
Fractional
Differential

Calculus

Volume 2, Number 1 (2012), 87–98 doi:10.7153/fdc-02-06

APPLICATION OF THE MIXED MONOTONE OPERATOR

METHOD TO FRACTIONAL BOUNDARY VALUE PROBLEMS

JOHN R. GRAEF, LINGJU KONG AND QINGKAI KONG

Abstract. The authors use the mixed monotone operator method to study the fractional boundary
value problem

−Dν
0+ u (t) = λ f (t, u ), t ∈ (0,1),

u ( j)(0) = 0, j = 0, . . . ,n−2, [Dα
0+ u (t)]t=1 = 0.

Here, m � 1 and n � 3 are integers, n−1 < ν � n , 1 � α � n−2 , u (t) = (u1(t), . . . ,um(t))T ,
λ = (λ1, . . . ,λm) , λ f (t, u )= (λ1 f1(t, u ), . . . ,λm fm(t, u ))T , and Dν

0+ is the Riemann-Liouville
fractional derivative of order ν . Existence, uniqueness, and dependence of positive solutions on
the parameter λ are discussed. An application to a special problem is also presented.

1. Introduction

Let m � 1 and n � 3 be any given integers, and λ1, . . . ,λm be positive param-
eters. Assume that, for i = 1, . . . ,m , fi : (0,1)× (0,∞)m → [0,∞) is continuous, and
fi(t,x1, . . . ,xm) may be singular at t = 0, 1 and xi = 0. In this paper, we are concerned
with positive solutions of the ν -th order fractional boundary value problem (BVP) con-
sisting of the system of fractional differential equations

−Dν
0+ u(t) = λ f (t, u), t ∈ (0,1), (1.1)

and the boundary condition

u ( j)(0) = 0, j = 0, . . . ,n−2, [Dα
0+ u(t)]t=1 = 0, (1.2)

where n−1 < ν � n , 1 � α � n−2,

u(t) = (u1(t), . . . ,um(t))T , λ = (λ1, . . . ,λm),

λ f (t, u) = (λ1 f1(t, u), . . . ,λm fm(t, u))T ,

and Dν
0+ is the Riemann-Liouville fractional derivative of order ν , i.e.,

Dν
0+y(t) =

1
Γ(k−ν)

dk

dtk

∫ t

0

y(s)
(t − s)ν+1−k ds, k = [ν]+1.
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We adopt the convention that Dν
0+ u(t) is the Riemann-Liouville fractional derivative

of order ν defined component-wise on u(t) .
By a positive solution of BVP (1.1), (1.2), we mean a function u : [0,1]m → [0,∞)

such that u(t) satisfies (1.1) and (1.2) and ui(t) > 0 for t ∈ (0,1] and i = 1, . . . ,m .
The subject of fractional calculus has gained considerable popularity and impor-

tance in recent years due mainly to its demonstrated applications in numerous seem-
ingly diverse and widespread fields of science and engineering. The monographs [10,
14] are excellent sources for the theory and applications of fractional calculus. Among
all the topics, the existence of positive solutions of BVPs of fractional differential equa-
tions has been extensively studied by many researchers in recent years; see, for exam-
ple, [1, 2, 3, 5, 6] and the references therein. In particular, Goodrich [6] studied the
scalar BVP consisting of the equation

−Dν
0+u(t) = f (t,u), t ∈ (0,1),

and the boundary condition

u( j)(0) = 0, j = 0, . . . ,n−2, [Dα
0+u(t)]t=1 = 0,

where f : [0,1]× [0,∞) → [0,∞) is continuous. In [6], the author first obtained some
properties of the Green’s function associated with the problem. Then, applying these
properties and the well known Krasnosel’skii fixed point theorem in cones, he derived
sufficient conditions for the existence of positive solutions of the problem. The unique-
ness of positive solutions is not studied in [6]. To the best of our knowledge, most
existing works on fractional BVPs do not even consider the question of uniqueness of
positive solutions.

