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BOUNDARY VALUE PROBLEMS FOR NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS AND INCLUSIONS WITH

NONLOCAL AND INTEGRAL BOUNDARY CONDITIONS

SOTIRIS K. NTOUYAS

Abstract. In this paper, we study a class of boundary value problems of nonlinear fractional dif-
ferential equations and inclusions with nonlocal and integral boundary conditions. Some new
existence and uniqueness results are obtained by using a variety of fixed point theorems. Exam-
ples are given to illustrate the results.

1. Introduction

In recent years, boundary value problems for nonlinear fractional differential equa-
tions have been addressed by several researchers. Fractional derivatives provide an ex-
cellent tool for the description of memory and hereditary properties of various materials
and processes. These characteristics of the fractional derivatives make the fractional-
order models more realistic and practical than the classical integer-order models. As
a matter of fact, fractional differential equations arise in many engineering and scien-
tific disciplines such as physics, chemistry, biology, economics, control theory, signal
and image processing, biophysics, blood flow phenomena, aerodynamics, fitting of ex-
perimental data, etc. [25, 31, 32, 33]. For some recent development on the topic, see
[1]-[8], [10]-[13], [15, 27, 28, 34, 35] and the references therein.

Recently, Benchohra et al. in [14] investigated the following first order nonlocal
boundary value problem:

{ cDqx(t) = f (t,x(t)), 0 < t < T, 0 < q < 1,

x(0)+g(x) = x0,
(1.1)

where cDq denotes the Caputo fractional derivative. They proved existence and unique-
ness results by using Banach’s contraction principle and Schaefer’s fixed point theorem.

Nonlocal conditions were initiated by Bitsadze [16]. As remarked by Byszewski
[18, 19, 20], the nonlocal condition can be more useful than the standard initial con-
dition to describe some physical phenomena. For example, g(x) may be given by
g(x) = ∑p

i=1 cix(ti) where ci, i = 1, . . . , p, are given constants and 0 < t1 < .. . < tp � T.
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Later, Benchohra et al. in [15] investigated the following nonlocal boundary value
problem: { cDqx(t) = f (t,x(t)), 0 < t < T, 1 < q � 2,

x(0) = g(x), x(T ) = xT ,
(1.2)

where cDq denotes the Caputo fractional derivative. Using Schaefer’s fixed point the-
orem they provided sufficient criteria for the existence of at least one solution for the
problem (1.2) with the conditions that f (t,x) is uniformly bounded on [0,T ]×R and
that the set g(C([0,T ])) is bounded. Also, they established criteria for the uniqueness
of solutions by virtue of the Banach’s fixed point theorem.

Zhong and Lin [36] investigated the existence and uniqueness of solutions for the
following nonlocal and multiple-point boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
cDqx(t) = f (t,x(t)), 0 < t < 1, 1 < q � 2,

x(0) = x0 +g(x), x′(1) = x1 +
m−2

∑
i=1

bix
′(ξi),

(1.3)

where cDq denotes the Caputo fractional derivative, x0,x1 ∈ R, bi � 0,0 < ξi < 1, i =
1,2, . . . ,m− 2, and d = ∑m−2

i=1 bi < 1. They give some sufficient conditions for the
uniqueness of solutions and for the existence of at least one solution of the problem
(1.3) by means of the contraction principle in the Banach space and by the fixed point
theorem attributed to D. O’Regan [29].

More recently, Ahmad et al. in [9] investigated the existence and uniqueness of
solutions for the following boundary value problem with three-point integral boundary
conditions: ⎧⎪⎨

⎪⎩
cDqx(t) = f (t,x(t)), 0 < t < 1, 1 < q � 2,

x(0) = 0, x(1) = α
∫ η

0
x(s)ds, 0 < η < 1,

(1.4)

where cDq denotes the Caputo fractional derivative, and α ∈ R, α �= 2/η2. Some new
existence and uniqueness results are obtained by using standard fixed point theorems,
such as Banach’s contraction principle, Krasnoselskii’s fixed point theorem and Leray-
Schauder degree theory.

Motivated by the aforementioned papers, we intend in this paper to discuss the
existence and uniqueness of solutions for a boundary value problem of nonlinear frac-
tional differential equations and inclusions of order q∈ (1,2] with nonlocal and integral
boundary conditions. Thus, in the first part of the paper we discuss the boundary value
problem of nonlinear fractional differential equations given by:⎧⎪⎨

⎪⎩
cDqx(t) = f (t,x(t)), 0 < t < 1, 1 < q � 2,

x(0) = x0 +g(x), x(1) = α
∫ η

0
x(s)ds, 0 < η < 1,

(1.5)

where cDq denotes the Caputo fractional derivative of order q , f : [0,1]×R → R is
continuous, g : C([0,1],R) → R and α ∈ R is such that α �= 2/η2 . Two results are
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given, one based on Banach’s contraction principle and another one based on a fixed
point theorem due to D. O’Regan [29]. Examples are also provided to illustrate the
possible application of the established analytical results.

