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BOUNDARY VALUE PROBLEMS FOR FRACTIONAL

DIFFERENTIAL INCLUSIONS IN BANACH SPACES

MOUFFAK BENCHOHRA, JOHNNY HENDERSON AND DJAMILA SEBA

Abstract. This paper is concerned with the existence of solutions of nonlinear fractional differen-
tial inclusions with boundary conditions in a Banach space. The main result is obtained by using
the set-valued analog of Mönch fixed point theorem combined with the Kuratowski measure of
noncompactness.

1. Introduction

The topic of fractional calculus, which deals with derivatives and integrals of ar-
bitrary orders, is enjoying growing interest not only among mathematicians, but also
among physicists and engineers. In fact, this branch of calculus has found numerous
miscellaneous applications connected with real world problems as they appear in many
fields of science and engineering, including fluid flow, signal and image processing,
fractals theory, control theory, electromagnetic theory, fitting of experimental data, op-
tics, potential theory, biology, chemistry, diffusion, and viscoelasticity. For some recent
developments on the topic, see the papers of El-Sayed et al [20], Gafiychuk et al [22],
He [24], Jumarie [28], and Luchko et al [31], and the monographs of Hilfer [26], Kilbas
et al [29], and Sabatier et al [34] and references therein.

On the other hand, realistic problems arising in economics, optimal control, and so
on, can be modeled by differential inclusions, and so differential inclusions are widely
investigated by many authors; see the papers of Agarwal et al [1], Ahmad and Ntouyas
[3], Benchohra et al [7, 8, 10, 11], Chang and Nieto [17], Darwish and Ntouyas [18],
Frigon [21], and Hamani et al [23], and the monograph of Smirnov [35] and references
therein.

In this paper, we consider the existence of solutions for the following fractional
differential inclusions with boundary conditions

cDry(t) ∈ F(t,y(t)), for a.e. t ∈ J = [0,T ], 1 < r < 2 (1)

y(0) = y0, y(T ) = yT , (2)

where cD is the Caputo derivative, F : J×E →P(E) is a multivalued map, y0,yT ∈ E
and (E, | · |) denotes a Banach space. Our main tool here is the set-valued analog of

Mathematics subject classification (2010): 26A33, 34A60, 34B15.
Keywords and phrases: differential inclusions, Caputo fractional derivative, boundary value problem,

Banach space, existence, fixed point, measure of noncompactness.

c© � � , Zagreb
Paper FDC-02-07

99

http://dx.doi.org/10.7153/fdc-02-07


100 M. BENCHOHRA, J. HENDERSON AND D. SEBA

Mönch’s fixed point theorem combined with the technique of measure of noncompact-
ness. Recently, this has proved to be a valued tool in solving fractional differential
equations in Banach spaces, for details see the papers of Agarwal et al [2], and Ben-
chohra et al [6, 12, 13, 14, 15, 16]. The main result of the present paper extends the
problem (1)-(2) considered in the finite dimensional case by Benchohra et al [7, 9] and
Chang and Nieto [17].

2. Preliminaries

In this section we introduce some basic definitions and lemmas which are used
throughout this paper. Let C(J, E) the Banach space of continuous functions from J
into E with the norm

‖y‖ = sup{|y(t)|, t ∈ J}.
Let L1(J, E) be the Banach space of functions y : J → E which are Bochner integrable
and normed by

‖y‖L1 =
∫ T

0
|y(t)|dt.

AC1(J, E) is the space of continuously differentiable functions whose first derivative is
absolutely continuous.

We use the notations: 2E is the collection of all subsets of E and P(E) = 2E\ /0 .

Pc(E) = {A ⊂ E : A is nonempty, convex},
Pkc(E) = {A ⊂ E : A is nonempty, compact, convex}.

Let X , Y be two sets, N : X → 2Y a set-valued map, and A ⊂ Y . We define

graph(N) = {(x, y) : x ∈ X , y ∈ N(X)} (the graph of N).