In this paper, we not only investigate the existence and uniqueness of positive
solutions of BVP (1.1), (1.2), but also discuss the dependence of positive solutions on
the parameter λ . Moreover, as a simple application of our theory, we present some
uniqueness and dependence results for the BVP consisting of the system of fractional
differential equations

−Dβ
0+ui(t) = λi pi(t)

(
m

∑
k=1

aiku
bik
k +

m

∑
k=1

ciku
−dik
k

)
, t ∈ (0,1), i = 1, . . . ,m, (1.3)

and the boundary condition

u( j)
i (0) = 0, [Dα

0+ui(t)]t=1 = 0, i = 1, . . . ,m, j = 0, . . . ,n−2, (1.4)

where pi : (0,1)→ [0,∞) is continuous and integrable, aik , bik , dik � 0, and cik > 0, i ,
k = 1, . . . ,m . In our proof, part of the analysis relies on some results from mixed mono-
tone operator theory. This technique was first introduced by Guo and Lakshmikantham
[9] in 1987. Since then, many authors have investigated such operators and related ap-
plications to a variety of problems; see, for example, [4, 7, 11, 8, 12, 13, 15, 16, 17, 18]
and the references therein.

The rest of this paper is organized as follows. In Section 2, we present our main
results, and the proofs of the main results together with several technical lemmas are
given in Section 3.
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2. Main results

Throughout this paper we let 0 = (0, . . . ,0) and ∞ = (∞, . . . ,∞) . The following
notations will be used for any vectors x = (x1, . . . ,xm) and y = (y1, . . . ,ym) :

� x → y if every component of x approaches the corresponding one of y .

� x → y+ ( y− ) if every component of x approaches the corresponding one of y
from the right (left);

� x → ∞ if every component of x approaches ∞ ;

� x > y ( x < y ) if every component of x is strictly larger (smaller) than the
corresponding one of y ;

We need the following assumptions.

(H1) For i = 1, . . . ,m and any x ∈ (0,∞)m , fi(t, x) can be written as fi(t, x) =
wi(t)(gi(x)+hi(x)) , where wi : (0,1) → [0,∞) is continuous and integrable on
(0,1) , gi : [0,∞)m → [0,∞) is continuous and nondecreasing in each of its argu-
ments, and hi : (0,∞)m → (0,∞) is continuous and nonincreasing in each of its
arguments;

(H2) for i = 1, . . . ,m , there exists δ ∈ (0,1) such that

gi(κ x) � κδ gi(x) (2.1)

and
hi(κ−1 x) � κδ hi(x) (2.2)

for κ > 0 and x > 0 ;

(H3)

0 <

∫ 1

0
sδ (1−ν)(1− s)ν−α−1wi(s)ds < ∞. (2.3)

We let the Banach space X := (C[0,1])m be equipped with the norm

||u || = max{max
t∈[0,1]

|ui(t)| : i = 1, . . . ,m}, u = (u1, . . . ,um) ∈ X .

We are now in a position to state the main results in this paper.

THEOREM 2.1. Assume that (H1)–(H3) hold. Then, for any λ = (λ1, . . . ,λm) >
0 , BVP (1.1), (1.2) has a unique positive solution u λ (t) = (uλ ,1(t), . . . ,uλ ,m(t)) .
Furthermore, if 0 < δ < 1/2 , then such a solution u λ (t) satisfies the following prop-
erties

(a) u λ (t) is strictly increasing in λ , i.e., λ > μ > 0 =⇒ u λ (t) > u μ (t) on
(0,1];
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(b) limμ →0+ ||u μ || = 0 and limλ →∞ ||u λ || = ∞;

(c) u λ (t) is continuous in λ , i.e., λ → μ > 0 =⇒ ||u λ − u μ || → 0 .

Applying Theorem 2.1 to BVP (1.3), (1.4), we have the following result.

COROLLARY 2.1. Assume that the following conditions hold:

(A1) 0 < ζ < 1 , where ζ = max{bik, dik : i,k = 1, . . . ,m} ;

(A2) 0 <
∫ 1
0 sζ (1−ν)(1− s)ν−α−1pi(s)ds < ∞ , i = 1, . . . ,m.

Then, for any λ = (λ1, . . . ,λm) > 0 , BVP (1.3), (1.4) has a unique positive solution
u λ (t) = (uλ ,1(t), . . . ,uλ ,m(t)) . Furthermore, if 0 < ζ < 1/2 , then such a solution

u λ (t) satisfies the three properties stated in Theorem 2.1.

