyl 1
qz(F log(— (b= L1
M- (p(v—7)-pt1)?

o q(v—y— 7) N
L T [ qlog DB DD ) 5 =g

where F = [?|DYv(x)|9dx.

THEOREM 20. For Ty (D}v,D}v) defined above we have:

n
a) for every n € N and p; € R the matrix A = [l"q,p#pj (DZV,DZV)] ,is a
2 i,j=1
positive semi-definite matrix.
b) the function s +— Tg, (D}, DYv) is exponentially convex.
¢)if Ty, (Div,DYv) is positive, then the function s+ T (Div,D}v) is log-convex.

Proof. For proof see the proof of Theorem 4.
If we put by = ¢@;, ho = ¢, in Theorem 19, then we have a mean defined as:

1

Ao (DXv,DVv) \ *
=) (Dpy, D) = ( ZeDenlav) ) (335)
’ O, (Dgv,DYv)
that is
= (DIv, DY) =

1

=S s— eyl s S—r
(r(r—q) =P =7 =p+1) T (b= ﬂFq—Lz) (336)

S8 grer (v =) (p(v = 1) = p+ 1) T (=) T IF T
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where
b ¢
Ly=s [ 1D *|Dlv(o)|dx,

b
My =r [ DIl D () dx.
a

In limiting cases we have, for r # ¢

4 (7 1y (Aa 2r—q )
2 (Dlv,D,v) =ex ,
( V)= exp By r(r—q)

for s #q

ZL?(]] (DIv,D)v) = E([ﬂ (DIv,D)v) =

a (M (=D =7=p+ )T b= T IFI L)
s(s=a) ((togF = 1)F = qlog(T(v=)(p(v=7) = p+ )7 (b=a) 7" ) =) |
s#q. (3.37)
and finally
1 /P 2
oo =ew (3 (5 -2)). (3.38)
where

=T (v=p)(p(v—7)—p+1)7 (b~ a)"*@‘V*Y*%)FélogF
—qlog(T(v—7)(p(v—7) - p+1> (b—a) VI (v - y)x
< (p(v=7)=p+1)"7 (=) 7D

~ [ ik ax—r [ DI o D IDI e,

By =q" "(v=1)(p(v—7) = p+ )7 (b—a) T
b
—r [ 1Dyl D () .

and
b
Ly=s [ IDI @) 1|Div)dx,
a

b
Mi=g [ log|DIv(x)] D v(v)[“dx.
a
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and

F(logF)?
p, — FllogF)

~ FlogFlog(T(v —p)(p(v —7) — p+ 1)F (b—a) V777
+q(log(T(v —7)(p(v—7) — p+ 1) (b—a) V7~ 0)))2

b b
~2 [ log | DIv(| D) g | (og IDv(0)| P DEv(x) dx,
a a

03 = (logF — 1)F —qlog(T(v = ) (p(v—7) — p+ 1) (b—a) "7~))

b
—q/ log\DZv(x)HDXv(xﬂqu.
a
Now we prove monotonicity.
THEOREM 21. Let t,s,l,m € RT such that t <1, s <m. Then
2[‘1] DYv.DYv) < 2[‘1] D'v.DY
t,.\'( aV7 av) ~ l,m( uv’ uv)'

Proof. The following inequality holds for convex function ¢ seein [11, p. 4],

Q) — @) _ ¢(2) — ¢
X2 — X1 A Y2 =i

(3.39)

where x; < yi, x2 < y2, X1 X2, y1 # y2. Since by Theorem 20, F_y(DZV, D}v) is log-
convex, we can putin (3.39): ¢ = logl"(ps(DZv,D;’v), xX1=s,x=t,y1=1,y, =m.
We getfor s #1, 1 #m

logTg, (DX, D)v) —logTy, (Div,D)v) _ logTy, (Dlv,D)v) —logTy, (Div,D}v)

)

r—s r—s
therefore we have
14 = 14 =
Ty, (Div,DYv) \ ™ Ty, (D} "
(Pr( yv7 av) < (Pm(y Vv, V) ) (340)
Ly, (Dav,D}v) Ly (Dav,DYv)

From (3.40) we get our result for t £ 5, [ #m and for r =s, [ =m; t £, | = m;
t =s, | #m we can consider limiting cases.
In the following result there is given another approach to identity in Lemma 3(ii),

(see, [1]).

