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OPIAL TYPE INTEGRAL INEQUALITIES
FOR FRACTIONAL DERIVATIVES II

G. FARID AND J. PECARIC

Abstract. A certain class of functions is used to apply results related to opial type inequalities.
Also applications of Riemann-Liouville fractional integral and Caputo fractional derivative with
respect to this class of functions are given.

1. Introduction and preliminaries

In [2] we gave applications of Riemann-Liouville fractional integral, Caputo frac-
tional derivative and integral representation of Riemann-Liouville fractional derivative
[6], on opial type inequalities considering a particular class of functions. Here we prove
similar results by using another class U (v,K) of functions u : [a,b] — R which admits
representation [5, p. 238],

u(x) = /be(x,t)v(t)dt. (1.1)

where v is a continuous function and K is an arbitrary non-negative kernal such that
v(x) > 0 implies u(x) > 0 for every x € [a,b].
We can observe that the following result holds for the class of functions U (v,K).

THEOREM 1. Let ¢ : [0,00) — R be a differentiable function such that for q > 1
1
the function ¢(x4) is convex and ¢(0) =0. Let u € U(v,K) where

b
(/ (K(x,t))pdt>p <M, pl4qg =1
Then

b 1—q 47/ q q b q 1
1 1700 () D) 1 < oo (( [ v [7an®). a2

1
If the function ¢(x7) is concave, then the reverse of the inequality in (1.2) holds.
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Proof. Proof is on the same lines as the proof of such theorem in [7], (see also
theorem 8.15 in [5, p. 237, 238]). O

To prove exponential-convexity of a class of certain functions the following Defi-
nition and Proposition [3], help us.

DEFINITION 1. A function % : (a,b) — R is exponentially convex if it is contin-
uous and
Z u,-ujh(x,-—i—xj) >0,
ij=1
for all n €N and all choices u; € R, i =1,2,...,n and x; € (a,b), such that x; +x; €
(a,b), 1 <i,j<n.

PROPOSITION 1. Let h: (a,b) — R. The followings are equivalent.
(i) his exponentially convex.
(ii) h is continuous and

§ s (57)

i,j=1

forevery uj € R and every x;,x; € (a,b), 1 <i,j<n.
(iii) h is continuous and for every x; € (a7b ,i=1,2,...,n,

Xi+Xxj k
det [n (Y >0, k=172,..n
2 )i

In [3] we also have the following corollary.

COROLLARY 1. If h: (a,b) — (0,e) is exponentially convex function then h is a
log-convex function:

We present the paper in such a way that section 2 contains mean value theorems,
exponential convexity, Cauchy’s means for a class of linear functionals. In section
3 we give theorems for Riemann-Liouville fractional integral and Caputo fractional
derivative.

2. Preparatory inequalities

DEFINITION. Let /4 :[0,00) — R be the function with assumptions of Theorem 1.
We define the linear functional B, (u,v) as:

B(u,v) = /\v |qu /|u VIR () ) | v(x) 7 dx. 2.1)

We have proved the following Lemma in [2].
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LEMMA 1. Let he C*(I) 1 C (0,), and g(x) =x4, ¢ > 1 with

< éh”(é)q; é(;zq—ll)h’(é) <M forall £l

Then the functions ¢, ¢, defined as:

M'x* m' x4

00 = o= —h), 62 =) - "o,

1o,
are convex functions with respect to g(x) = x4, that is ¢;(x7), i = 1,2, are convex.
THEOREM 2. Let h:[0,00) — R be the function with assumptions of Theorem 1.