For more details on multi-valued maps see the books of Deimling [19] and Hu and
Papageorgiou [27].

Let R > 0, and let
B = {x ∈ E : |x| � R},

and
U = {x ∈C(J, E) : ‖x‖ < R}.

Clearly U = C(J, B) .

DEFINITION 2.1. ([29, 33]) The fractional (arbitrary) order integral of the func-
tion h ∈ L1(J,E) of order r ∈ R

+ is defined by

Ir
0h(t) =

1
Γ(r)

∫ t

0
(t− s)r−1h(s)ds,

where Γ is the Gamma function.
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DEFINITION 2.2. ([29]) For a function h given on the interval J , the Caputo
fractional-order derivative of h , is defined by

cDr
0+h(t) =

1
Γ(n− r)

∫ t

0

h(n)(s)ds
(t− s)1−n+r

Here n = [r]+1 and [r] denotes the integer part of r .

For example for 0 < r � 1 and h : J → E an absolutely continuous function, then the
fractional derivative of order r of h exists.

For convenience, we first recall the definition of the Kuratowski measure of non-
compactness, and summarize the main properties of this measure.

DEFINITION 2.3. ([4, 5]) Let E be a Banach space and let ΩE be the family
of bounded subsets of E . The Kuratowski measure of noncompactness is the map
α : ΩE → [0,∞] defined by

α(M) = inf{ε > 0 : M ⊂
m⋃

j=1

Mj and diam(Mj) � ε}; here M ∈ ΩE .

Properties:

(a) α(M) = 0 ⇔ M is compact (M is relatively compact).

(b) α(M) = α(M) .

(c) M1 ⊂ M2 ⇒ α(M1) � α(M2) .

(d) α(M1 +M2) � α(M1)+ α(M2) .

(e) α(cM) = |c|α(M); c ∈ R .

(f) α(convM) = α(M) .

The details of α and its properties can be found in [4, 5].

DEFINITION 2.4. A multivaluedmap F : J×E →P(E) is said to be Carathéodory
if

(i) t → F(t, u) is measurable for each u ∈ E .

(ii) u → F(t, u) is upper semicontinuous for almost all t ∈ J .

For each y ∈C(J, E) , define the set of selections of F by

SF,y = { f ∈ L1(J, E) : f (t) ∈ F(t, y(t)) for a.e. t ∈ J}.
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THEOREM 2.1. ([25]) Let E be a Banach space and C⊂ L1(J,E) countable with
|u(t)| � h(t) for a.e. t ∈ J , and every u ∈C; where h ∈ L1(J,R+) . Then the function
φ(t) = α(C(t)) belongs to L1(J,R+) and satisfies

α
({∫ T

0
u(s)ds : u ∈C

})
� 2

∫ T

0
α(C(s))ds.

Let us now recall the set-valued analog of Mönch’s fixed point theorem.

THEOREM 2.2. ([32]) Let K be a closed, convex subset of a Banach space E ;
U a relatively open subset of K , and N : U → Pc(K) . Assume graph(N) is closed, N
maps compact sets into relatively compact sets, and that for some x0 ∈U ; the following
two conditions are satisfied:

M ⊂U , M ⊂ conv(x0∪N(M))
and M = C with C ⊂ Mcountable

}
=⇒ Mcompact. (3)

x /∈ (1−λ )x0 + λN(x) for all x ∈U\U, λ ∈ (0,1) (4)

Then there exists x ∈U with x ∈ N(x) .

Let us list the following hypotheses:

(H1) F : J×E → Pkc(E) is a Carathéodory multi-valued map.

