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MULTIPLE POSITIVE SOLUTIONS FOR NONLINEAR

FRACTIONAL DIFFERENTIAL SYSTEMS

NEMAT NYAMORADI AND TAHEREH BASHIRI

Abstract. In this paper, we study the existence of positive solutions to boundary value problem
for fractional differential system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Dα

0+u(t)+ f1(t,u(t),v(t)) = 0, t ∈ (0,1),
Dα

0+v(t)+ f2(t,u(t),v(t)) = 0, t ∈ (0,1), 1 < α � 2,

u(0) = 0, Dβ
0+u(1)−μ1D

β
0+u(η1) = λ1,

v(0) = 0, Dβ
0+v(1)−μ2D

β
0+v(η2) = λ2, 0 < β < 1,

where Dα
0+ is the Riemann-Liouville fractional derivative of order α . By using the Leggett-

Williams fixed point theorem in a cone, the existence of three positive solutions for nonlinear
singular boundary value problems is obtained.

1. Introduction

The purpose of this paper is to study the existence of positive solutions for the
following boundary value problem for fractional differential system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dα
0+u(t)+ f1(t,u(t),v(t)) = 0, t ∈ (0,1),

Dα
0+v(t)+ f2(t,u(t),v(t)) = 0, t ∈ (0,1), 1 < α � 2,

u(0) = 0, Dβ
0+u(1)− μ1D

β
0+u(η1) = λ1,

v(0) = 0, Dβ
0+v(1)− μ2D

β
0+v(η2) = λ2, 0 < β < 1,

(1)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α , ηi ∈ (0, 1

2) and
μi ∈ [0, 1

ηi
α−β−1 ) are arbitrary constants, λi is a paramerer, fi : [0,1]× [0,+∞)× [0,+∞)

→ [0,+∞) is continuous, i = 1,2. Also, in this paper, we assume that μi ηi
α−β−2 �

1−β .
Fractional differential equations have been of great interest recently. This is be-

cause of both the intensive development of the theory of fractional calculus itself and
the applications of such constructions in various scientific fields such as physics, me-
chanics, chemistry, engineering, etc. For details, see [1, 2, 3] and the references therein.

The existence of solutions of initial value problems for fractional order differential
equations have been studied in the literature [4, 5, 6, 7] and the references therein.
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Abdelkader Saadi, Maamar Benbachir [8] considered the following boundary value
problem {

Dα
0+u(t)+a(t)g(u(t)) = 0, t ∈ (0,1), 2 < α < 3,

u(0) = u′(0) = 0, u′(1)− μu′(η) = λ ,
(2)

where η ∈ (0,1) , μ ∈
[
0, 1

ηα−2

)
are two arbitrary constants. They applied the Guo-

Krasnosel’skii fixed point theorem and Schauder’s fixed point theorem to establish
some results on the existence, nonexistence and uniqueness of positive solutions (2).

Li, Luo and Zhou [9] considered the following boundary value problem of frac-
tional order {

Dα
0+u(t)+ f (t,u(t)) = 0, t ∈ (0,1), 1 < α � 2,

u(0) = 0, Dβ
0+u(1) = aDβ

0+u(ξ ),
(3)

where Dα
0+ is the Riemann-Liouville fractional derivative of order α .

Motivated by the works mentioned above, our purpose in this paper is to show the
existence and multiplicity of positive solutions to the problem (1) by using the Leggett-
Williams fixed point theorem.

The rest of the article is organized as follows: in Section 2, we present some
preliminaries that will be used in Section 3. The main result and proof will be given in
Section 3. Finally, in Section 4, an example is given to demonstrate the application of
our main result.

2. Preliminaries

In this section, we present some notations and preliminary lemmas that will be
used in the proof of the main result.

First, we define

L1([0,1]) :=
{

u : [0,1]→ R; u is measurable on [0,1] and
∫ 1

0
|u(x)|dx < ∞

}
,

C([0,1]) :=
{

u : [0,1]→ R; u is a continuous function on [0,1]
}
.

It is obvious that, C([0,1]) , is a Banach space.

DEFINITION 1. Let X be a real Banach space. A non-empty closed set P ⊂ X is
called a cone of X if it satisfies the following conditions:

(1) x ∈ P,μ � 0 implies μx ∈ P ,
(2) x ∈ P,−x ∈ P implies x = 0.