3. Proofs of the main results

The following lemma follows from [6, Theorem 3.1].

LEMMA 3.1. Let l ∈ L(0,1) . Then y(t) is a solution of the BVP consisting of the
equation

−Dν
0+y(t) = l(t), t ∈ (0,1),

and the BC

y( j)(0) = 0, j = 0, . . . ,n−2, [Dα
0+y(t)]t=1 = 0,

if and only if

u(t) =
∫ 1

0
G(t,s)l(s)ds,

where

G(t,s) =
1

Γ(ν)

{
tν−1(1− s)ν−α−1− (t− s)ν−1, 0 � s � t � 1,

tν−1(1− s)ν−α−1, 0 � t � s � 1.
(3.1)

Lemma 3.2 below provides some useful bounds on G(t,s) .

LEMMA 3.2. The function G(t,s) defined by (3.1) satisfies

1
Γ(ν)

tν−1(1− s)ν−α−1 (1− (1− s)α) � G(t,s) � 1
Γ(ν)

tν−1(1− s)ν−α−1 (3.2)

for t,s ∈ [0,1] .
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Proof. For 0 � t � s � 1, (3.1) obviously implies (3.2). For 0 < s � t � 1, note
from (3.1) that

G(t,s)
tν−1 =

1
Γ(ν)

(
(1− s)ν−α−1−

(
1− s

t

)ν−1
)

.

Then, G(t,s)/tν−1 is decreasing in t for any 0 < s � t � 1, and consequently,

G(t,s)
tν−1 � G(s,s)

sν−1 =
1

Γ(ν)
(1− s)ν−α−1

and
G(t,s)
tν−1 � G(1,s) =

1
Γ(ν)

(1− s)ν−α−1 (1− (1− s)α)

for any 0 < s � t � 1. Thus, we see that (3.2) also holds for 0 � s � t � 1. This
completes the proof of the lemma. �

To prove our theorem, we also need some results from monotone operator theory.
The following definition and lemma are well known. For instance, Definition 3.1 can
be found in [8, 9, 12, 13, 16, 17, 18] and Lemma 3.3 is a special case of [13, Theorem
2.1]; see also [18, Corollary 4.1].

For any M > 1, define

PM =
{
u = (u1, . . . ,um) ∈ X : M−1tν−1 � ui(t) � Mtν−1

for t ∈ [0,1] and i = 1, . . . ,m
}
.(3.3)

DEFINITION 3.1. Assume that T : PM × PM → PM . Then, T is called mixed
monotone if T (x,y) is nondecreasing in x and nonincreasing in y , i.e., for x1, x2, y1, y2
∈ PM , we have

x1 � x2, y1 � y2 =⇒ T (x1, y1) � T (x2, y2).

Moreover, an element u ∈ PM is said to be a fixed point of T if T (u , u) = u .

LEMMA 3.3. Assume that T : PM ×PM → PM is a mixed monotone operator and
there exists δ ∈ (0,1) such that

T (κ u ,κ−1 v) � κδ T (u , v) for u , v ∈ PM and κ ∈ (0,1).

Then T has a unique fixed point in PM .

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We will prove the theorem in three steps.

Step 1. Let PM be defined by (3.3). In this step, we show that BVP (1.1), (1.2) has
a unique solution in PM for any λ = (λ1, . . . ,λm) > 0 if M is large enough (i.e., M
satisfies (3.9) below).
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For i = 1, . . . ,m , by first letting x = (x, . . . ,x) and κ = 1/x , x > 1, and then letting
x = (1, . . . ,1) , respectively, in (2.1), we obtain

gi(x, . . . ,x) � xδ gi(1, . . . ,1), x > 1, (3.4)

and
gi(κ , . . . ,κ) � κδ gi(1, . . . ,1), κ ∈ (0,1). (3.5)

Similarly, from (2.2) with x = (1, . . . ,1) and x = (x1, . . . ,xm) = κ(y1, . . . ,ym) , respec-
tively, we have

hi(κ−1, . . . ,κ−1) � κδ hi(1, . . . ,1), κ ∈ (0,1), (3.6)

and
hi(κy1, . . . ,κym) � κ−δ hi(y1, . . . ,ym), κ ∈ (0,1), yi > 0 . (3.7)