(H2) For each R > 0, there exists a function p ∈ L1(J, R+) such that

‖F(t, y)‖P = sup{|v| : v(t) ∈ F(t, y)} � p(t)

for each (t, y) ∈ J×E with |y| � R , and

liminf
R→+∞

∫ T
0 p(t)dt

R
= δ < ∞. (5)

(H3) There is a Carathéodory function ψ : J× [0,2R]→ R+ such that

α(F(t,M)) � ψ(t,α(M)), a.e. t ∈ J, and each M ⊂ B,

and the unique solution ϕ ∈C(J, [0, 2R]) of the inequality

ϕ(t) � 2

[
1

Γ(r)

∫ t

0
(t− s)r−1ψ(s,ϕ(s))ds+

t
TΓ(r)

∫ T

0
(T − s)r−1ψ(s,ϕ(s))ds

]
,

t ∈ J. (6)

is ϕ ≡ 0.

LEMMA 2.1. ([30]) Let J be a compact real interval. Let F be a multivalued
map satisfying (H1) and let Θ be a linear continuous map from L1(J, E) →C(J, E) .
Then the operator

Θ ◦ SF,y : C(J, E) → Pkc(C(J, E)), y �→ (Θ ◦ SF,y)(y) = Θ(SF,y)

is a closed graph operator in C(J, E)×C(J, E) .
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3. Existence results

DEFINITION 3.1. A function y ∈ AC1(J, E) is said to be a solution of (1)–(2), if
there exists a function f ∈ L1(J, E) with f (t) ∈ F(t, y(t)) , for a.e. t ∈ J , such that

cDry(t) = f (t), for a.e. t ∈ J, 1 < r < 2,

and the function y satisfies conditions (2).

For the existence of solutions for the problem (1)–(2), we need the following aux-
iliary lemma:

LEMMA 3.1. [7] Let 1 < r � 2 and let f : J → E be continuous. The unique
solution y of the linear problem

cDry(t) = f (t), t ∈ J, (7)

y(0) = y0, y(T ) = yT , (8)

is given by

y(t) =
1

Γ(r)

∫ t

0
(t − s)r−1 f (s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 f (s)ds−

( t
T
−1

)
y0 +

t
T

yT .

(9)

THEOREM 3.1. Suppose that (H1)-(H3) are satisfied. Then the problem (1)–(2)
has at least one solution on C(J, B) , provided that

δ <
Γ(r)
2T

. (10)

Proof. Transform the problem (1)–(2) into a fixed point problem. Consider the
multi-valued map N : C(J, E) → P(C(J, E)) defined by

N(y) =
{

h ∈C(J, E) : h(t) =
1

Γ(r)

∫ t

0
(t− s)r−1v(s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1v(s)ds

−
( t

T
−1

)
y0 +

t
T

yT , v ∈ SF,y

}
.

The fixed points of N are solutions to (1)–(2). We shall show that N satisfies the
assumptions of the Theorem 2.2. The proof will be given in several steps.

Step 1: N(y) is convex for each y ∈C(J, E) .

If h1 , h2 belong to N(y) , then there exist f1 , f2 ∈ SF,y such that for a.e. t ∈ J we
have

hi(t) =
1

Γ(r)

∫ t

0
(t− s)r−1 fi(s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 fi(s)ds

−
( t

T
−1

)
y0 +

t
T

yT , i = 1, 2.
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Let 0 � λ � 1. For each t ∈ J, we have

(
λh1 +(1−λ )h2

)
(t) =

1
Γ(r)

∫ t

0
(t− s)r−1(λ f1 +(1−λ ) f2)(s)ds

− t
TΓ(r)

∫ T

0
(T − s)r−1(λ f1 +(1−λ ) f2)(s)ds

−
( t

T
−1

)
y0 +

t
T

yT .

Since SF,y is convex (because F has convex values), we have

λh1 +(1−λ )h2 ∈ N(y)

Step 2: N(M) is relatively compact for each compact M ⊂U .

To prove this, let M⊂U be a compact set and let (hn) be any sequence of elements
of N(M) . We show that (hn) has a convergent subsequence by using the Arzèla-Ascoli
criterion of noncompactness in C(J, E) . Since (hn) ∈ N(M) there exist (yn) ∈ M and
( fn) ∈ SF,yn such that

hn(t) =
1

Γ(r)

∫ t

0
(t− s)r−1 fn(s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 fn(s)ds

−
( t

T
−1

)
y0 +

t
T

yT .