In the second part, we cover the multivalued case, considering the following bound-
ary value problem for fractional order differential inclusions with nonlocal and integral
boundary conditions:⎧⎪⎨

⎪⎩
cDqx(t) ∈ F(t,x(t)), 0 < t < 1, 1 < q � 2,

x(0) = x0 +g(x), x(1) = α
∫ η

0
x(s)ds, 0 < η < 1,

(1.6)

where F : [0,1]×R→ P(R) is a multivalued map, P(R) is the family of all subsets
of R. We present two existence results for the problem (1.6), when the right hand side is
convex as well as nonconvex valued. The first result relies on the Nonlinear Alternative
for contractive maps, while in the second result, we combine the nonlinear alternative
of Leray-Schauder type for single-valued maps with a selection theorem due to Bressan
and Colombo for lower semicontinuous multivalued maps with nonempty closed and
decomposable values.

The remainder of the paper is organized as follows. Section 2 preliminarily pro-
vides some definitions and lemmas which are crucial to the following discussion. Sec-
tion 3 contains the existence and uniqueness results for the problem (1.5), while the
results for the problem (1.6) are contained in Section 4.

2. Preliminaries from fractional calculus

Let us recall some basic definitions of fractional calculus [25, 31, 33].

DEFINITION 2.1. If g(t) ∈ ACn[a,b], then the Caputo derivative of fractional or-
der q is defined as

cDqg(t) =
1

Γ(n−q)

∫ t

0
(t− s)n−q−1g(n)(s)ds, n−1 < q < n,n = [q]+1,

where [q] denotes the integer part of the real number q. Here ACn[a,b] denote the
space of real valued functions g(t) which have continuous derivatives up to order n−1
on [a,b] such that gn−1(t) ∈ AC[a,b] .

DEFINITION 2.2. The Riemann-Liouville fractional integral of order q is defined
as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)
(t− s)1−q ds, q > 0,

provided the right hand side is pointwise defined on (0,∞).
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LEMMA 2.3. For q > 0, the general solution of the fractional differential equa-
tion cDqx(t) = 0 is given by

x(t) = c0 + c1t + c2t
2 + ...+ cn−1t

n−1,

where ci ∈ R, i = 0,1,2, ...,n−1 (n = [q]+1 ).

In view of Lemma 2.3, it follows that

Iq cDqx(t) = x(t)+ c0 + c1t + c2t
2 + ...+ cn−1t

n−1, (2.1)

for some ci ∈ R, i = 0,1,2, . . . ,n−1 (n = [q]+1).

To define the solution for the problem (1.5), we find the solution for its associated
linear problem.

LEMMA 2.4. Assume that αη2 �= 2. For a given y∈C([0,1],R) the unique solu-
tion of the boundary value problem⎧⎪⎨

⎪⎩
cDqx(t) = y(t), 0 < t < 1, 1 < q � 2,

x(0) = x0 +g(x), x(1) = α
∫ η

0
x(s)ds, 0 < η < 1,

(2.2)

is given by

u(t) =
1

Γ(q)

∫ t

0
(t− s)q−1y(s)ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1y(s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1y(m)dm

)
ds

+
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), t ∈ [0,1].

(2.3)

Proof. For some constants c0,c1 ∈ R, we have [25]

x(t) =
∫ t

0

(t − s)q−1

Γ(q)
y(s)ds− c0− c1t. (2.4)

From x(0) = x0 +g(x) we have c0 = −(x0 +g(x)). Applying the other boundary con-
dition we get

c1 =
−2α

2−αη2

∫ η

0

∫ s

0

(s−m)q−1

Γ(q)
y(m)dmds+

2
2−αη2

∫ 1

0

(1− s)q−1

Γ(q)
y(s)ds

+
2(1−αη)
2−αη2 (x0 +g(x)).

Substituting in (2.4), the values of c0 and c1 we obtain (2.3). �
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3. Existence results-The single-valued case

We denote by C = C([0,1],R) the Banach space of all continuous functions from
[0,1]→ R endowed with a topology of uniform convergence with the norm defined by
‖x‖ = sup{|x(t)| : t ∈ [0,1]}.

In view of Lemma 2.4, we define an operator F : C → C by

(Fx)(t) =
1

Γ(q)

∫ t

0
(t − s)q−1 f (s,x(s))ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s,x(s))ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m,x(m))dm

)
ds

+
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), t ∈ [0,1].

Define two operators from C → C , respectively, by

(F1x)(t) =
1

Γ(q)

∫ t

0
(t− s)q−1 f (s,x(s))ds

− 2t
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s,x(s))ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m,x(m))dm

)
ds, t ∈ [0,1],

(3.1)

and

(F2 x)(t) =
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), t ∈ [0,1]. (3.2)

Clearly
(F x)(t) = (F1 x)(t)+ (F2 x)(t), t ∈ [0,1]. (3.3)

THEOREM 3.1. Let f : [0,1]×R→ R be a continuous function. Assume that:

(A1) | f (t,x)− f (t,y)| � L|x− y|,∀t ∈ [0,1], L > 0, x,y ∈ R;

(A2) there exist a positive constant � <

(
2|αη −1|
|2−αη2| +1

)−1

and a continuous func-

tion φ : [0,∞) → [0,∞) such that φ(z) � �z and |g(u)−g(v)| � φ(‖u− v‖) for
all u,v ∈C([0,1]).

(A3) γ =
L

Γ(q+1)

(
1+

2[(q+1)+ |α|ηq+1]
|2−αη2|(q+1)

)
+ �

(
2|αη −1|
|2−αη2| +1

)
< 1.

Then the boundary value problem (1.5) has a unique solution.