DEFINITION 2. ([4]) The Riemann-Liouville fractional integral operator of order
α > 0, of function f ∈ L1([0,1]) is defined as

Iα
0+ f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds,

where Γ(·) is the Euler gamma function.
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DEFINITION 3. ([4]) The Riemann-Liouville fractional derivative of order α > 0
of a continuous function f : [0,1] → R is defined as

Dα
0+ f (t) =

1
Γ(n−α)

( d
dt

)n ∫ t

0
(t− s)n−α−1 f (s)ds,

where n = [α]+1.

LEMMA 1. ([10]) The equality Dγ
0+Iγ

0+ f (t)= f (t) , γ > 0 holds for f ∈L1([0,1]) .

LEMMA 2. ([10]) Let α > 0 . Then the differential equation

Dα
0+u = 0

has a unique solution u(t) = c1tα−1 +c2tα−2 + · · ·+cntα−n , ci ∈ R , i = 1, . . . ,n, there
n−1 < α � n, u ∈ L1([0,1]) .

LEMMA 3. ([10]) Let α > 0 . Then the following equality holds for u∈ L1([0,1]) ,
Dα

0+u ∈ L1([0,1]);

Iα
0+Dα

0+u(t) = u(t)+ c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

ci ∈ R , i = 1, . . . ,n, there n−1 < α � n.

In the following, we present the Green function of fractional differential equation
boundary value problem.

LEMMA 4. Suppose that Δi = 1− μi ηi
α−β−1 �= 0 . Let y(t) ∈ C[0,1] , then the

boundary value problem{
Dα

0+u(t)+ y(t) = 0, t ∈ (0,1),
u(0) = 0, Dβ

0+u(1)− μiD
β
0+u(ηi) = λi

(4)

has a unique solution

u(t) =
∫ 1

0
Gi(t,s)y(s)ds+

λiΓ(α −β)tα−1

Γ(α)Δi
, (5)

where

Gi(t,s) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tα−1 (1−s)α−β−1−μi tα−1 (ηi−s)α−β−1 −Δi (t−s)α−1

Δi Γ(α) 0 � s � min{t,ηi} < 1,

tα−1 (1−s)α−β−1−Δi (t−s)α−1

Δi Γ(α) 0 < ηi � s � t � 1,

tα−1 (1−s)α−β−1−μi tα−1 (ηi−s)α−β−1

Δi Γ(α) 0 � t � s < ηi < 1,

tα−1 (1−s)α−β−1

Δi Γ(α) max{t,ηi} � s � 1.

(6)
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Proof. In view of Lemma 3 and equation (4), we have

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1 y(s)ds− c1 tα−1−c2 tα−2, (7)

for some arbitrary constants c1,c2 ∈ R .
The boundary condition u(0) = 0 implies that c2 = 0. Thus

u(t) = − 1
Γ(α)

∫ t

0
(t − s)α−1 y(s)ds− c1 tα−1 .

On the other hand, by relations Dβ
0+tα = Γ(α+1)

Γ(α−β+1)t
α−β , Dα

0+Iα
0+u(t)= u(t) and Im

0+In
0+u(t)

= Im+n
0+ u(t) for m,n > 0, u ∈ L1(0,1) , we have

Dβ
0+u(t) = −Dβ

0+Iα
0+u(t)− c1D

β
0+tα−1

= −Dβ
0+Iβ

0+Iα−β
0+ u(t)− c1D

β
0+tα−1

= −Iα−β
0+ u(t)− c1D

β
0+tα−1

= − 1
Γ(α −β )

∫ t

0
(t− s)α−β−1 y(s)ds− c1

Γ(α)
Γ(α −β )

tα−β−1 .

In view of the boundary condition Dβ
0+u(1)− μiD

β
0+u(ηi) = λi , we conclude that

c1 = − 1
Γ(α)Δi

∫ 1

0
(1− s)α−β−1 y(s)ds

+
μi

Γ(α)Δi

∫ ηi

0
(ηi−s)α−β−1 y(s)ds− λiΓ(α −β )

Γ(α)(Δi)
.