If h € C*(I), where I C (0,0) is compact interval, then there exists & € I such that the
following equality holds

Bl = SLEL I (M(/ oy 1) -2 [ futo qv(>qu>

(2.2)
Proof. Suppose that min ye;(y(y)) = m; and max ,c;(y(y)) = M; where
_ YO — (g = DK (y)
W(y) - q2y2q,1 :
Using ¢; from Lemma 1 instead of ¢ in (1.2) we get
/ ) 7))~ [ 1) 1) ) 900 9
2.3)
(M‘f (/ v |qu> —z/ () 9] v(x )qu>
Similarly, using ¢, from Lemma 1 instead of ¢ in (1.2) we get
/ v 17ax)") = [ 1) 1 ) ) 900 7
2.4)

(Mq(/| |qu) 2 [ uto) qvwdx)

By combining the above two inequalities and using the fact that

" (a /
m< yh'(y) = (g = 1)K (y) <M
q2y2q71

there exist & € I such that we get (2.2). O
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THEOREM 3. Let hy,h; : [0,00) — R be the functions with assumptions of Theo-
rem 1. If hy,hy € C*(I), where I C (0,00) is compact interval and

M (/ub|v(x) |qu)2—2/ub () |9] vi(x) |7 dx 0.

Then there exists & € I such that

B () _ EWY(E) — (g — VIG(E)
Bo(uv) ~ ERHE) (g~ DIG(E)’

provided the denominators are not equal to zero.

Proof. The proof is similar to the proof of such theorems for example see in
4. O

Throughout the paper we frequently use the following family of convex functions
with respect to g(x) =x? (g > 1) on (0,00).

2

ﬁxsa s 7& O7q’
@s(x) = —glogx, s=0; (2.5)
gx?logx, s=gq.

In the following we use Ag, (u,v) in the place of By, (u,v), when we put 7 = ¢, in
equation (2.1), that is

Ag,(u,v) =

2

Mq?@ 7 (@MU 1) 19 dx)s = sh? [ () 9] v() [9x) .5 7 0,z
%)+qua”\u(x)|—q|v(x)|qu), 5= 0:

~qlog(M(J} | v(x) [* d)
o (M9 12 1v(x) 19 Tog(M ([ v(x) 9. dx) -+ [2(1-+glog | u(x) )| v(x) 7 dx)

s=q.
(2.6)

THEOREM 4. For Ay (u,v) defined above we have

n
a) forevery n € N and p; € R the matrix A = {AW#P/ (u,v)] , IS a positive
2 ij=1
semi-definite matrix.
b) the function s — Ay (u,v), s € R is exponentially convex.

) if Ao (u,v) is positive, then the function s — Ay (u,v), s € R is log-convex.

Proof. a) Define the function f(x) = i | UittjPp,, (x), where pjj; = Pz;pj



OPIAL TYPE INTEGRAL INEQUALITIES FOR FRACTIONAL DERIVATIVES II 143

Set
1 u 1
F(x)=f(x4)= 2 u,-uj(pp,.j(x‘l).
ij=1
Then

i—24

2
F'(x) = <Zu,-xp2‘1 ) > 0.
i=1

This implies that f is convex with respect to g(x) = x4, and also f(0) = 0. So using
this f in the place of & in (2.1) we have

2 u,-ujA(ppij (u,v) = 0. (2.7)
ij=1

Hence the matrix, A = {A(p ritj (u,v)} is positive semi-definite.
2 nxn
b) Since after some computation we have lim,_oAg, (1,v) = Ag,(u,v) and also

limg—.; Ag, (u,v) = Ag, (u,v), so Ay (u,v) is continuous, then by (2.7) and Proposi-
tion 1 we have s — Ay, (u,v) is exponentially convex.

c) As Ay, (u,v) is positive and exponentially convex so by Corollary 1, Ay, (u,v)
is log-convex. [

If we put h; = @(s); hp = @, in Theorem 3, then we have a mean defined as:

1

b)) ™

N (u,v) = ( sHr 2.8)

that is
N ) = (r(H’) M2 () 9 )% — s 2 ) |9 v() w) i
S(5=) g (J2 | ) 19 )7 — 74 2 o) 9] v(a) |9

s,r#q, s#*r. (2.9)