Proof. For x,y ∈ C and for each t ∈ [0,1], from the definition of F and assump-
tions (A1) and (A2), we obtain
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|(Fx)(t)− (Fy)(t)|
� 1

Γ(q)

∫ t

0
(t − s)q−1| f (s,x(s))− f (s,y(s))|ds

+
∣∣∣∣ 2t
(2−αη2)Γ(q)

∣∣∣∣
∫ 1

0
(1− s)q−1| f (s,x(s))− f (s,y(s))|ds

+
∣∣∣∣ 2αt
(2−αη2)Γ(q)

∣∣∣∣
∫ η

0

(∫ s

0
(s−m)q−1| f (m,x(m))− f (m,y(m))|dm

)
ds

+
∣∣∣∣2(αη −1)t

2−αη2 +1

∣∣∣∣ |g(x)−g(y)|

� L‖x− y‖
[

1
Γ(q)

∫ t

0
(t − s)q−1ds+

∣∣∣∣ 2t
(2−αη2)Γ(q)

∣∣∣∣
∫ 1

0
(1− s)q−1ds

+
2|α|

|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1dm

)
ds

]
+
(

2|αη −1|
|2−αη2| +1

)
�‖x− y‖

�
{

L
Γ(q+1)

(
1+

2[(q+1)+ |α|ηq+1]
|2−αη2|(q+1)

)
+ �

(
2|αη −1|
|2−αη2| +1

)}
‖x− y‖,

and hence
‖Fx−Fy‖ � γ‖x− y‖.

As γ < 1, by (A3), F is a contraction map from the Banach space C into itself. Thus,
the conclusion of the theorem follows by the contraction mapping principle (Banach
fixed point theorem). �

Next, we introduce the fixed point theorem which was established by O’Regan in
[29]. This theorem will be adopted to prove the next main result.

LEMMA 3.2. Denote by U an open set in a closed, convex set C of a Banach
space E. Assume 0 ∈ U. Also assume that F(U) is bounded and that F : U → C
is given by F = F1 + F2, in which F1 : U → E is continuous and completely con-
tinuous and F2 : U → E is a nonlinear contraction (i.e., there exists a nonnegative
nondecreasing function φ : [0,∞) → [0,∞) satisfying φ(z) < z for z > 0, such that
‖F2(x)−F2(y)‖ � φ(‖x− y‖) for all x,y ∈U). Then, either

(C1) F has a fixed point u ∈U ; or

(C2) there exist a point u ∈ ∂U and λ ∈ (0,1) with u = λF(u), where U and ∂U,
respectively, represent the closure and boundary of U.

Let
Ωr = {x ∈C([0,1],R) : ‖x‖ < r},

and denote the maximum number by

Mr = max{| f (t,x)| : (t,x) ∈ [0,1]× [−r,r]}.
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THEOREM 3.3. Let f : [0,1]×R → R be a continuous function. Suppose that
(A1),(A2) hold. In addition we assume that:

(A4) g(0) = 0;

(A5) there exists a nonnegative function p ∈C([0,1],R) and a nondecreasing function
ψ : [0,∞) → [0,∞) such that

| f (t,u)| � p(t)ψ(|u|) for any (t,u) ∈ [0,1]×R;

(A6) sup
t∈(0,∞)

r
k0|x0|+ p0ψ(r)

>
1

1− k0�
, where

p0 =
1

Γ(q)

∫ 1

0
(1− s)q−1p(s)ds+

2
|2−αη2|Γ(q)

∫ 1

0
(1− s)q−1p(s)ds

+
2|α|

|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds,

and

k0 =
2|αη −1|
|2−αη2| +1.

Then the boundary value problem (1.5) has at least one solution on [0,1].

Proof. Consider the operator F : C → C as that defined in (3.3), that is,

(Fx)(t) = (F1x)(t)+ (F2x)(t), t ∈ [0,1],

where the operators F1 and F2 are defined respectively in (3.1) and (3.2).
From (A6) there exists a number r0 > 0 such that

r0

k0|x0|+ p0ψ(r0)
>

1
1− k0�

. (3.4)

We shall prove that the operators F1 and F2 satisfy all the conditions in Lemma
3.2.

Step 1. The operator F1 is continuous and completely continuous. We first show
that F1(Ωr0) is bounded. For any x ∈ Ωr0 we have

‖F1x‖ � 1
Γ(q)

∫ t

0
(t − s)q−1| f (s,x(s))|ds+

2t
|2−αη2|Γ(q)

∫ 1

0
(1− s)q−1| f (s,x(s))|ds

+
2|α|t

|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1| f (m,x(m))|dm

)
ds

� Mr0

Γ(q+1)

(
1+

2[(q+1)+ |α|ηq+1]
|2−αη2|(q+1)

)
.
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This proves that F1(Ωr0) is uniformly bounded.
In addition, for any t1,t2 ∈ [0,1],t1 < t2, we have:

|(F1x)(t2)− (F1x)(t1)|
� 1

Γ(q)

∫ t1

0
[(t2 − s)q−1− (t1− s)q−1]| f (s,x(s))|ds

+
1

Γ(q)

∫ t2

t1
(t2− s)q−1| f (s,x(s))|ds

+
2|t2− t1|

|2−αη2|Γ(q)

∫ 1

0
(1− s)q−1| f (s,x(s))|ds

+
2|α||t2 − t1|

|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1| f (m,x(m))|dm

)
ds

� Mr0

Γ(q)

∫ t1

0
[(t2 − s)q−1− (t1− s)q−1]ds+

Mr0

Γ(q)