Substituting the values of c0 and c1 in (7), we obtain the solution (4) as follow

u(t) = −
∫ t

0

(t − s)α−1

Γ(α)
y(s)ds+

∫ 1

0

tα−1(1− s)α−β−1

Γ(α)Δi
y(s)ds

−
∫ ηi

0

μitα−1(ηi − s)α−β−1

Γ(α)Δi
y(s) ds+

λiΓ(α −β )tα−1

Γ(α)Δi

=
∫ 1

0
Gi(t,s)y(s)ds+

λiΓ(α −β )tα−1

Γ(α)Δi
,

where Gi(t,s) is given in (6). Therefore, the proof is completed. �

LEMMA 5. ([9]) The function Gi(t,s), in lemma 4 satisfies the following condi-
tions

(i) Gi(t,s) is continuous on [0,1]× [0,1] ,
(ii) Gi(t,s) > 0 , for any t ∈ (0,1) .
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LEMMA 6. ([9]) Assume that μi ηi
α−β−2 � 1−β . Then the function Gi(t,s) sat-

isfies the following conditions
(i) Gi(t,s) � Gi(s,s) , for s,t ∈ [0,1] ,
(ii) there exists a positive function γi(s) ∈C[0,1] such that

min
ηi�t�1

Gi(t,s) � γi(s) max
0�t�1

Gi(t,s) = γi(s)Gi(s,s), for 0 < s < 1.

Now, we consider the system (1). Obviously, (u,v)∈C(0,1)×C(0,1) is a solution
of the system (1) if and only if (u,v) ∈ C[0,1]×C[0,1] is a solution of the following
nonlinear system:⎧⎪⎪⎨

⎪⎪⎩
u(t) =

∫ 1

0
G1(t,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β)tα−1

Γ(α)Δ1
,

v(t) =
∫ 1

0
G2(t,s) f2(s,u(s),v(s))ds+

λ2Γ(α −β)tα−1

Γ(α)Δ2
.

(8)

To establish the existence three positive solutions of system (1), we will employ
the following Leggett-Williams fixed point theorem.

For the convenience of the reader, we present here the Leggett-Williamsfixed point
theorem [11].

Given a cone K in a real Banach space E , a map α is said to be a nonnegative
continuous concave (resp. convex) functional on K provided that α : K → [0,+∞) is
continuous and

α(tx+(1− t)y) � tα(x)+ (1− t)α(y),
(resp. α(tx+(1− t)y) � tα(x)+ (1− t)α(y)),

for all x,y ∈ K and t ∈ [0,1] .
Let 0 < a < b be given and let α be a nonnegative continuous concave functional

on K . Define the convex sets Pr and P(α,a,b) by

Pr = {x ∈ K|‖x‖ < r},

and
P(α,a,b) = {x ∈ K|a � α(x),‖x‖ � b}.

THEOREM 1. ([11]) Let A : Pc → Pc be a completely continuous operator and let
α be a nonnegative continuous concave functional on K such that α(x) � ‖x‖ for all
x ∈ Pc . Suppose there exist 0 < a < b < d � c such that

(A1) {x ∈ P(α,b,d)|α(x) > b} �= /0 , and α(Ax) > b for x ∈ P(α,b,d) ,
(A2) ‖Ax‖ < a for ‖x‖ � a, and
(A3) α(Ax) > b for x ∈ P(α,b,c) with ‖Ax‖ > d.
Then A has at least three fixed points x1 , x2 , and x3 and such that ‖x1‖ < a,b <

α(x2) and ‖x3‖ > a, with α(x3) < b.
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3. Main result

For convenience, we introduce the following notations. define

τ = min{η1,η2},
so 0 < τ < 1

2 . Let

Mi = max
0�t�1

[∫ 1

0
G(t,s)ds

]
,

mi = min
τ�t�1

[∫ 1

τ
G(t,s)ds

]
.

Then 0 < mi < Mi , i = 1,2.
Define

η = min
τ�s�1

{γ1(s),γ2(s)}, (9)

and let

σ =
1
2

min{η ,2τα−1}. (10)

The basic space used in this paper is a real Banach space E = C([0,1],R)×
C([0,1],R) with the norm ||(u,v)|| := ||u||+ ||v|| , where ‖u‖ = maxt∈[0,1] |u(t)| .

Then, choose a cone K ⊂ E , by

K = {(u,v) ∈ E | u(t) � 0, v(t) � 0, min
τ�t�1

(u(t)+ v(t)) � σ‖(u,v)‖}.

Define an operator T by

T (u,v)(t) = (A(u,v)(t),B(u,v)(t)), ∀ t ∈ (0,1), (11)

where ⎧⎨
⎩A(u,v)(t) =

∫ 1
0 G1(t,s) f1(s,u(s),v(s))ds+ λ1Γ(α−β )tα−1

Γ(α)Δ1
,

B(u,v)(t) =
∫ 1
0 G2(t,s) f2(s,u(s),v(s))ds+ λ2Γ(α−β )tα−1

Γ(α)Δ2
,

(12)

LEMMA 7. The operator defined in (11) maps K into itself, i.e., T : K → K .