In limiting cases we have:
When s goes to r

lq] _ A 2r—q
Nr,r (M,V) - eXp <B r(r_q)> ) r?'é% (210)

where

a=aw ([ 1) ) rogua( [ vo) 7 an)h)

b b
—Mq(/a [u(x) [ v(x) |* dx+ r/a [ u(x) [ log(| u(x) [) [ v(x) |* dx,

and Y ,
B=gM( [ [v0x) 7 dx)i —rv? [ ulw) 179 v() |
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In (2.10) when r goes to g we get

NI (u,v) = N ()
g (f2 | v(x) | dx)d —sM9 2 [ u(x) 4] v(x) |9 dx)

B (S(S—Q)Mq(CIIfV(X) |4 dxlog(M(fy | v(x) |4 dX)%’)—/l)>
s#q, (2.11)

where A = [7 | v(x) |7 dx+ q ["log(| u(x) |) | v(x) |4 dx.
When s goes to g we have

1/p 2
Ny (u,v) = exp (E (@ - 5)) , (2.12)

P = ama [ 1v(x) 1 o [ |v(x) o))

b b
~(2 [ tog [u(x) | v(v) |7 dx+q [ (1og | u(x) | v() |7 d),

where

and
b b 1
0 = aM(q | | v(x) |7 dxtog(( || v(v)|dx)?)
b b
([ v {ravq [ og | u) || vx) 7))

Now we prove monotonicity of means Ns[qr] (u,v).
THEOREM 5. Let t,s,l,m € Ry such that t <1,s < m. Then

N,[z] (u,v) < Nl[lfi (u,v).

Proof. The following inequality holds for convex function ¢ see in [5, p. 4]

o(x2) — o(xy) < P(2) — o) (2.13)
X2 — X1 Y2 =i

where x| <1, x2 <y2, X| X2, Y1 # V2.
Since by Theorem 4, Ay, (u,v) is log-convex, we can put in (2.14):

¢:10gA¢.v(u7v)7 Xy =s, X2=I, ylzlv Y2 =m.
We get

log Ag, (u,v) —log Ay, (u,v) <logA(pm(mv)—logAq,,(u,v) st 1 Am

t—s m—1
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therefore we get

g (V)N _ [ Ag,(,7)\ 77
<W> <<W> , SFELIFEm. (2.14)

From (2.15) we get our result for t #£ s, [ #m and fort =5, [ =m; t#s, l=m
t =s, | #m we can consider limiting cases. [

3. Inequalities for fractional integrals and derivatives

As we are interested for the class U(v,K) of functions u : [a,b] — R having rep-
resentation (1.1) so we use the following definition of Riemann-Liouville fractional
integral.

DEFINITION 2. Let o > 0. Forany f € L(a,b) the Riemann-Liouville fractional
integral of f of order « is defined by

o 1 b o—1
Ibf(x):m/x (=0 f()dr,  xe[abl. G.1)

THEOREM 6. Let h:[0,00) — R be the function with assumptions of Theorem 1.
If h € C*(I), where I C (0,c0) is compact interval and let v € Cla,b], has Riemann-
Liouville fractional integral of order o, o > é

Then then there exists & € I such that we have

o B (g DH(E) [ (b—ay! .
Pullyrvv) = 2¢q2&2! (rq( )(pcx p+1)p (/ () [ d )
—2/ | 1% (x) 9] v( )|qu). (3.2)

Proof. From Theorem 2, we have

" o ’ 2
i)~ D) ([ pan) =2 [t 360 ).
3.3)

for some & € I and v has Riemann-Liouville fractional integral of order ¢, so

u(x) =Iv(x) = ﬁ/xb(t —x)* W(t)ar, X € |a,b).