∫ t2

t1
(t2− s)q−1ds

+
2Mr0

|2−αη2|Γ(q+1)

(
1+

|α|ηq+1

q+1

)
|t2− t1|,

which is independent of x, and tends to zero as t2−t1 → 0. Thus, F1 is equicontinuous.
Hence, by the Arzelá-Ascoli Theorem, F1(Ωr0) is a relatively compact set. Now, let
xn ⊂ Ωr0 with ‖xn − x‖ → 0. Then the limit ‖xn(t)− x(t)‖ → 0 uniformly valid on
[0,1]. From the uniform continuity of f (t,x) on the compact set [0,1]× [−r0,r0] if
follows that ‖ f (t,xn(t))− f (t,x(t))‖ → 0 is uniformly valid on [0,1]. Hence ‖F1xn −
F1x‖ → 0 as n → ∞ which proves the continuity of F1. Hence Step 1 is completely
proved.

Step 2. The operator F2 : Ωr0 →C([0,1],R) is contractive. This is a consequence
of (A2).

Step 3. The set F(Ωr0) is bounded. By (A2) and (A4) imply that

‖F2(x)‖ �
(

2|αη −1|
|2−αη2| +1

)
(|x0|+ �r0),

for any x ∈ Ωr0 . This, with the boundedness of the set F1(Ωr0) implies that the set

F(Ωr0) is bounded.
Step 4. Finally, it is to show that the case (C2) in Lemma 3.2 does not occur. To

this end, we suppose that (C2) holds. Then, we have that there exist λ ∈ (0,1) and
x ∈ ∂Ωr0 such that x = λFx. So, we have ‖x‖ = r0 and

x(t) = λ

[
1

Γ(q)

∫ t

0
(t − s)q−1 f (s,x(s))ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s,x(s))ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m,x(m))dm

)
ds

+
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x))

]
.
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With hypotheses (A4)− (A6), we have

r0 � ψ(r0)
Γ(q)

∫ t

0
(t− s)q−1p(s)ds+

2ψ(r0)
|2−αη2|Γ(q)

∫ 1

0
(1− s)q−1p(s)ds

+
2|α|ψ(r0)

|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds

+
(

2|αη −1|
|2−αη2| +1

)
(|x0|+ �r0),

which implies
r0 � k0�r0 + k0|x0|+ p0ψ(r0).

Thus,
r0

k0|x0|+ p0ψ(r0)
� 1

1− k0�
,

which contradicts to (3.4). Consequently, we have proved that the operators F1 and F2

satisfy all the conditions in Lemma 3.2. Hence, the operator F has at least one fixed
point x ∈ Ωr0 , which is the solution of the boundary value problem (1.5). The proof is
completed. �

We illustrate the above obtained results by concrete examples.

EXAMPLE 3.4. Consider the following boundary value problem⎧⎪⎪⎨
⎪⎪⎩

cD3/2x(t) =
1

(t +2)2 ·
|x|

1+ |x| +1+ sin2 t, 0 < t < 1,

x(0) = 1+
1
16

x(ξ ), x(1) = 4
∫ 1/2

0
x(s)ds, 0 < ξ < 1.

(3.5)

Here q = 3/2, � = 1/16,α = 4,η = 1/2, and f (t,x) =
1

(t +2)2 · |x|
1+ |x| + 1 + sin2 t.

As | f (t,x)− f (t,y)| � 1
4
|x− y|, therefore (A1) is satisfied with L =

1
4
. Further

γ =
1

3
√

π

(
3+

2
√

2
5

)
+

3
16

≈ 0.8582441 < 1.

Thus, by Theorem 3.1, problem (3.5) has a unique solution on [0,1].

EXAMPLE 3.5. Let β > 0 and consider the following boundary value problem⎧⎪⎨
⎪⎩

cD3/2x(t) = β t2 sin2 x, 0 < t < 1,

x(0) =
1
3

+ �x(ξ ), x(1) = 4
∫ 1/2

0
x(s)ds, 0 < ξ < 1.

(3.6)
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We shall prove that the problem (3.6) admits at least one solution provided that

|�| < 1 and 0 < β <
5
√

π
33

(1−|�|)2.

In order to show the validity of this claim, we need to verify that all conditions in
Theorem 3.3 are satisfied. Note that here q = 3/2, f (t,x) = β t2 sin2 x,x0 = 1/3,g(x) =
�x(ξ ),α = 4,η = 1/2,α �= 2/η2.

The function g(x) = �x(ξ ) is contractive because |g(u)−g(v)| < |�| · ‖u− v‖ for
any u,v ∈ C([0,1]). Moreover g(0) = 0. Hence, the condition (A4) is satisfied. Set
p(t) = β t and ψ(x) = x2. We have

| f (t,x)| � |β t2 sin2 x| � β tx2, for any (t,x) ∈ [0,1]×R.

Thus condition (A5) is satisfied. We find

p0 =
2√
π
· 4
15

β +
2√
π
· 8
15

β +
16√

π
· 1
320

β =
33β

20
√

π
.

We also have k0 = 3 and arrive the estimation:

sup
t∈(0,∞)

r
k0|x0|+ p0ψ(r)

= sup
t∈(0,∞)

r

1+ 33β
20

√
π r2

=
1
2

√
20

√
π

33β
>

1
1−|�|,

provided |�|< 1 and 0 < β <
5
√

π
33

(1−|�|)2. This means that (A6) is satisfied as long

as both |�| < 1 and 0 < β <
5
√

π
33

(1− |�|)2 hold. Therefore, according to Theorem

3.3, we can conclude that problem (3.6) has at least one solution on [0,1].