Using Theorem 2.1 and the properties of the measure of Kuratowski α , we obtain that

α
({hn(t)}

)
� 2

[
1

Γ(r)

∫ T

0
α

({(t−s)r−1 fn(s)}
)
ds+

t
TΓ(r)

∫ T

0
α

({(T−s)r−1 fn(s)}
)
ds

]
.

(11)

On the other hand, since M(s) is compact in E , the set { fn(s); n � 1} is compact.
Consequently, α

({ fn(s); n � 1}) = 0 for a.e. s ∈ J . Furthermore,

α
({(T − s)r−1 fn(s); n � 1}) = (T − s)r−1α

({ fn(s); n � 1}) = 0

and

α
({(t− s)r−1 fn(s); n � 1}) = (t− s)r−1α

({ fn(s); n � 1}) = 0

for a.e. t, s ∈ J . Now (11) implies that {hn(t); n � 1} is relatively compact in E , for
each t ∈ J .
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In addition for each t1 and t2 from J , t1 < t2 , we have

∣∣hn(t2)−hn(t1)
∣∣ =

∣∣∣(t2 − t1)
T

(yT − y0)+
1

Γ(r)

∫ t1

0

[
(t2 − s)r−1− (t1− s)r−1] fn(s)ds

+
1

Γ(r)

∫ t2

t1
(t2 − s)r−1 fn(s)ds+

t2 − t1
TΓ(r)

∫ T

0
(T − s)r−1 fn(s)ds

∣∣∣
� |yT − y0|(t2 − t1)+

∣∣∣ 1
Γ(r)

∫ t1

0
[(t2 − s)r−1− (t1− s)r−1] fn(s)ds

∣∣∣
+

∣∣∣ 1
Γ(r)

∫ t2

t1
(t2 − s)r−1 fn(s)ds

∣∣∣+ t2− t1
Γ(r)

∫ T

0
p(s)ds

� |yT − y0|(t2 − t1)+
1

Γ(r)

∫ t1

0

∣∣∣(t2 − s)r−1− (t1− s)r−1
∣∣∣p(s)ds

+
1

Γ(r)

∫ t2

t1

∣∣∣(t2 − s)r−1
∣∣∣p(s)ds+

t2− t1
Γ(r)

∫ T

0
p(s)ds. (12)

As t1 → t2 , the right hand side of the above inequality tends to zero. This shows that
{hn; n � 1} is equicontinuous. Consequently, {hn; n � 1} is relatively compact in
C(J, E) .

Step 3: N has a closed graph.

Let (yn, hn)∈ graph(N) , n � 1, with ‖yn−v‖, ‖hn−h‖→ 0 as n→ ∞ . We must
show that (y, h) ∈ graph(N) .

(yn, hn) ∈ graph(N) means that hn ∈ N(yn) which means that there exists fn ∈
SF,yn , such that for each t ∈ J ,

hn(t) =
1

Γ(r)

∫ t

0
(t− s)r−1 fn(s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 fn(s)ds−

( t
T
−1

)
y0 +

t
T

yT .

Consider the continuous linear operator

Θ : L1(J, E) →C(J, E)

f �→ Θ( f )(t) =
1

Γ(r)

∫ t

0
(t− s)r−1 f (s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 f (s)ds.

Clearly,∥∥∥[
hn(t)+

( t
T
−1

)
y0− t

T
yT

]
−

[
h(t)+

( t
T
−1

)
y0− t

T
yT

]∥∥∥ → 0, as n → ∞.

From Lemma 2.1 it follows that Θ ◦ SF is a closed graph operator. Moreover, we have

hn(t)+
( t

T
−1

)
y0 − t

T
yT ∈ Θ(SF,yn).