Here

1 ol .
Ko = { T =¥ xseshs
0, a<t <X
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Let

(@ Lyp—x)@ sV |
U'(x) = — 1 — <0, for a>-, x¢€la,bl
(a)(poc— p+1)7 q

U (x) is decreasing in [a,b], therefore

1
b—a)* 1
max (U(x)) = (b=a) -, for o>-.
el T(a)(pa—p+1)7 q
That is
1 1
b 7 N7
</ K(xat)p>p < boa) @ >
- Do) (por—p+1)7
al
so here M = —b=9_* -, and by putting the values of u(x) and M in (3.3) we get

I(a)(pa—p+1)P
Bu(I¥v,v) as required in (3.2). [

THEOREM 7. Let hy,hy : [0,00) — R be the function with assumptions of Theorem
L. If hy, hy € C*(I), where I C (0,%0) is compact interval and let v € Cla,b], has
Riemann-Liouville fractional integral of order o, o > é

Then then there exists & € I such that we have

By (59) _ ERY(E) — (g — 1A (E) o

B (Igv,v)  SR5(8) — (g — Dy(E)’

provided the denominators are not equal to zero.

Proof. By Theorem 3 we have

By (u,v) _ SH{(E) = (g = D (E)

By (u,v)  ER5(E) — (g —1)Iy(E)’

N~ =~

for some & € I and from the proof of Theorem 6, we can easily get (3.4) with required
conditions. [l
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L Then (2.7)

If v has Riemann-Liouville fractional integral of order ¢, ot > -

becomes
A(P.r(ll?vvv):
> o Da-hps B
g (4 L ) P ) s £ 0
=4(o)(po— {;Jrl) P 1
o (—gee 0P g 0 S0y e i o) 5=
L, T@a-pr?
o) U0 ) 4 Dot () 4 glog | 1¢v(x) |)|V()|qu)
s$=4q,
(3.5)

2 <D log( .
I(a)(po—p+1)P

where D = f: | v(x) |7 dx.
THEOREM 8. For Ay, (Iv,v) defined above we have
; , IS a positive

n
a) forevery n € N and p; € R the matrix A {A(pp L (I v)]
= ij=1

semi-definite matrix.
b) the function s — Ay (Ifv,v), s € R is exponentially convex
c) if Ay, (Ifv,v) is positive, then the function s — Ay (I7v,v), s € R is log-convex.

O

Proof. The proof is similar to the proof of Theorem 4
¢(r) in Theorem 7, then we have a mean defined as

If we put by = @(s); hp =
1
g (ﬁwr( ))
(IFv,v) = , sEr (3.6)
IL, Bo, (Iv,v)
that is
[T ) =
1
(r(r_ ) gL () (po—p+ )T (b—a) 0\ Di s 7 | 1ev(x) [ v(x) dx) i
$6=4) gra—r(a) (pa—p+1)7 (b-a) "D DI —r [ | 1Ev(x) 74| v(x) |7 dx
s,r#£q,s#r. (3.7)
In limiting cases we have
L 2ra ) r#4, (3.8)
r(r—q)

H[q] (Iv,v) = exp (Bl

9] (IFv,v) = Hgll(lg‘vm) =

Hs,q b
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g (T (@) (po—p+ )7 0-a) ' DI~ [ | Iv() |91 () |9 )

s(s—q)((log D~ 1)D—glog(T (@) (per—p-+1)7 (b—a) "~ #))~q? log | IFv(x)||v(x) | dv)
s#q. (3.9)

oo 3-3)
(IFv,v) = ex —— = , (3.10)
H b p( 01 g¢q
where Ay,B1,P;,Q; are as follows:
Ay =T9"(a)(po—p+ 1)%”(b—a)<’—4><“—5>03 logD
— qlog(T(e) (pot — p+1)7 (b—a) * T (a) (par— p+1)T

x (b—a)" 1 9ph / | IEv() 7] v(x) |7 dx
[ ) 1108 () 1 v00) 7

. ; b
By =gl (@) (pa—p+ 1) 7 (b—a) VDI~ [ ) 79 v 1 d

D(logD)?

P = —Dlongog(F(a)(poc—p+l)Tl’(b—a)’(“’%))

<)
9
Y
IS
=
+
—_
e

(b—a) (0‘*5 2/ log | IZv(x) || v(x) |9 dx
’ 2
~a [ tog | 100 | () 7,
Q1 = (logh—1)D —glog (F(a)(pa—p+ 1)%(b—a)—<a—é>>
b
_q/ IOg | I;,XV()C) H v(x) |q dx.
Further we prove monotonicity of above means.