4. Existence results-The multi-valued case

Let us recall some basic definitions on multi-valued maps [21], [23].
For a normed space (X ,‖ · ‖) , let Pcl(X) = {Y ∈ P(X) : Y is closed} , Pb(X) =

{Y ∈ P(X) : Y is bounded} , Pcp(X) = {Y ∈ P(X) : Y is compact} , and Pcp,c(X) =
{Y ∈P(X) :Y is compact and convex} . A multi-valued map G : X →P(X) is convex
(closed) valued if G(x) is convex (closed) for all x ∈ X . The map G is bounded on
bounded sets if G(B) = ∪x∈BG(x) is bounded in X for all B ∈ Pb(X) (i.e.

sup
x∈B

{sup{|y| : y ∈ G(x)}} < ∞).

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X , the set G(x0) is
a nonempty closed subset of X , and if for each open set N of X containing G(x0),
there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N. G is said to be
completely continuous if G(B) is relatively compact for every B ∈ Pb(X) . If the multi-
valued map G is completely continuous with nonempty compact values, then G is
u.s.c. if and only if G has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply
y∗ ∈ G(x∗). G has a fixed point if there is x ∈ X such that x ∈ G(x) . The fixed point
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set of the multivalued operator G will be denoted by FixG . A multivalued map G :
[0;1] → Pcl(R) is said to be measurable if for every y ∈ R , the function

t �−→ d(y,G(t)) = inf{|y− z| : z ∈ G(t)}

is measurable.
Let L1([0,1],R) be the Banach space of measurable functions x : [0,1]→R which

are Lebesgue integrable and normed by ‖x‖L1 =
∫ 1

0
|x(t)|dt.

DEFINITION 4.1. A function x ∈ AC2([0,1],R) is a solution of the problem (1.6)

if x(0) = x0 + g(x), x(1) = α
∫ η

0
x(s)ds, and there exists a function f ∈ L1([0,1],R)

such that f (t) ∈ F(t,x(t)) a.e. on [0,1] and

x(t) =
1

Γ(q)

∫ t

0
(t − s)q−1 f (s)ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m)dm

)
ds

+
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), t ∈ [0,1].

4.1. The Carathéodory case

DEFINITION 4.2. A multivalued map F : [0,1]×R → P(R) is said to be Cara-
théodory if

(i) t �−→ F(t,x) is measurable for each x ∈ R ;

(ii) x �−→ F(t,x) is upper semicontinuous for almost all t ∈ [0,1] ;

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each α > 0, there exists ϕα ∈ L1([0,1],R+) such that

‖F(t,x)‖ = sup{|v| : v ∈ F(t,x)} � ϕα(t)

for all ‖x‖ � α and for a.e. t ∈ [0,1].

For each y ∈C([0,1],R) , define the set of selections of F by

SF,y := {v ∈ L1([0,1],R) : v(t) ∈ F(t,y(t)) for a.e. t ∈ [0,1]}.

The following lemma will be used in the sequel.
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LEMMA 4.3. ([26]) Let X be a Banach space. Let F : [0,1]×R → Pcp,c(X) be
an L1− Carathéodory multivalued map and let Θ be a linear continuous mapping from
L1([0,1],X) to C([0,1],X) . Then the operator

Θ ◦ SF : C([0,1],X) → Pcp,c(C([0,1],X)), x �→ (Θ ◦ SF)(x) = Θ(SF,x)

is a closed graph operator in C([0,1],X)×C([0,1],X).

To prove our main result in this section we will use the following form of the
Nonlinear Alternative for contractive maps [30, Corollary 3.8].

THEOREM 4.4. Let X be a Banach space, and D a bounded neighborhood of
0 ∈ X . Let Z1 : X → Pcp,c(X) and Z2 : D → Pcp,c(X) two multi-valued operators
satisfying

(a) Z1 is contraction, and

(b) Z2 is u.s.c and compact.

Then, if G = Z1 +Z2, either

(i) G has a fixed point in D or

(ii) there is a point u ∈ ∂D and λ ∈ (0,1) with u ∈ λG(u) .

THEOREM 4.5. Assume that

(H1) F : [0,1]×R → Pcp,c(R) is L1−Carathéodory multivalued map;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) → (0,∞) and a func-
tion p ∈ L1([0,1],R+) such that

‖F(t,x)‖P := sup{|y| : y ∈ F(t,x)} � p(t)ψ(‖x‖) for each (t,x) ∈ [0,1]×R;

(H3) there exists a constant Lg <

[
2|αη −1|
|2−αη2| +1

]−1

such that

|g(x)−g(y)|� Lg|x− y|, ∀x,y ∈ R;

(H4) there exists a number M > 0 such that(
1−Lg

[
2|αη −1|
|2−αη2| +1

])
M

1
Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)
ψ(M)‖p‖L1 +

[
2|αη −1|
|2−αη2| +1

]
|x0|

> 1. (4.1)

Then the boundary value problem (1.6) has at least one solution on [0,1].
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Proof. Transform the problem (1.6) into a fixed point problem. Consider the
operator N : C([0,1],R) −→ P(C([0,1],R)) defined by:

N (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈C([0,1],R) :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Γ(q)

∫ t

0
(t− s)q−1 f (s)ds

− 2t
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m)dm

)
ds

+
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

for f ∈ SF,x.
Now, we define two operators as follows. A : C([0,1],R) −→C([0,1],R) by

A x(t) =
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), (4.2)

and the multi-valued operator B : C([0,1],R) −→ P(C([0,1],R)) by

B(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈C([0,1],R) :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
Γ(q)

∫ t

0
(t− s)q−1 f (s)ds

− 2t
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m)dm

)
ds.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.3)

Then N = A +B . We shall show that the operators A and B satisfy all the
conditions of Theorem 4.4 on [0,1] . For better readability, we break the proof into a
sequence of steps and claims.