Choosing y j = 1, j = 1, . . . ,m , in (3.7) yields

hi(κ , . . . ,κ) � κ−δ hi(1, . . . ,1), κ ∈ (0,1). (3.8)

For any fixed λ = (λ1, . . . ,λm) > 0 , choose M = M(λ ) large enough so that

M > max

{
1,

[
λi

Γ(ν)

∫ 1

0
(1− s)ν−α−1wi(s)[gi(1, . . . ,1)+ sδ (1−ν)h(1, . . . ,1)]ds

]1/(1−δ )

,[
λi

Γ(ν)

∫ 1

0
(1− s)ν−α−1(1− (1− s)α)wi(s)

×[sδ (ν−1)gi(1, . . . ,1)+hi(1, . . . ,1)]ds

]−1/(1−δ )

, i = 1, . . . ,m

}
. (3.9)

Let PM be defined by (3.3) with the above M . For u = (u1, . . . ,um) , v = (v1, . . . ,vm)∈
PM , define an operator Tλ : PM ×PM → X by

Tλ (u , v)(t) = (Tλ ,1(u , v)(t), . . . ,Tλ ,m(u , v)(t)),

where

Tλ ,i(u , v)(t) = λi

∫ 1

0
G(t,s)wi(s)[gi(u(s))+hi(v(s))]ds, i = 1, . . . ,m. (3.10)

We will now show that Tλ maps PM ×PM into PM . Let u = (u1, . . . ,um) , v =
(v1, . . . ,vm) ∈ PM . For any i ∈ {1, . . . ,m} and s ∈ (0,1] , (3.4) implies

gi(u(s)) = gi(u1(s), . . . ,un(s)) � gi(Msν−1, . . . ,Msν−1)

� Mδ gi(1, . . . ,1),

and from (3.8),

hi(v(s)) = hi(v1(s), . . . ,vn(s)) � hi(M−1sν−1, . . . ,M−1sν−1)

� Mδ sδ (1−ν)h(1, . . . ,1).
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Thus,
gi(u(s))+hi(v(s)) � Mδ [gi(1, . . . ,1)+ sδ (1−ν)h(1, . . . ,1)].

Hence, from (3.2), (3.9), and (3.10), we see that

Tλ ,i
(u,v)(t) � λiMδ tν−1

Γ(ν)

∫ 1

0
(1− s)ν−α−1wi(s)[gi(1, . . . ,1)+ sδ (1−ν)h(1, . . . ,1)]ds

� Mtν−1 on [0,1]. (3.11)

On the other hand, for any i ∈ {1, . . . ,m} and s ∈ (0,1] , from (3.5),

gi(u(s)) = gi(u1(s), . . . ,un(s)) � gi(M−1sν−1, . . . ,M−1sν−1)

� M−δ sδ (ν−1)g(1, . . . ,1),

and from (3.6),

hi(v(s)) = hi(v1(s), . . . ,vn(s)) � hi(Msν−1, . . . ,Mtν−1)
� hi(M, . . . ,M)

� M−δ h(1, . . . ,1).

Then,
gi(u(s))+hi(v(s)) � M−δ [sδ (ν−1)g(1, . . . ,1)+h(1, . . . ,1)].

Again, from (3.2), (3.9), and (3.10), we have

Tλ ,i(u,v)(t) � λiM−δ tν−1

Γ(ν)

∫ 1

0
(1− s)ν−α−1(1− (1− s)α)wi(s)

×[sδ (ν−1)gi(1, . . . ,1)+hi(1, . . . ,1)]ds

� M−1tν−1 on [0,1]. (3.12)

From (3.11) and (3.12), we see that Tλ (PM ×PM) ⊆ PM .
Next, for i = 1, . . . ,m , u = (u1, . . . ,um) , v = (v1, . . . ,vm) ∈ PM , κ ∈ (0,1), and

s ∈ (0,1] , from (2.1) and (2.2), we have

gi(κ u(s)) � κδ gi(u(s)) and hi(κ−1 v(s)) � κδ hi(v(s)).