Proof. For any (u,v) ∈ K , it follows from Lemma 6 that

||A(u,v)|| �
∫ 1

0
G1(s,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β)
Γ(α)Δ1

,

� 2
∫ 1

τ
G1(s,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β)
Γ(α)Δ1

,
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This implies that

[∫ 1

τ
G1(s,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β)
2Γ(α)Δ1

]
� 1

2
||A(u,v)||.

Therefore, we can get

min
τ�t�1

A(u,v)(t)

= min
τ�t�1

[∫ 1

0
G1(t,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β )tα−1

Γ(α)Δ1

]

�
∫ 1

τ
γ1(s)G1(s,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β )τα−1

Γ(α)Δ1

� η
∫ 1

τ
G1(s,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β )τα−1

Γ(α)Δ1

� min{η ,2τα−1}
[∫ 1

τ
G1(s,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β )
2Γ(α)Δ1

]

� 1
2

min{η ,2τα−1}||A(u,v)||
= σ ||A(u,v)||.

In the same way, for any (u,v) ∈ K , we have

min
τ�t�1

B(u,v)(t) � σ ||B(u,v)||.

Therefore

min
τ�t�1

(A(u,v)(t)+B(u,v)(t)) � σ ||A(u,v)||+ σ ||B(u,v)||= σ ||(A(u,v),B(u,v))||.

From the above, we conclude that T (u,v)(t) = (A(u,v)(t),B(u,v)(t)) ∈ K , that is,
T (K) ⊂ K . Therefore, the proof is completed. �

It is clear that the existence of a positive solution for the system (1) is equivalent
to the existence of a nontrivial fixed point of T in K .

Finally, we define the nonnegative continuous concave functional on K by

α(u,v) = min
τ�t�1

(u(t)+ v(t)).

It is obvious that, for each (u,v) ∈ K,α(u,v) � ‖(u,v)‖ .
Throughout this section, we assume that pi , qi , i = 1,2, are four positive numbers

satisfying 1
p1

+ 1
p2

+ 1
q1

+ 1
q2

� 1.
Now, we can state our main result.

THEOREM 2. Assume there exist nonnegative numbers a,b,c such that 0 < a <
b � min{τ, m1

p1M1
, m2

p2M2
}c, and fi(t,u,v) satisfy the following conditions:
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(H1) fi(t,u,v) � 1
pi
· c

Mi
, ∀t ∈ [0,1],u+ v∈ [0,c] , i = 1,2 ,

(H2) fi(t,u,v) � 1
pi
· a

Mi
, ∀t ∈ [0,1],u+ v∈ [0,a] , i = 1,2 ,

(H3) (i) f1(t,u,v) > b
m1

∀t ∈ [τ,1],u+ v ∈ [b, b
σ ] , or

(ii) f2(t,u,v) > b
m2

∀t ∈ [τ,1],u+ v ∈ [b, b
σ ] .

Then, for

λi � 1
qi

· cΔiΓ(α)
Γ(α −β )

, i = 1,2, (13)

the system (1) has at least three positive solutions (u1,v1),(u2,v2),(u3,v3) such that
‖(u1,v1)‖< a,b < minτ�t�1(u2(t)+v2(t)) , and ‖(u3,v3)‖> a, with minτ�t�1(u3(t)+
v3(t)) < b.

Proof. First, we show that T : Pc → Pc is a completely continuous operator. If
(u,v) ∈ Pc , then ||(u,v)|| � c and by (H1) and (12), we have

‖T (u,y)‖ = max
0�t�1

|A(u,v)(t)|+ max
0�t�1

|B(u,v)(t)|

= max
0�t�1

{∫ 1

0
G1(t,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β) tα−1

Γ(α)Δ1

}
,

+ max
0�t�1

{∫ 1

0
G2(t,s) f2(s,u(s),v(s))ds+

λ2Γ(α −β)tα−1

Γ(α)Δ2

}

� 1
p1

· c
M1

max
0�t�1

{∫ 1

0
G1(t,s)ds

}
+

λ1Γ(α −β)
Γ(α)Δ1

+
1
p2

· c
M2

max
0�t�1

{∫ 1

0
G2(t,s)ds

}
+

λ2Γ(α −β)
Γ(α)Δ2

� 1
p1

· c+
1
q1

· c+
1
p2

· c+
1
q2

· c � c.

Therefore, ‖T (u,y)‖� c , that is, T : Pc →Pc . The operator T is completely continuous
by an application of the Ascoli-Arzela theorem.