Step 1: We show that A is a contraction on C([0,1],R) . Let x,y ∈C([0,1],R). Then

|A x(t)−A y(t)| =
∣∣∣∣
[
2(αη −1)t
2−αη2 +1

]
(g(x)−g(y))

∣∣∣∣
�
[
2|αη −1|
|2−αη2| +1

]
|g(x)−g(y)|

� Lg

[
2|αη −1|
|2−αη2| +1

]
|x− y|.

Taking supremum over t ,

‖A x−A y‖ � L0‖x− y‖, L0 = Lg

[
2|αη −1|
|2−αη2| +1

]
< 1.
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This shows that A is a contraction, since L0 < 1.

Step 2: We shall show that the operator B is compact and convex valued and it is
completely continuous. This will be given in several claims.

CLAIM I: B maps bounded sets into bounded sets in C([0,1],R) . To see this, let
Br = {x ∈ C([0,1],R) : ‖x‖ � r} be a bounded set in C([0,1],R) . Then, for each
h ∈ B(x),x ∈ Br , there exists f ∈ SF,x such that

|h(t)| � 1
Γ(q)

∫ t

0
(t− s)q−1| f (s)|ds+

2
|2−αη2|Γ(q)

∫ 1

0
(1− s)q−1| f (s)|ds

+
2|α|

|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1| f (m)|dm

)
ds

� ψ(‖x‖)
(

1
Γ(q)

+
2

|2−αη2|Γ(q)
+

2|α|ηq

|2−αη2|Γ(q)

)∫ 1

0
p(s)ds

=
ψ(‖x‖)

Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)∫ 1

0
p(s)ds.

Thus,

‖h‖ � ψ(r)
Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)
‖p‖L1 ,

and consequently for each h ∈ B(Bq) we have

‖h‖ � ψ(r)
Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)
‖p‖L1 := �.

CLAIM II: Next we show that B maps bounded sets into equi-continuous sets. Let Br

be, as above, a bounded set and let h ∈ B(x) for x ∈ Br. Let t ′,t ′′ ∈ [0,1] with t ′ < t ′′
and x ∈ Br , where Br. For each h ∈ B(x), we obtain

|h(t ′′)−h(t ′)| �
∣∣∣∣ 1
Γ(q)

∫ t′

0
[(t ′′ − s)q−1− (t ′ − s)q−1] f (s)ds

∣∣∣∣
+
∣∣∣∣ 1
Γ(q)

∫ t′′

t′
(t ′′ − s)q−1 f (s)ds

∣∣∣∣+
∣∣∣∣ 2(t ′′ − t ′)
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s)ds

∣∣∣∣
+
∣∣∣∣ 2α(t ′′ − t ′)
(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m)dm

)
ds

∣∣∣∣
� ψ(r)

Γ(q)

∫ t′

0
[(t ′′ − s)q−1− (t ′ − s)q−1]p(s)ds

+
ψ(r)
Γ(q)

∫ t′′

t′
(t ′′ − s)q−1p(s)ds+

2(t ′′ − t ′)
|2−αη2|Γ(q)

∫ 1

0
(1− s)q−1p(s)ds

+
2|α|ψ(r)(t ′′ − t ′)
|2−αη2|Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1p(m)dm

)
ds.

Obviously the right hand side of the above inequality tends to zero independently of
x ∈ Br as t ′′ − t ′ → 0. As B satisfies the above three assumptions, therefore it follows
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by the Arzelá-Ascoli theorem that B : C([0,1],R) → P(C([0,1],R)) is completely
continuous.
CLAIM III: Next we prove that B has a closed graph. Let xn → x∗,hn ∈ B(xn) and
hn → h∗. Then we need to show that h∗ ∈ B(x∗). Associated with hn ∈ B(xn), there
exists fn ∈ SF,xn such that for each t ∈ [0,1],

hn(t) =
1

Γ(q)

∫ t

0
(t− s)q−1 fn(s)ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 fn(s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 fn(m)dm

)
ds.

Thus we have to show that there exists f∗ ∈ SF,x∗ such that for each t ∈ [0,1],

h∗(t) =
1

Γ(q)

∫ t

0
(t− s)q−1 f∗(s)ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f∗(s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f∗(m)dm

)
ds.

Let us consider the continuous linear operator Θ : L1([0,1],R) →C([0,1],R) given by

f �→ Θ( f )(t) =
1

Γ(q)

∫ t

0
(t − s)q−1 f (s)ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m)dm

)
ds.