Then, from (3.10),

Tλ ,i(κu,κ−1v)(t) = λi

∫ 1

0
G(t,s)wi(s)[gi(κu(s))+hi(κ−1v(s))]ds

� κδ λi

∫ 1

0
G(t,s)wi(s)[gi(u(s))+hi(v(s))]ds

= κδ Tλ ,i(u,v)(t).

Hence,
Tλ (κ u ,κ−1 v)(t) � κδ Tλ (u , v)(t).
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From the monotonicity of gi and hi assumed in (H1), it is easy to verify that Tλ ,i
is mixed monotone and so is Tλ . Now, we have shown that all the conditions of
Lemma 3.3 hold, so there exists a unique u λ = (uλ ,1 . . . ,uλ ,m) ∈ PM such that

Tλ (u λ , u λ ) = u λ . Moreover,

uλ ,i
(t) = λi

∫ 1

0
G(t,s)wi(s)[gi(uλ (s))+hi(uλ (s))]ds

= λi

∫ 1

0
G(t,s) fi(s,uλ (s))ds, i = 1, . . . ,m,

by (H1). By Lemma 3.1, we see that u λ (t) = (uλ ,1(t), . . . ,uλ ,m
(t)) is the unique

solution of BVP (1.1), (1.2) in PM for any M satisfying (3.9).

Step 2. In this step, we show that BVP (1.1), (1.2) has at most one positive solution
in X for any fixed λ = (λ1, . . . ,λm)> 0 . Assume that BVP (1.1), (1.2) has two positive
solutions u1

λ (t) = (u1
λ ,1

(t), . . . ,u1
λ ,m

(t)) and u2
λ (t) = (u2

λ ,1
(t), . . . ,u2

λ ,m
(t)) in X

corresponding to the same λ = (λ1, . . . ,λm) > 0 . Then, for i = 1, . . . ,m and j = 1,2,
by Lemma 3.1,

u j

λ ,i
(t) = λi

∫ 1

0
G(t,s) fi(s, u j

λ (s))ds.

From (3.2), we have

u j

λ ,i
(t) � λitν−1

Γ(ν)

∫ 1

0
(1− s)ν−α−1(1− (1− s)α) fi(s, u j

λ (s))ds := mi, jt
ν−1

and

u j

λ ,i
(t) � λitν−1

Γ(ν)

∫ 1

0
(1− s)ν−α−1 fi(s, u j

λ (s))ds := Mi, jt
ν−1,

where

mi, j =
λi

Γ(ν)

∫ 1

0
(1− s)ν−α−1(1− (1− s)α) fi(s, u j

λ (s))ds

and

Mi, j =
λi

Γ(ν)

∫ 1

0
(1− s)ν−α−1 fi(s, u j

λ (s))ds.

Choose M large enough so that M satisfies (3.9) and

M � max
{
1/mi, j, Mi, j : i = 1, . . . ,m, j = 1,2

}
.

Then,

M−1tν−1 � u j

λ ,i
(t) � Mtν−1 for t ∈ [0,1], i = 1, . . . ,m, and j = 1,2. (3.13)

Consequently, u1
λ , u2

λ ∈ PM with the above M . But by Step 1, we know that BVP

(1.1), (1.2) has a unique solution in PM . Hence, u1
λ (t)≡ u2

λ (t) on [0,1] . This shows
that BVP (1.1), (1.2) has at most one positive solution in X .
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Step 3. In this step, we finish the proof of the theorem. Combing Steps 1 and 2,
we see that BVP (1.1), (1.2) has a unique solution u λ (t) = (uλ ,1(t), . . . ,uλ ,m(t)) for

any λ = (λ1, . . . ,λm) > 0 . In the rest of the proof, we show the “furthermore” part of
the theorem. For i = 1, . . . ,m , define an operator Ki : PM ×PM → X by

Ki(u , v)(t) =
∫ 1

0
G(t,s)wi(s)[gi(u(s))+hi(v(s))]ds. (3.14)

Then, from (3.10),

Tλ ,i
(u , v)(t) = λiKi(u , v)(t), i = 1, . . . ,m. (3.15)