In the same way, the condition (H2) implies that the condition (A2) of Theorem
1 is satisfied. We now show that condition (A1) of Theorem 1 is satisfied. Clearly,
{(u,v) ∈ P(α,b, b

σ )|α(u,v) > b} �= /0 . If (u,v) ∈ P(α,b, b
σ ) , then b � u(s)+ v(s) �

b
σ ,s ∈ [τ,1] .

By condition (H3)(i), we get

α(T (u,v)(t)) = min
τ�t�1

(A(u,v)(t)+B(u,v)(t))

� min
τ�t�1

{∫ 1

τ
G1(t,s) f1(s,u(s),v(s))ds+

λ1Γ(α −β)tα−1

Γ(α)Δ1

}

+ min
τ�t�1

{∫ 1

τ
G2(t,s) f2(s,u(s),v(s))ds+

λ2Γ(α −β)tα−1

Γ(α)Δ2

}
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>
b
m1

min
τ�t�1

{∫ 1

τ
G1(t,s)ds

}
=

b
m1

·m1 = b.

Similarly, by (H3)(ii), we get

α(T (u,v)(t)) >
b
m2

min
τ�t�1

{∫ 1

τ
G2(t,s)ds

}
=

b
m2

·m2 = b.

Therefore, condition A1 of Theorem 1 is satisfied.
Finally, we show that the condition A3 of Theorem 1 is also satisfied.
If (u,v) ∈ P(α,b,c) , and ‖T (u,v)‖ > b

σ , then

α(T (u,v)(t)) = min
τ�t�1

(A(u,v)(t)+B(u,v)(t)) � σ‖A(u,v)‖+ σ‖B(u,v)‖

= σ‖T (u,v)‖ > σ · b
σ

= b.

Therefore, the condition A3 of Theorem 1 is also satisfied. By Theorem 1, there
exist three positive solutions (u1,v1),(u2,v2),(u3,v3) such that ‖(u1,v1)‖ < a,b <
minτ�t�1(u2(t) + v2(t)) , and ‖(u3,v3)‖ > a , with minτ�t�1(u3(t) + v3(t)) < b. we
have the conclusion.

4. Application

EXAMPLE 3. Consider the following singular boundary value problem:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D
3
2
0+u(t)+ f1(t,u(t),v(t)) = 0, t ∈ (0,1),

D
3
2
0+v(t)+ f2(t,u(t),v(t)) = 0, t ∈ (0,1),

u(0) = 0, D
1
2
0+u(1)− 1

8D
1
2
0+u( 1

4 ) = λ1,

v(0) = 0, D
1
2
0+v(1)− 1

8D
1
2
0+v( 1

4 ) = λ2,

(14)

where μ1 = μ2 = 1
8 , η1 = η2 = 1

4 and

f1(t,u,v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1−t2

100 + 1
200(u+ v)2, t ∈ [0,1], 0 � u+ v � 1,√

1−t2

100 +10[(u+ v)2− (u+ v)]+ 1
200 , t ∈ [0,1], 1 < u+ v < 2,√

1−t2

100 +6[log2 (u+ v)+2(u+ v)]+ 1
200 , t ∈ [0,1], 2 � u+ v � 4√

1−t2

100 +
√

u+v
2 +59+ 1

200 , t ∈ [0,1], 4 < u+ v < +∞,

and

f2(t,u,v) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

√
1−t2

1000 + 1
400(u+ v)2, t ∈ [0,1], 0 � u+ v � 1,√

1−t2

1000 +20[(u+ v)2− (u+ v)]+ 1
400 , t ∈ [0,1], 1 < u+ v < 2,√

1−t2

1000 +8[log2 (u+ v)+2(u+ v)]+ 1
400 , t ∈ [0,1], 2 � u+ v � 4√

1−t2

1000 +
√

u+v
2 +79+ 1

400 , t ∈ [0,1], 4 < u+ v < +∞,
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Choose τ = 1
4 , p1 = 20, p2 = 2, q1 = 5, q2 = 4. Then by direct calculations, we

can obtain that

M1 = M2 = 0.846500912998,

m1 = m2 = 0.427057586114.

So, we choose a = 1, b = 2, c = 1300. It is easy to check that fi , i = 1,2 satisfy
the conditions (H1)-(H3). So, for λ1 � 201.5655135 and λ2 � 251.9568919, system
(14) has at least three positive solutions (u1,v1),(u2,v2),(u3,v3) such that ‖(u1,v1)‖<
1,2 < min1

4 �t�1(u2(t)+v2(t)) , and ‖(u3,v3)‖ > 1, with min1
4 �t�1(u3(t)+v3(t)) < 2.
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