THEOREM 9. Let t,s,l,m € Ry suchthat t <1, s <m.
Then [ ] d
Hq v) < Hl(fm(lg‘v, V).

Proof. The following inequality holds for convex function ¢ see in [5, p. 4],

¢ (x2) — @(x1) < () — <P(y1), (3.11)
Xy — X1 2=y

where x1 < y1, X2 <y2, X1 X2, Y1 # Y2
Since by Theorem 8, Ay(Ifv,v) is log-convex, we can put in (3.11):

¢ =logAg, (Ifv,v), x1=s, xo2=t, y1=I[, y2=m
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we getfor s #£1, [ #m

log Ag, (I v,v) —log Ay (I7v,v) logAq,m(I“vv) log Ag, (I v,v)
t—s m—1

1 1
Aoy vy) N7 (Do U1 V) T (3.12)
Ag, (Iv,v) Ay, (I7v,v)
From (3.12), we get our result for t #£ s, [ #m and for t =5, l =m; t £ s, | =m;
t =s, | #m we can consider limiting cases. [J

)

therefore we have

To give more results we apply the following definition of Caputo fractional deriva-
tive (see [0, p. 92]).

DEFINITION 3. Let o > 0 and o ¢ {1,2,...}. The Caputo fractional derivative
of order o for a function f : [a,b] — R belonging to the space AC"[a,b] of absolutely
continuous functions is defined by

IRV SO
De () = =Y /(xf ) 4, (3.13)

where n = [or] + 1, and [¢] stands for the largest integer not greater than o.

THEOREM 10. Let h:[0,00) — R be the function with assumptions of Theorem 1.
If h € C*(I) with h(0) = 0, where I C (0,c0) is compact interval and let v € AC"[a,b]
for even n, has Caputo fractional derivative of order o, o & {1,2,3,...} and, 0 <
o—la] < 1%’ then there exists & € I such that the following equality holds

o, n)y En'(E)—(g— I (&) ( (b — ayled-o+})
PulDE ) 2q2E2%-1 Ti([o] — o+ 1) (p([a] — o) +1)7

(/ |qu> —2/|va X) 4] v ()|qu>. (3.14)

Proof. From Theorem 2 we have

Bl = SLEL I (M(/ o |qu) 2 [t qv(>qu>

(3.15)
and v € AC"[a,b], has Caputo fractional derivative of order o, and n is even so

<l

1

b
) = DY) = Fo g / (1 — X)) (1),
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Here
1 —a-1
Koy { ot e
0, a<t<
Let
b % b nfotf*l
— q
V(x) = (/ (K(x,t))pdt> - (b—x) o on=lo]+1
¥ F(n—oa)(p(n—o)—p+1)»
1 -l
R (RS I
(o] —a+1)
for 0 < o —[o] < %, X € [a,b]. V(x) is decreasing in [a,b].
(hia)[oc]—oﬁr% 1
Therefore, max (V(x)) = , for0<a—la] <.

xela) T(la)—or+1)(p((e]-a)+1)7
That is

_ a)[a]—oc+%

</h K(x,t)p) [ < (b
* I([o] —a+1)(p(la] — ) +1)

(hia)[a]—oﬁr%

1
) O<o—[a]<—,
p

==

so here M = -, for 0 < a—[o] <

T((o]—a+1)(p([o]—)+1)7

AL

Therefore by putting v = V" and the values of u(x) and M in (3.15) we get
ﬁh(Dg‘uv(")) as required in (3.14). O

THEOREM 11. Let hy, hy:[0,00) — R be the function with assumptions of The-
orem 1. If hy, hy € C*(I) such that hi(0) = hy(0) = 0, where I C (0,%0) is compact
interval and let v € AC"[a, D] for even n, has Caputo fractional derivative of order o,
o {1,2,3,..} and, 0 < ot — ] < 1%’ then there exists & € I such that the following
equality holds

B (DFv ™) En{(E) — (g — V(&)
B, (DFv,v))  EM(E) — (9= D)I(S)