Assume λ := (λ1, . . . ,λm) > μ := (μ1, . . . ,μm) > 0 . Let u λ = (uλ ,1, . . . ,uλ ,m
)

and u μ = (uμ ,1, . . . ,uμ ,m) be the unique positive solutions of BVP (1.1), (1.2) cor-
responding to λ = (λ1, . . . ,λm) and λ = (μ1, . . . ,μm) , respectively. Recall that 0 <
δ < 1/2. Define a set B(λ , μ ) by

B(λ ,μ)

=
{

γ > 0 :
1
γ

(
λi

μi

) 1
1−δ

uμ ,i(t) � uλ ,i(t) � γ
(

λi

μi

) 1−2δ
1−δ

uμ ,i(t) on [0,1], i = 1, . . . ,m

}
.

We claim that B(λ , μ ) �= /0 . To see this, note that, as in obtaining (3.13), there exists
C > 1 large enough so that

C−1tν−1 � uλ ,i
(t) � Ctν−1 and C−1tν−1 � uμ ,i(t) � Ctν−1

for t ∈ [0,1] and i = 1, . . . ,m . Thus,

1
C2 �

uλ ,i(t)

uμ ,i(t)
� C2 for t ∈ (0,1] and i = 1, . . . ,m.

Then, uλ ,i
(t)/uμ ,i(t) can be extended continuously to the interval [0,1] . Let

li(t) =
(

μi

λi

) 1−2δ
1−δ uλ ,i

(t)

uμ ,i(t)
, t ∈ [0,1], i = 1, . . . ,m.

Clearly, li ∈C[0,1] and li(t) > 0 on [0,1] . Now, it is easy to check that any γ satisfying

0 < γ < min

{
min

t∈[0,1]
li(t), min

t∈[0,1]
(1/li(t)), i = 1, . . . ,m

}

is in B(λ , μ ) . Therefore, B(λ , μ ) �= /0 .
Define γ = supB(λ , μ ) . Then,

1
γ

(
λi

μi

) 1
1−δ

uμ ,i(t) � uλ ,i(t) � γ
(

λi

μi

) 1−2δ
1−δ

uμ ,i(t), t ∈ [0,1], i = 1, . . . ,m.

(3.16)
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We claim that γ � 1. In fact, if 0 < γ < 1, then, for i = 1, . . . ,m , from the monotonicity
of gi and hi , and (3.16), we have

λi

[
gi(uλ ,i

(t))+hi(uλ ,i
(t))
]

� λi

[
gi

(
γ
(
λiμ−1

i

)(1−2δ )/(1−δ )
uμ ,i(t)

)
+hi

(
γ−1 (λiμ−1

i

)1/(1−δ )
uμ ,i(t)

)]
� λi

[
gi
(

γuμ i
(t)
)
+hi

(
γ−1 (λiμ−1

i

)1/(1−δ )
uμ ,i(t)

)]
since λi/μi > 1. This, together with (2.1), (2.2), and (3.7) with κ = (λ−1

i μi)1/(1−δ ) ,
implies that

λi

[
gi(uλ ,i

(t))+hi(uλ ,i
(t))
]

� λi

[
γ δ gi

(
uμ ,i(t)

)
+ γ δ hi

((
λiμ−1

i

)1/(1−δ )
uμ ,i(t)

)]
� λi

[
γ δ gi

(
uμ ,i(t)

)
+ γ δ (λ−1

i μi)δ/(1−δ )hi
(
uμ ,i(t)

)]
� γ δ (λ−1

i μi)δ/(1−δ )λi
[
gi
(
uμ ,i(t)

)
+hi

(
uμ ,i(t)

)]
= γ δ (λiμ−1

i )(1−2δ )/(1−δ )μi
[
gi
(
uμ ,i(t)

)
+hi

(
uμ ,i(t)

)]
. (3.17)

Now, from (3.14), (3.15), and (3.17), it is easy to see that

uλ ,i(t) = Tλ ,i(uλ ,uλ )(t) = λiKi(uλ ,uλ )(t)

� γ δ (λiμ−1
i )(1−2δ )/(1−δ )μiKi(uμ ,uμ )(t)

= γ δ (λiμ−1
i )(1−2δ )/(1−δ )Tμ ,i(uλ ,uλ )(t)

= γ δ (λiμ−1
i )(1−2δ )/(1−δ )uμ ,i(t) on [0,1]. (3.18)

On the other hand, using a similar argument as in verifying (3.17), we obtain

μi
[
gi(uμ ,i(t))+hi(uμ ,i(t))

]
� γ δ (λ−1

i μi)1/(1−δ )λi[gi(uλ ,i
(t))+hi(uλ ,i

(t))].