Observe that

‖hn(t)−h∗(t)‖ =
∥∥∥∥ 1

Γ(q)

∫ t

0
(t− s)q−1( fn(s)− f∗(s))ds

− 2t
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1( fn(s)− f∗(s))ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1( fn(s)− f∗(s))dm

)
ds

∥∥∥∥→ 0,

as n → ∞. Thus, it follows by Lemma 4.3 that Θ ◦ SF is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =
1

Γ(q)

∫ t

0
(t− s)q−1 f∗(s)ds− 2t

(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f∗(s)ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f∗(m)dm

)
ds,

for some f∗ ∈ SF,x∗ . Hence B has a closed graph (and therefore has closed values). As
a result B is compact valued.

Therefore the operators A and B satisfy all the conditions of Theorem 4.4 and
hence an application of it yields that either condition (i) or condition (ii) holds. We
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show that the conclusion (ii) is not possible. If x ∈ λA (x)+ λB(x) for λ ∈ (0,1),
then there exists f ∈ SF,x such that

x(t) = λ
1

Γ(q)

∫ t

0
(t − s)q−1 f (s)ds−λ

2t
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (s)ds

+λ
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (m)dm

)
ds

+λ
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), t ∈ [0,1].

Consequently, we have

|x(t)| � 1
Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)∫ 1

0
f (s)ds+

[
2|αη −1|
|2−αη2| +1

]
[|x0|+ |g(x)|]

� 1
Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)
ψ(‖x‖)

∫ 1

0
p(s)ds

+
[
2|αη −1|
|2−αη2| +1

]
[|x0|+Lg‖x‖].

If condition (ii) of Theorem 3.1 holds, then there exists λ ∈ (0,1) and x ∈ ∂BM with
x = λN (x). Then, x is a solution of (2.3) with ‖x‖= M. Now, the previous inequality
implies (

1−Lg

[
2|αη −1|
|2−αη2| +1

])
M

1
Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)
ψ(M)‖p‖L1 +

[
2|αη −1|
|2−αη2| +1

]
|x0|

� 1

which contradicts to (4.1). Hence, N has a fixed point in [0,1] by Theorem 4.4,
and consequently the boundary value problem (1.6) has a solution. This completes the
proof. �

REMARK 4.6. We would like point out that the condition L0 < 1 can be deleted if
we use the well-known Bielecki’s renorming method. Of course assumption (H3) has
to be adjusted slightly for the new norm.

REMARK 4.7. If ψ satisfies a sublinear condition or more generally

lim
ξ→∞

ξ
1

Γ(q)

(
1+

2(1+ |α|ηq)
|2−αη2|

)
ψ(ξ )‖p‖L1 +

[
2|αη −1|
|2−αη2| +1

]
|x0|

> 1−Lg

[
2|αη −1|
|2−αη2| +1

]

then the existence of M in (H4) is guaranteed.
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EXAMPLE 4.8. Consider the following fractional boundary value problem

⎧⎪⎨
⎪⎩

cD3/2x(t) ∈ F(t,x(t)), 0 < t < 1,

x(0) =
1
3

+
1
5
x(ξ ), x(1) = 4

∫ 1/2

0
x(s)ds.

(4.4)

Here, q = 3/2, x0 = 1/3, � = 1/5, α = 4, η = 1/2, and F : [0,1]×R → P(R) is a
multivalued map given by

x → F(t,x) =
[
1
9

|x|3
|x|3 +3

,
1
20

|x|
|x|+1

]
.

For f ∈ F, we have

| f | � max

(
1
9

|x|3
|x|3 +3

,
1
20

|x|
|x|+1

)
� 1

9
, x ∈ R.

Thus,

‖F(t,x)‖P := sup{|y| : y ∈ F(t,x)} � 1
9

= p(t)ψ(‖x‖), x ∈ R,

with p(t) = 1, ψ(‖x‖) =
1
9
.

Further, using the condition (H4) we find that M > 5.2678719. Clearly, all the
conditions of Theorem 4.5 are satisfied. So there exists at least one solution of the
problem (4.4) on [0,1].

4.2. The lower semi-continuous case

As a next result, we study the case when F is not necessarily convex valued.
Our strategy to deal with this problems is based on the nonlinear alternative of Leray-
Schauder type together with the selection theorem of Bressan and Colombo [17] for
lower semi-continuous maps with decomposable values.

Let us mention some auxiliary facts. Let X be a nonempty closed subset of a
Banach space E and G : X → P(E) be a multivalued operator with nonempty closed
values. G is lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y)∩B �= /0} is open
for any open set B in E . Let A be a subset of [0,1]×R . A is L ⊗B measurable
if A belongs to the σ−algebra generated by all sets of the form J ×D , where J
is Lebesgue measurable in [0,1] and D is Borel measurable in R . A subset A of
L1([0,1],R) is decomposable if for all u,v ∈ A and measurable J ⊂ [0,1] = J , the
function uχJ + vχJ−J ∈ A , where χJ stands for the characteristic function of J .

DEFINITION 4.9. Let Y be a separable metric space and let N :Y →P(L1([0,1],
R)) be a multivalued operator. We say N has a property (BC) if N is lower semi-
continuous (l.s.c.) and has nonempty closed and decomposable values.
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Let F : [0,1]×R → P(R) be a multivalued map with nonempty compact values.
Define a multivalued operator F : C([0,1]×R)→P(L1([0,1],R)) associated with F
as

F (x) = {w ∈ L1([0,1],R) : w(t) ∈ F(t,x(t)) for a.e. t ∈ [0,1]},
which is called the Nemytskii operator associated with F.