(3.16)

NN~

Proof. By Theorem 3 we have

ﬁhl (u,v) _ éh/ll(é) —(g— l)hll(é)
2

Br, (u,v) — Eh3(8) — (g —1)h5(E)’
and from the proof of Theorem 10, we get (3.16) with required condition. []

If v € AC"[a,b] for even n, has Caputo fractional derivative of order o, o ¢
{1,2,3,..} and, 0 < o — [e] < % Then (2.7) becomes
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A(ps (Dg V? v(”)) =

2

(s—q)(lo)—at ) .3
: ( whe =5 [y | Dgv(x) [ v (x) d) 5 #0,;
rs—a

(lo]—a+1)(p([a]—a)+1) P

— gl ([ —a+ 1) (p([o] o) + 1) log< (b-a)® 7 )
(b—a)?10=o+p) Tl o+ 1) (pl([a] -a)+1)7

s(s—q)

q

+ [P DEv(x) [ v (x) |4 dx>, s =0;

(b,u)q([a]ﬂJH %)

Q=

—u [at]—at+l
| Elog (—-0——EL_) ¢ :
[([o]-a+1)(p([o]-0)+1)P Ti([e]—o+1)(p([a]—a)+1)P

x [ (1+qlog | DEv(x) [) [ v (x) |7 dX>, $ =4,

(3.17)
where E = [? | v (x) | dx.
THEOREM 12. For Ag, (D%v,v") defined above we have:
a) The matrix A= |Ag,. ., (DgFv,vim) , Is a positive-semidefinite matrix.
5 Q=1

b) The function s — Ag, (ng,v(”)) is exponentially convex.
c) Ay (Dyv, vi") is log-convex.

Proof. For proof see the proof of Theorem 4. [J
If we put Ay = @(s), ha = @(r) in Theorem 11, then we have a mean defined as:

1

My
[ oy, (n)y ﬁ(Ps(ngav )
I (Dgvyy\W) = | =5 —2-—= , s#r (3.18)
o (ﬁfp,(D;’f‘W("))

that is

HL?;(D;}V, v(")) =
L

(b—a)e- (- Dps _p \
(b—a)r @i _py )
s,r£q,s£r. (3.19)

q=s
p
q-—r
P

(r(r—q) T~ (Jo)—o+ 1) (p([o] — o) + 1)
$6=4) gro—([oj-a+1)(p(lo]—0) +1)

where

b
Li=s [ 1Dfv@) () |7 dx,
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b
M= r/ | Div(x) [ () |7 d.

In limiting cases we have:

4] o, (n) (Az 2r—gq )
[1.(Dyv,v =ex , r , 3.20
5 ( b ) p 32 r(r q) 7& q ( )

ng(]j (Dgv, p() )= Y'qu (DY, () )=

1

( g (T ([o)—a+1)(pll)-a)+1) T (p—a) 0 D ET 1)) )
(s—q) ((logf—1) E~glog(N([a]—a+1) (p([e-a)+1)7 (b—a) 1" 2))—aty) | ©
s#q, (3.21)

T, (DZv, ")) = exp (1 (ﬁ - %)> , (3.22)
0 q

where Ay, Br, M>, P>, Q> are as follows:

Ay =T ([o] —a+1)(p
—qlog(T'([a] — e +
< (pllo] )+ )7 (b —a) et Eq—/ | Dfv() 77 v () |7 dx
—r / | D&V I log | DEv(x) V) (x) 14 d,

By =qI ([0 — o+ 1)(p([e] — ) + )T (b—a) 'O g

b
—r [ 10§y 1) 9 i,

(Jo] = @)+ )7 (b—a) V(=) E i log
D(p([o] - @)+ )7 (b—a) =217 (o] — 0+ 1)

b
M, = q/ log | Dy v(x) || y() (x) |9 dx,

E(logE)?