THEOREM 22. Let v >y >0 and let f € AC"[a,b] be such that D} f € L[a,b]
and D}f € L(a,b).
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(i) Ifv—y €N and f is such that D!~ f(0)=0 for k=1,...,[v]+1 and D} *£(0) =
0 fork=1,...,[y]+1, then

1
I(v—7)

DYf(s) = /as(s—t)"’y’lDZf(t)dt, s€ab]. (3.41)

(ii) If v—y=1€N and f is such that D)X f(0) =0 for k=1,...,1, then (3.41)
holds.

In the following corollary [1], there summarize conditions for identity (3.41).

COROLLARY 2. Let v>y >0, n=[v|+1, m=[y]+ 1. ldentity (3.41) is valid
if one of the following conditions holds:

(i) fel](Lia,Db)).
(ii) I""Vf € AC"[a,b] and D!~ *f(0) =0 for k=1,...n.

(iii) DY7*f € Cla,b] for k=1,...,n, DY~ f € ACla,b] and D} ~*f(0) = 0 for k =
1,...n.

(iv) f € AC"a,b], D'f € L(a,b), D}f € L(a,b), v—v¢& N, D/7Ff(0) =0 for
k=1,...,nand DL *f(0) =0 fork=1,...,m

(v) f€AC"a,b], D' f € L(a,b), DLf € L(a,b), v—y=1€N, D/"*£(0) =0 for

k=1,...,1.
(vi) f€AC"[a,b], D\ f € L(a,b), DLf € L(a,b) and f(0)=f'(0)=---= f*=2)(0) =
0.

(vii) f € AC"[a,b], DVf € L(a,b), Dif € L(a,b), v ¢ N and D}~'f is bounded in
a neighborhood of t =0

By using Theorem 22 and above corollary previous results can be proved. They
can be stated as follows:

THEOREM 23. Let h, q and p be defined as in Theorem 1, and 0 <y <v — é
If one of the conditions in Corollary 2 is satisfied, then

g (v =) (p(v—y)—p+1)?
b ) q(v— Y**)

( (b—a)' "~ , ﬁ
h : |D x)|9dx) "), (3.42)
T(v—7)(p(v—7) p+1ﬁ

b
/a\DZu(x)ll‘qh'(IDZu(x)l)IDZV(x)qu <

If the function h(xflf) is concave, then the reverse of the inequality (3.42) holds.
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THEOREM 24. Let h: [0,00) — R be the function with assumptions of Theorem

L. If h € C2(I), where I C (0,00) is compact interval, also let 0 < y < v — Ll] and one
of the conditions in Corollary 2 is satisfied, then there exists & € I such that

oy

(Dav, Dyjv) =

éh”(é)—(q—l)h’(é)( (b—a)?V 10
2q282071 ra(v—y)(p(v—7)—p+1)

( / ’ |D;v(x)|qu> ", /  DIv()[4(DYv(x) qu> .

7 -
P

THEOREM 25. Let hy,h; : [0,00) — R be the function with assumptions of Theo-

rem 1. If hy,hy € C*(I), where 1 C (0,) is compact interval, let 0 <y < v — Ll] and
one of the conditions in Corollary 2 is satisfied, then there exists & € I such that

(Xhl(DZ‘@DZV) éhll/(g)_(q_l)h

i
oy, (Dhv,DYv) — ER5(E) — (q— 1H5(E)

provided that denominators are not equal to zero.
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