Then, again from (3.14), (3.15), and (3.17), we have

uμ ,i(t) = Tμ ,i(uμ ,uμ )(t) = μiKi(uμ ,uμ )(t)

� γ δ (λ−1
i μi)1/(1−δ )λiKi(uλ ,uλ )(t)

= γ δ (λ−1
i μi)1/(1−δ )Tλ ,i(uλ ,uλ )(t)

= γ δ (λ−1
i μi)1/(1−δ )uλ ,i(t) on [0,1]. (3.19)

From (3.18) and (3.19), we get that

1

γ δ

(
λi

μi

) 1
1−δ

uμ ,i(t) � uλ ,i(t) � γ δ
(

λi

μi

) 1−2δ
1−δ

uμ ,i(t), t ∈ [0,1], i = 1, . . . ,m.
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Since 0 < δ < 1/2, we obtain that γ δ
> γ . But this contradicts the definition of γ .

Therefore, γ � 1. Then, When λ > μ , from (3.16), we have

uλ ,i(t) �
(
λiμ−1

i

)(1−2δ )/(1−δ )
uμ ,i(t) on [0,1], i = 1, . . . ,m. (3.20)

Consequently,

uλ ,i(t) > uμ ,i(t) for t ∈ [0,1] and i = 1, . . . ,m.

This proves part (a).
Next, we show part (b). When λ > μ , from (3.20),

uμ ,i(t) �
(
λ−1

i μi
)(1−2δ )/(1−δ )

uλ ,i(t) for t ∈ (0,1] and i = 1, . . . ,m,

which implies that

||u μ || � max
{(

λ−1
i μi

)(1−2δ )/(1−δ )
, i = 1, . . . ,m

}
||u λ ||.

Thus, ||u μ || → 0 as μ → 0+ . Similarly, (3.20) also implies that

||u λ || � min
{(

λiμ−1
i

)(1−2δ )/(1−δ )
, i = 1, . . . ,m

}
||u μ ||.

Thus, ||u λ || → ∞ as λ → ∞ .
Finally, we prove part (c). When λ > μ , from the left hand inequality in (3.16),

we have

uλ ,i(t) �
(
λiμ−1

i

)1/(1−δ )
uμi(t) for t ∈ [0,1] and i = 1, . . . ,m. (3.21)

Then,

||u λ − u μ || � max
{((

λiμ−1
i

)1/(1−δ )−1
)

, i = 1, . . . ,m
}
||u μ ||.

As a result, ||u λ − u μ || → 0 as λ → μ + . When λ < μ , from (3.21) with λ and
μ switched, we have

uλ ,i(t) �
(
λiμ−1

i

)1/(1−δ )
uμ ,i(t) on [0,1], i = 1, . . . ,m.

This, together with uλ ,i(t) < uμ ,i(t) on [0,1] , implies that

||u λ − u μ || � max
{

1−
((

λiμ−1
i

)1/(1−δ )
)

, i = 1, . . . ,m
}
||u μ ||.

Then, ||u λ − u μ || → 0 as λ → μ − . Hence, part (c) holds. This completes the proof
of the theorem. �

Proof of Corollary 2.1. With fi(t,x1, . . . ,xm)= wi(t)(gi(x1, . . . ,xm)+hi(x1, . . . ,xm)) ,
where wi(t) = pi(t) , gi(x1, . . . ,xm) = ∑m

k=1 aikx
bik
k , and hi(x1, . . . ,xm) = ∑m

k=1 cikx
−dik
k ,

it is clear that BVP (1.3), (1.4) is of the form of BVP (1.1), (1.2), and (H1) holds. Let
ζ be defined in (A1). Then, (A1) and (A2) imply that (H2) and (H3) hold with δ = ζ .
The conclusion now readily follows from Theorem 2.1. �
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