Since yn → y , Lemma 2.3 implies that

h(t)+
( t

T
−1

)
y0− t

T
yT =

1
Γ(r)

∫ t

0
(t− s)r−1 f (s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 f (s)ds
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for some f ∈ SF,y .

Step 4: Suppose M ⊂U , M ⊂ conv({0}∪N(M)) , and M =C for some countable
set C ⊂ M . Using an estimation of type (12), we see that N(M) is equicontinuous.
Then, from M ⊂ conv({0}∪N(M)) , we deduce that M is equicontinuous, too. In
order to apply the Arzèla-Ascoli theorem, it remains to show that M(t) is relatively
compact in E for each t ∈ J . Since

C ⊂ M ⊂ conv({0}∪N(M)) and C is countable,

we can find a countable set H = {hn : n � 1} ⊂ N(M) with C ⊂ conv({0}∪H). Then,
there exist yn ∈ M and fn ∈ SF,yn such that

hn(t) =
1

Γ(r)

∫ t

0
(t− s)r−1 fn(s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 fn(s)ds−

( t
T
−1

)
y0 +

t
T

yT .

From M ⊂C ⊂ conv({0}∪H) , and according to Theorem 2.1, we have

α(M(t)) � (α(C(t)) � α(H(t)) = α({hn(t) : n � 1}).
Using (11), we obtain

α(M(t)) � 2

[
1

Γ(r)

∫ t

0
α

({(t− s)r−1 fn(s); n � 1})ds

+
t

TΓ(r)

∫ T

0
α

({(T − s)r−1 fn(s); n � 1})ds

]
.

Now, since fn(s) ∈ M(s) we have

α
({(T − s)r−1 fn(s); n � 1}) = (T − s)r−1α

(
M(s)

)
and

α
({(t− s)r−1 fn(s); n � 1}) = (t− s)r−1α

(
M(s)

)
.

It follows that

α(M(t)) �2

[
1

Γ(r)

∫ t

0
(t− s)r−1α

(
M(s)

)
ds+

t
TΓ(r)

∫ T

0
(T − s)r−1α

(
M(s)

)
ds

]

�2

[
1

Γ(r)

∫ t

0
(t−s)r−1ψ(s,α(M(s)))ds+

t
TΓ(r)

∫ T

0
(T−s)r−1ψ(s,α(M(s)))ds

]
.

Also, the function ϕ given by ϕ(t) = α(M(t)) belongs to C(J, [0, 2R]) . Consequently
by (H3), ϕ ≡ 0, that is α(M(t)) = 0 for all t ∈ J .

Now, by the Arzèla-Ascoli theorem, M is relatively compact in C(J, E) .

Step 5: Let h∈ N(y) with y ∈U . Since |y(s)|� R and (H2), we have N(U)⊆U ,
because if it is not true, there exists a function y ∈U but ‖N(y)‖P > R and

h(t) =
1

Γ(r)

∫ t

0
(t− s)r−1 f (s)ds− t

TΓ(r)

∫ T

0
(T − s)r−1 f (s)ds−

( t
T
−1

)
y0 +

t
T

yT
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for some f ∈ SF,y . On the other hand we have

R � ‖N(y)‖P

� |y0|+ |yT |+ 1
Γ(r)

∫ t

0
(t − s)r−1| f (s)|ds+

t
TΓ(r)

∫ T

0
(T − s)r−1| f (s)|ds

� |y0|+ |yT |+ t
Γ(r)

∫ T

0
p(s)ds+

tT
TΓ(r)

∫ T

0
p(s)ds

� |y0|+ |yT |+ 2T
Γ(r)

∫ T

0
p(s)ds.

Dividing both sides by R and taking the lower limit as R → ∞ , we conclude that
2T

Γ(r)δ � 1 which contradicts (10). Hence N(U) ⊆U .
As a consequence of Steps 1−5 together with Theorem 2.2, we can conclude that

N has a fixed point y ∈C(J, B) which is a solution of the problem (1)–(2).
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