P = —ElogElog(F([oc} — o+ 1)([?([(%] _ OC) + l)Fl(b—a)_([a]_oH'F)

+qlog(T([e] — o+ 1)(p(le] — o) + 1) (b—a) (732
-2 "log | DEV(R) || v 1 dx—g / (log | D v(x) |)? | v(x) | d,

02 = (logE — )E — qlog(I([a] — -+ 1)(p(e] — &) + 1)7 (b —a)~(4-477))
~q [ tog | D) V00

Now we prove monotonicity.
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THEOREM 13. Let t,s,l,m € Ry suchthatt <1, s <m.
Then

H}q\] (D, v(")) <1l (D, pl ))

I,m

Proof. The following inequality holds for convex function ¢ see in [8, p. 4],

9(r) — o(x) _ 92) — 0()
X2 — X1 A Y2 =1 '

(3.23)

where x1 <yp, x2 <y2, X1 # X2, Y1 # 2.
Since by Theorem 12, Ay, (Dg‘v,v(”)) is log-convex, we can put in (3.23): ¢ =
logA(,,_Y(Dl‘j‘v,v(”)), x1=s,x=t,y1=1,y,=m. Wegetfors#t,l#*m

log Ag, (D§v,v") —Tlog Ag, (DFv,v(™) o log Ag,, (DFv,v™) —log Ag, (DFv,v™)
t—s h m—1

)

(3.24)

that is

1 1

A (D )\ Ao (D% ™Y\ ™

Ap(Dhuv ™) 70 (A Dpvv™) N5 (325)
Ay, (DFv,v(M) Ag (Dgv,v(M)

From (3.24) we get our result for t #£ s, [ #m and fort =5, | =m; t#s, l=m
t =s, | #m we can consider limiting cases. [

In the following result [1] one can see composition identity for Caputo fractional
derivatives.

LEMMA 2. Let v>y>0, n=[v]+1, m=[y]+1 and f € AC"([a,b]). Suppose
that one of the following conditions hold:

(a) v,y¢ Ny and fi(b)=0 fori=mm+1,...n—1.

(b) veN,y¢ Ny and fi(b)=0 fori=mm+1,...n—2.
(c) véN,yeNy and fi(b) =0 fori=m—1,...n—1.
(d) veN,ycNyand fi(b)=0 fori=m—1,...n—2.

Then

b
DIf(r) / )W=r-1DY £(s)ds. (3.26)
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By using Lemma 2 previous results can be proved, stated as follows:

THEOREM 14. Let ¢, q and p be defined as in Theorem 1, and 0 <y < v — é.
If one of the conditions in Lemma 2 is satisfied, then

b
/a | Dju(x) ['~9 ¢"(| Dyu(x) |) | Dyv(x) |7 dx

cd"v=ypv-r)-p+1)
< (b—a)q(v_y_é) (3.27)

(b—a)' ¥ ’
X ¢ - | Dy v(x) | dx ,
(v =7)(p(v=7)—p+1)7 AL )

1

_—=

1
If the function ¢(x7) is concave, then the reverse of the inequality (3.27) holds.

THEOREM 15. Let h: [0,00) — R be the function with assumptions of Theorem
L. If h € C*(I), where 1 C (0,c0) is compact interval, also let 0 < y < v — é and one

of the conditions in Lemma 2 is satisfied, then there exists & € I such that

Y0 DYy — ER"(E) —(q—DH(E) (b _a)q(v—y—é)
oy (Dyv,Dpv) = 2¢28%4-1 F‘I(V—)/)(p(v—y)—p+1)§

x (/h | DYv(x) |7 dx)2 —z/ab | D!v(x) 9] DYv(x) |7 dx

THEOREM 16. Let hy,h; : [0,00) — R be the functions with assumptions of The-
orem 1. If hy, hy € C*(I), where I C (0,00) is compact interval, let 0 <y < v — %1 and
one of the conditions in Lemma 2 is satisfied, then there exists & € I such that

oy, (Dyv, Dyv)  ER{(E) — (g — V(&)

o, (Dpv, Dyv) — EM(E) — (g — 1)Y(E)”

provided that denominators are not equal to zero.
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