DEFINITION 4.10. Let F : [0,1]×R → P(R) be a multivalued function with
nonempty compact values. We say F is of lower semi-continuous type (l.s.c. type)
if its associated Nemytskii operator F is lower semi-continuous and has nonempty
closed and decomposable values.

LEMMA 4.11. ([17]) Let Y be a separable metric space and let a multivalued op-
erator N :Y →P(L1([0,1],R)) satisfying the property (BC). Then N has a continuous
selection, that is, there exists a continuous function (single-valued) g :Y → L1([0,1],R)
such that g(x) ∈ N(x) for every x ∈Y .

THEOREM 4.12. Assume that (H2),(H3),(H4) and the following condition holds:

(H5) F : [0,1]×R→P(R) is a nonempty compact-valued multivalued map such that

(a) (t,x) �−→ F(t,x) is L ⊗B measurable,

(b) x �−→ F(t,x) is lower semicontinuous for each t ∈ [0,1];

Then the boundary value problem (1.6) has at least one solution on [0,1].

Proof. It follows from (H2) and (H5) that F is of l.s.c. type ([22]). Then from
Lemma 4.11, there exists a continuous function f : C([0,1],R) → L1([0,1],R) such
that f (x) ∈ F (x) for all x ∈C([0,1],R) .

Consider the problem⎧⎪⎨
⎪⎩

cDqx(t) = f (x(t)), 0 < t < 1, 1 < q � 2,

x(0) = x0 +g(x), x(1) = α
∫ η

0
x(s)ds, 0 < η < 1, α �= 2/η2.

(4.5)

Observe that if x ∈ AC2([0,1]) is a solution of (4.5), then x is a solution to
the problem (1.6). Now, we define two operators as follows: A ′ : C([0,1],R) −→
C([0,1],R) by

A ′x(t) =
[
2(αη −1)t
2−αη2 +1

]
(x0 +g(x)), (4.6)

and the operator B′ : C([0,1],R) −→C([0,1],R) by

B′x(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
Γ(q)

∫ t

0
(t − s)q−1 f (x(s))ds

− 2t
(2−αη2)Γ(q)

∫ 1

0
(1− s)q−1 f (x(s))ds

+
2αt

(2−αη2)Γ(q)

∫ η

0

(∫ s

0
(s−m)q−1 f (x(m))dm

)
ds.

(4.7)
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Now A ′,B′ : C([0,1],R) → C([0,1],R) are continuous. Also the argument in
Theorem 3.1 guarantees that A ′ and B′ satisfy all the conditions of the Nonlinear
Alternative for contractive maps in the single valued setting [24] and hence the problem
4.5 has a solution. �

REMARK 4.13. The results of this paper can be easily extended to more general
integral boundary conditions. Thus, for example, we can study the following fractional
boundary value problem⎧⎪⎨

⎪⎩
cDqx(t) = f (t,x(t)), 0 < t < 1, 1 < q � 2,

x(0) = x0 +g(x), x(1) = α
∫ ν

μ
x(s)ds, 0 < μ < ν < 1,

(4.8)

where cDq denotes the Caputo fractional derivative of order q , f : [0,1]×R → R is
continuous, g : C([0,1],R) → R and α ∈ R is such that α �= 2/(ν2 − μ2) . We omit
the details.
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[27] M.P. LAZAREVI ć , A.M. SPASI ć, Finite-time stability analysis of fractional order time-delay sys-

tems: Gronwall’s approach, Math. Comput. Model. 49 (2009), 475–481.
[28] J.J. NIETO, Maximum principles for fractional differential equations derived from Mittag-Leffler func-

tions, Appl. Math. Lett. 23 (2010), 1248–1251.
[29] D. O’REGAN, Fixed-point theory for the sum of two operators, Appl. Math. Lett. 9 (1996), 1–8.
[30] W. V. PETRYSHYN AND P.M. FITZPATRIC, A degree theory, fixed point theoremsand mapping theo-

rems for multivalued noncompact maps, Trans. Amer. Math. Soc. 194 (1974), 1–25.
[31] I. PODLUBNY, Fractional Differential Equations, Academic Press, San Diego, 1999.
[32] J. SABATIER, O.P. AGRAWAL, J.A.T. MACHADO (Eds.), Advances in Fractional Calculus: Theoret-

ical Developments and Applications in Physics and Engineering, Springer, Dordrecht, 2007.
[33] S. G. SAMKO, A.A. KILBAS, O.I. MARICHEV, Fractional Integrals and Derivatives, Theory and

Applications, Gordon and Breach, Yverdon, 1993.
[34] Z. WEI, Q. LI, J. CHE, Initial value problems for fractional differential equations involving Rie-

mannLiouville sequential fractional derivative, J. Math. Anal. Appl. 367 (2010), 260–272.
[35] S. Q. ZHANG, Positive solutions to singular boundary value problem for nonlinear fractional differ-

ential equation, Comput. Math. Appl. 59 (2010), 1300–1309.
[36] W. ZHONG, W. LIN, Nonlocal and multiple-point boundary value problem for fractional differential

equations, Comput. Math. Appl. 39 (2010), 1345–1351.

Sotiris K. Ntouyas
Department of Mathematics

University of Ioannina
451 10 Ioannina, GREECE
e-mail: sntouyas@uoi.gr

Fractional Differential Calculus
www.ele-math.com
fdc@ele-math.com


